PUBLICATIONS Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Supersubstorms (SML<À2500nT): Magnetic storm 10.1002/2015JA021835 and solar cycle dependences Key Points: Rajkumar Hajra1,2, Bruce T. Tsurutani3, Ezequiel Echer1, Walter D. Gonzalez1, and Jesper W. Gjerloev4,5 • Extremely intense substorms/ supersubstorms are often isolated 1Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, Brazil, 2Now at Laboratoire de Physique et events and are not obvious statistical ’ ’ 3 fluctuations of the geomagnetic Chimie de l Environnement et de l Espace, CNRS, Orléans, France, Jet Propulsion Laboratory, California Institute of 4 indices Technology, Pasadena, California, USA, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA, • Supersubstorm occurrence and 5Birkeland Center, University of Bergen, Bergen, Norway intensity have no obvious relationship with geomagnetic storm intensity • Supersubstorms exhibit annual Abstract We study extremely intense substorms with SuperMAG AL (SML) peak intensities < À2500 nT variation with peak occurrence during “ ” spring in SC 22 and fall in SC 23 ( supersubstorms /SSSs) for the period from 1981 to 2012. The SSS events were often found to be isolated SML peaks and not statistical fluctuations of the indices. The SSSs occur during all phases of the À solar cycle with the highest occurrence (3.8 year 1) in the descending phase. The SSSs exhibited an annual variation with equinoctial maximum altering between spring in solar cycle 22 and fall in solar Correspondence to: R. Hajra, cycle 23. The occurrence rate and strength of the SSSs did not show any strong relationship with the
[email protected] intensity of the associated geomagnetic storms.