Statistics of the Largest Geomagnetic Storms Per Solar Cycle (1844-1993) D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Results of the Helsinki Magnetic Observatory 1844–1912
Annales Geophysicae (2004) 22: 1691–1704 SRef-ID: 1432-0576/ag/2004-22-1691 Annales © European Geosciences Union 2004 Geophysicae Results of the Helsinki magnetic observatory 1844–1912 H. Nevanlinna Finnish Meteorological Institute, Geophysical Research Division, P.O.Box 503, FIN-00101 Helsinki, Finland Received: 14 August 2003 – Revised: 20 October 2003 – Accepted: 20 November 2003 – Published: 8 April 2004 Abstract. The geomagnetic field declination (D) and hori- Key words. Geomagnetism and paleomagnetism (time vari- zontal component (H ) were observed visually at the Helsinki ations, diurnal to secular) – History of geophysics (planetol- magnetic observatory between 1844–1912. About 2.0 mil- ogy) – Magnetospheric physics (solar wind-magnetosphere lion single observations of the magnetic components are interactions) available. The observing equipment and observation meth- ods were the same for almost 70 years. The Helsinki data series is thus rather homogeneous and suitable for magnetic field analysis of both internal and external origin for about 1 Introduction five sunspot cycles (sunspot cycles 9–13). Due to distur- bances from nearby electric tramway traffic, most of the ob- Geomagnetic phenomena, occurring both in time and space, servations after 1897 are very noisy and unreliable for mag- were intensively studied already at the turn of the 18th and netic activity studies. Observations of D (1844–1897) have 19th centuries. The theoretical study of geomagnetism in the been converted into an absolute scale but H refers to vari- 1820s received an enormous momentum from the discov- ation values only. Observations of D have been previously ery of the electromagnetic interaction demonstrated by H. analyzed and published for the time interval 1844–1880. -
Statistical Properties of Superactive Regions During Solar Cycles 19–23⋆
A&A 534, A47 (2011) Astronomy DOI: 10.1051/0004-6361/201116790 & c ESO 2011 Astrophysics Statistical properties of superactive regions during solar cycles 19–23 A. Q. Chen1,2,J.X.Wang1,J.W.Li2,J.Feynman3, and J. Zhang1 1 Key Laboratory of Solar Activity of Chinese Academy of Sciences, National Astronomical Observatories, Chinese Academy of Sciences, PR China e-mail: [email protected]; [email protected] 2 National Center for Space Weather, China Meteorological Administration, PR China 3 Helio research, 5212 Maryland Avenue, La Crescenta, USA Received 26 February 2011 / Accepted 20 August 2011 ABSTRACT Context. Each solar activity cycle is characterized by a small number of superactive regions (SARs) that produce the most violent of space weather events with the greatest disastrous influence on our living environment. Aims. We aim to re-parameterize the SARs and study the latitudinal and longitudinal distributions of SARs. Methods. We select 45 SARs in solar cycles 21–23, according to the following four parameters: 1) the maximum area of sunspot group, 2) the soft X-ray flare index, 3) the 10.7 cm radio peak flux, and 4) the variation in the total solar irradiance. Another 120 SARs given by previous studies of solar cycles 19–23 are also included. The latitudinal and longitudinal distributions of the 165 SARs in both the Carrington frame and the dynamic reference frame during solar cycles 19–23 are studied statistically. Results. Our results indicate that these 45 SARs produced 44% of all the X class X-ray flares during solar cycles 21–23, and that all the SARs are likely to produce a very fast CME. -
Space Weather — History and Current Status
Space Weather — History and Current Status Ji Wu National Space Science Center, CAS Oct. 3, 2017 1 Contents 1. Beginning of Space Age and Dangerous Environment 2. The Dynamic Space Environment so far We Know 3. The Space Weather Concept and Current Programs 4. Looking at the Future Space Weather Programs 2 1.Beginning of Space Age and Dangerous Environment 3 Space Age Kai'erdishi Korolev Oct. 4, 1957, humanity‘s first artificial satellite, Sputnik-1, has launched, ushering in the Space Age. 4 Space Age Explorer 1 was the first satellite of the United States, launched on Jan 31, 1958, with scientific object to explore the radiation environment of geospace. 5 Unknown Space Environment Sputnik-2 (Nov 3, 1957) detected the Earth's outer radiation belt in the far northern latitudes, but researchers did not immediately realize the significance of the elevated radiation because Sputnik 2 passed through the Van Allen belt too far out of range of the Soviet tracking stations. Explorer-1 detected fewer cosmic rays in its orbit (which ranged from 220 miles from Earth to 1,563 miles) than Van Allen expected. 6 Space Age - unknown and dangerous space environment 7 Satellite failures due to the unknown and Particle dangerous space environment Radiation! Statistics show that the space radiation environment is one of the main causes of satellite failure. The space radiation environment caused about 2,300 satellite failures of all the 5000 failure events during the 1966-1994 period collected by the National Geophysical Data Center. Statistics of the United States in 1996 indicate that the space environment caused more than 40% of satellite failures in 1958-1986, and 36% in 1986-1996. -
Space Weather
ASTRONOMY AND ASTROPHYSICS LIBRARY Series Editors: G. Börner, Garching, Germany A. Burkert, München, Germany W. B. Burton, Charlottesville, VA, USA and Leiden, The Netherlands M. A. Dopita, Canberra, Australia A. Eckart, Köln, Germany T. Encrenaz, Meudon, France E. K. Grebel, Heidelberg, Germany B. Leibundgut, Garching, Germany J. Lequeux, Paris, France A. Maeder, Sauverny, Switzerland V.Trimble, College Park, MD, and Irvine, CA, USA Kenneth R. Lang The Sun from Space Second Edition 123 Kenneth R. Lang Department of Physics and Astronomy Tufts University Medford MA 02155 USA [email protected] Cover image: Solar cycle magnetic variations. These magnetograms portray the polarity and distribution of the magnetism in the solar photosphere. They were made with the Vacuum Tower Telescope of the National Solar Observatory at Kitt Peak from 8 January 1992, at a maximum in the sunspot cycle (lower left) to 25 July 1999, well into the next maximum (lower right). Each magnetogram shows opposite polarities as darker and brighter than average tint. When the Sun is most active, the number of sunspots is at a maximum, with large bipolar sunspots that are oriented in the east–west (left–right) direction within two parallel bands. At times of low activity (top middle), there are no large sunspots and tiny magnetic fields of different magnetic polarity can be observed all over the photosphere. The haze around the images is the inner solar corona. (Courtesy of Carolus J. Schrijver, NSO, NOAO and NSF.) ISBN: 978-3-540-76952-1 e-ISBN: 978-3-540-76953-8 Library of Congress Control Number: 2008933407 c Springer-Verlag Berlin Heidelberg 2009 This work is subject to copyright. -
Robustness of Solar-Cycle Empirical Rules Across Different Series
Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Robustness of Solar-Cycle Empirical Rules Across Different Series Including an Updated ADF Sunspot Group Series Ilya Usoskin1,2 · Gennady Kovaltsov3 · Wilma Kiviaho1,4 © Springer •••• Abstract Empirical rules of solar cycle evolution form important observational constraints for the solar dynamo theory. This includes the Waldmeier rule re- lating the magnitude of a solar cycle to the length of its ascending phase, and the Gnevyshev–Ohl rule clustering cycles to pairs of an even-numbered cycle followed by a stronger odd-numbered cycle. These rules were established as based on the “classical” Wolf sunspot number series, which has been essentially revisited recently, with several revised sets released by the research community. Here we test the robustness of these empirical rules for different sunspot (group) series for the period 1749 – 1996, using four classical and revised international sunspot numbers and group sunspot-number series. We also provide an update of the sunspot group series based on the active-day fraction (ADF) method, using the new database of solar observations. We show that the Waldmeier rule is robust and independent of the exact sunspot (group) series: its classical and n + 1 (relating the length of n-th cycle to the magnitude of (n + 1)-th cycle) formulations are significant or highly significant for all series, while its simplified formulation (relating the magnitude of a cycle to its full length) is insignificant for all series. The Gnevyshev–Ohl rule was found robust for all analyzed series for Cycles 8 – 21, but unstable across the Dalton minimum and before it. -
Space Weather and Aviation Impacts
Space Weather and Aviation Impacts Char Dewey NOAA/National Weather Service Salt Lake City, UT @DeweyWx [email protected] IWAWS 2020 Space Weather and Aviation Impacts What is space weather? How space weather affects Earth and aviation; hazards and impacts How to monitor conditions and be space weather-aware Space Weather 101 Space Weather 101 Weather originating from the Sun and traveling the 93 million miles to reach Earth and our atmosphere, interacting with systems on and orbiting Earth. Observations come from satellite sources with instruments that monitor space weather. Model data (some now operational!) developing. Coronal Mass Ejections (CME), Solar Energetic Particles (SEP), and Solar Flares. Space Weather 101 Active regions on the sun are where solar activity begins; where sunspots are located on the solar disk. Magnetic “instability” where solar storming forms. Space Weather 101 Coronal Mass Ejections (CME) An eruption of plasma particles and electromagnetic radiation from the solar corona, often following solar flares. Originate from active regions on the Sun’s surface (sunspots). Very slow to reach the Earth from 12 hours to days or a week. Space Weather Impacts Coronal Mass Ejections (CME) Impacts: Geomagnetic storming compresses Earth’s magnetosphere on the day-side, extending night-side “tail” and reconnecting, focusing energy at the poles and resulting in Aurora. Increase electrons in the ionosphere at high-latitude regions, exposing to higher radiation values. Space Weather 101 Solar Energetic Particles (SEP) High-energy particles; protons, electrons Originate from solar flare or shock wave (CME) reaching the Earth from 20 minutes to many hours, depending the location it leaves the solar disk. -
On Polar Magnetic Field Reversal in Solar Cycles 21, 22, 23, and 24
On Polar Magnetic Field Reversal in Solar Cycles 21, 22, 23, and 24 Mykola I. Pishkalo Main Astronomical Observatory, National Academy of Sciences, 27 Zabolotnogo vul., Kyiv, 03680, Ukraine [email protected] Abstract The Sun’s polar magnetic fields change their polarity near the maximum of sunspot activity. We analyzed the polarity reversal epochs in Solar Cycles 21 to 24. There were a triple reversal in the N-hemisphere in Solar Cycle 24 and single reversals in the rest of cases. Epochs of the polarity reversal from measurements of the Wilcox Solar Observatory (WSO) are compared with ones when the reversals were completed in the N- and S-hemispheres. The reversal times were compared with hemispherical sunspot activity and with the Heliospheric Current Sheet (HCS) tilts, too. It was found that reversals occurred at the epoch of the sunspot activity maximum in Cycles 21 and 23, and after the corresponding maxima in Cycles 22 and 24, and one-two years after maximal HCS tilts calculated in WSO. Reversals in Solar Cycles 21, 22, 23, and 24 were completed first in the N-hemisphere and then in the S-hemisphere after 0.6, 1.1, 0.7, and 0.9 years, respectively. The polarity inversion in the near-polar latitude range ±(55–90)˚ occurred from 0.5 to 2.0 years earlier that the times when the reversals were completed in corresponding hemisphere. Using the maximal smoothed WSO polar field as precursor we estimated that amplitude of Solar Cycle 25 will reach 116±12 in values of smoothed monthly sunspot numbers and will be comparable with the current cycle amplitude equaled to 116.4. -
Solar Activity and Transformer Failures in the Greek National Electric Grid
J. Space Weather Space Clim. 3 (2013) A32 DOI: 10.1051/swsc/2013055 Ó I.P. Zois, Published by EDP Sciences 2013 RESEARCH ARTICLE OPEN ACCESS Solar activity and transformer failures in the Greek national electric grid Ioannis Panayiotis Zois* Testing Research and Standards Centre, Public Power Corporation, 9 Leontariou street, GR 153 51, Kantza, Pallini, Athens, Attica, Greece *Corresponding author: [email protected] Received 3 August 2012 / Accepted 27 October 2013 ABSTRACT Aims: We study both the short term and long term effects of solar activity on the large transformers (150 kV and 400 kV) of the Greek national electric grid. Methods: We use data analysis and various statistical methods and models. Results: Contrary to com- mon belief in PPC Greece, we see that there are considerable both short term (immediate) and long term effects of solar activity onto large transformers in a mid-latitude country like Greece. Our results can be summarised as follows: 1. For the short term effects: During 1989–2010 there were 43 ‘‘stormy days’’ (namely days with for example Ap 100) and we had 19 failures occurring during a stormy day plus or minus 3 days and 51 failures occurring during a stormy day plus or minus 7 days. All these failures can be directly related to Geomagnetically Induced Currents (GICs). Explicit cases are briefly pre- sented. 2. For the long term effects, again for the same period 1989–2010, we have two main results: (i) The annual number of transformer failures seems to follow the solar activity pattern. Yet the maximum number of transformer failures occurs about half a solar cycle after the maximum of solar activity. -
Nonaxisymmetric Component of Solar Activity and the Gnevyshev-Ohl Rule
Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Nonaxisymmetric Component of Solar Activity and the Gnevyshev-Ohl rule E.S.Vernova1 · M.I. Tyasto1 · D.G. Baranov2 · O.A. Danilova1 c Springer •••• Abstract The vector representation of sunspots is used to study the non- axisymmetric features of the solar activity distribution (sunspot data from Greenwich–USAF/NOAA, 1874–2016).The vector of the longitudinal asym- metry is defined for each Carrington rotation; its modulus characterizes the magnitude of the asymmetry, while its phase points to the active longitude. These characteristics are to a large extent free from the influence of a stochastic component and emphasize the deviations from the axisymmetry. For the sunspot area, the modulus of the vector of the longitudinal asymmetry changes with the 11-year period; however, in contrast to the solar activity, the amplitudes of the asymmetry cycles obey a special scheme. Each pair of cycles from 12 to 23 follows in turn the Gnevyshev–Ohl rule (an even solar cycle is lower than the following odd cycle) or the “anti-Gnevyshev–Ohl rule” (an odd solar cycle is lower than the preceding even cycle). This effect is observed in the longitudinal asymmetry of the whole disk and the southern hemisphere. Possibly, this effect is a manifes- tation of the 44-year structure in the activity of the Sun. Northern hemisphere follows the Gnevyshev–Ohl rule in Solar Cycles 12–17, while in Cycles 18–23 the anti-rule is observed. Phase of the longitudinal asymmetry vector points to the dominating (active) longitude. Distribution of the phase over the longitude was studied for two periods of the solar cycle, ascent-maximum and descent-minimum, separately. -
Arxiv:1901.09083V2 [Astro-Ph.SR] 3 Jun 2019 2 University of Maryland, Department of Astronomy, College Park, MD 20742, USA
Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• What the Sudden Death of Solar Cycles Can Tell us About the Nature of the Solar Interior Scott W. McIntosh 1 · Robert J. Leamon 2,3 · Ricky Egeland 1 · Mausumi Dikpati 1 · Yuhong Fan 1 · Matthias Rempel 1 c Springer •••• Abstract We observe the abrupt end of solar activity cycles at the Sun's Equa- tor by combining almost 140 years of observations from ground and space. These \terminator" events appear to be very closely related to the onset of magnetic activity belonging to the next Solar Cycle at mid-latitudes and the polar-reversal process at high latitudes. Using multi-scale tracers of solar activity we examine the timing of these events in relation to the excitation of new activity and find that the time taken for the solar plasma to communicate this transition is of the order of one solar rotation { but could be shorter. Utilizing uniquely com- prehensive solar observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory (SDO) we see that this transitional event is strongly longitudinal in nature. Combined, these characteristics suggest that information is communicated through the solar interior rapidly. A range of possibilities exist to explain such behavior: for example gravity waves on the solar tachocline, or that the magnetic fields present in the Sun's convection zone could be very large, with a poloidal field strengths reaching 50 kG { considerably larger than conventional explorations of solar and stellar dynamos estimate. Regardless of the mechanism responsible, the rapid timescales demonstrated by the Sun's global magnetic field reconfiguration present strong constraints on first-principles numerical simulations of the solar interior and, by extension, other stars. -
SOLAR CYCLE 23: an ANOMALOUS CYCLE? Giuliana De Toma and Oran R
The Astrophysical Journal, 609:1140–1152, 2004 July 10 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. SOLAR CYCLE 23: AN ANOMALOUS CYCLE? Giuliana de Toma and Oran R. White High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301; [email protected], [email protected] and Gary A. Chapman, Stephen R. Walton, Dora G. Preminger, and Angela M. Cookson San Fernando Observatory, Department of Physics and Astronomy, California State University at Northridge, 18111 Nordhoff Street, Northridge, CA 91330; [email protected], [email protected], [email protected], [email protected] Received 2004 January 24; accepted 2004 March 19 ABSTRACT The latest SOHO VIRGO total solar irradiance (TSI) time series is analyzed using new solar variability measures obtained from full-disk solar images made at the San Fernando Observatory and the Mg ii 280 nm index. We discuss the importance of solar cycle 23 as a magnetically simpler cycle and a variant from recent cycles. Our results show the continuing improvement in TSI measurements and surrogates containing infor- mation necessary to account for irradiance variability. Use of the best surrogate for irradiance variability due to photospheric features (sunspots and faculae) and chromospheric features (plages and bright network) allows fitting the TSI record to within an rms difference of 130 ppm for the period 1986 to the present. Observations show that the strength of the TSI cycle did not change significantly despite the decrease in sunspot activity in cycle 23 relative to cycle 22. This points to the difficulty of modeling TSI back to times when only sunspot observations were available. -
Evidence for a Solar Influence on U.S.-Affecting Hurricanes
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2009 Evidence for a Solar Influence on U.S.- Affecting Hurricanes Robert Edward Hodges Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF SOCIAL SCIENCES EVIDENCE FOR A SOLAR INFLUENCE ON U.S.-AFFECTING HURRICANES By ROBERT EDWARD HODGES A Thesis submitted to the Department of Geography in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Summer Semester, 2009 Copyright © 2009 Robert E. Hodges All Rights Reserved The members of the committee approve the thesis of Robert Edward Hodges defended on July 2, 2009. ___________________________________ James B. Elsner Professor Directing Thesis ___________________________________ Thomas H. Jagger Committee Member ___________________________________ J. Anthony Stallins Committee Member ___________________________________ L. Jordan Committee Member The Graduate School has verified and approved the above-named committee members. ii “It is the glory of God to conceal a thing: but the honour of kings is to search out a matter.” -Proverbs 25:2 (King James Version) iii ACKNOWLEDGEMENTS To my dad, whose tenacity only so slightly surpasses his wit. To my mom, who loves what she does for a living. I recognize the directing professor, Dr. Jim Elsner, for his numerous drop-ins to my office, late night emails, and quizzical looks during my attempts at recounting my latest advancements (or so I thought they were) regarding this study’s completion. To credit him merely as a source of help would be a grievous understatement.