Forestry Commission Handbook: Lichens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Study of the Pruinose Species of Hypogymnia (Parmeliaceae, Ascomycota) from China
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259425488 A study of the pruinose species of Hypogymnia (Parmeliaceae, Ascomycota) from China Article in The Lichenologist · November 2012 DOI: 10.1017/S0024282912000473 CITATIONS READS 3 134 2 authors, including: Xinli Wei Institute of Microbiology Chinese Academy of Sciences 65 PUBLICATIONS 355 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Lichen species composition and distribution in China View project Discovering the possibility of life on Mars View project All content following this page was uploaded by Xinli Wei on 09 June 2015. The user has requested enhancement of the downloaded file. The Lichenologist 44(6): 783–793 (2012) 6 British Lichen Society, 2012 doi:10.1017/S0024282912000473 A study of the pruinose species of Hypogymnia (Parmeliaceae, Ascomycota) from China Xin-Li WEI and Jiang-Chun WEI Abstract: Six pruinose species of Hypogymnia are reported in this paper, including one new species Hypogymnia pruinoidea. The type of Hypogymnia pseudopruinosa was found to be a mixture with H. laccata. Hypogymnia pseudopruinosa is therefore typified with a lectotype, and the description of H. pseudopruinosa is revised. Distributions of the six pruinose species are given and discussed. Com- ments on differences and similarities between pruinose species of Hypogymnia are made. Diagnostic characters of each species, and a key to the pruinose species of Hypogymnia in China, are also provided. Key words: H. pruinoidea, H. pseudopruinosa, lichen substances, pruina Accepted for publication 6 June 2012 Introduction Materials and Methods Although over 100 species of Hypogymnia Specimens treated here are preserved in the Lichen (Nyl.) Nyl. -
Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C
United States Department of Agriculture Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C. Dibble, James W. Hinds, Ralph Perron, Natalie Cleavitt, Richard L. Poirot, and Linda H. Pardo Forest Service Northern Research Station General Technical Report NRS-165 December 2016 1 Abstract To address a need for air quality and lichen monitoring information for the Northeast, we compared bulk chemistry data from 2011-2013 to baseline surveys from 1988 and 1993 in three Class I Wilderness areas of New Hampshire and Vermont. Plots were within the White Mountain National Forest (Presidential Range—Dry River Wilderness and Great Gulf Wilderness, New Hampshire) and the Green Mountain National Forest (Lye Brook Wilderness, Vermont). We sampled epiphyte communities and found 58 macrolichen species and 55 bryophyte species. We also analyzed bulk samples for total N, total S, and 27 additional elements. We detected a decrease in Pb at the level of the National Forest and in a subset of plots. Low lichen richness and poor thallus condition at Lye Brook corresponded to higher N and S levels at these sites. Lichen thallus condition was best where lichen species richness was also high. Highest Hg content, from a limited subset, was on the east slope of Mt. Washington near the head of Great Gulf. Most dominant lichens in good condition were associated with conifer boles or acidic substrates. The status regarding N and S tolerance for many lichens in the northeastern United States is not clear, so the influence of N pollution on community data cannot be fully assessed. -
Assessment of Lichens As Biomonitors of Heavy Metal Pollution in Selected Mining Area, Slovakia Amer H
ISSN-1996-918X Cross Mark Pak. J. Anal. Environ. Chem. Vol. 22, No. 1 (2021) 53 – 59 http://doi.org/10.21743/pjaec/2021.06.07 Assessment of Lichens as Biomonitors of Heavy Metal Pollution in Selected Mining Area, Slovakia Amer H. Tarawneh1, Ivan Salamon2*, Rakan M. Altarawneh3, Jozef Mitra1 and Anastassiya Gadetskaya4 1Tafila Technical University, Department of Chemistry and Chemical Technology, P.O.Box 179, Tafila 66110, Jordan. 2University of Presov, Faculty of Humanities and Natural Science, Department of Ecology, 01, 17th November St., 081 16, Presov, Slovakia. 3Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan. 4School of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan. *Corresponding Author Email: [email protected] Received 07 September 2020, Revised 23 April 2021, Accepted 26 April 2021 -------------------------------------------------------------------------------------------------------------------------------------------- Abstract Lichens have widely been used as bioindicators to reflect the quality of the environment. The present study was conducted to investigate the lichens diversity that grows on the surface of waste heaps from an abandoned old copper mine in Mlynky, Slovakia. In spite of the heavy metal- contaminated environment, we documented twenty species of lichens in the selected site. Taxonomically the most numerous group were represented by Cladonia with seven species, as well other species; namely, Acarospora fuscata, Cetraria islandica, Dermatocarpon miniatum, Hypogymnia physodes, Hypogymnia tubulosa, Lecanora subaurea, Lepraria incana, Physcia aipolia, Porpidia macrocarpa, Pseudevernia furfuracea, Rhizocarpon geographicum and Xanthoria parietina. The content of selected heavy metals (Cu, Fe, and Zn) in the predominant lichens Cetraria islandica, Cladonia digitata, Cladonia pyxidata, Hypogymnia physodes and Pseudevernia furfuracea were analyzed. -
Pannariaceae Generic Taxonomy LL Ver. 27.9.2013.Docx
http://www.diva-portal.org Preprint This is the submitted version of a paper published in The Lichenologist. Citation for the original published paper (version of record): Ekman, S. (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). The Lichenologist, 46: 627-656 http://dx.doi.org/10.1017/S002428291400019X Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-943 Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota) Stefan EKMAN, Mats WEDIN, Louise LINDBLOM & Per M. JØRGENSEN S. Ekman (corresponding author): Museum of Evolution, Uppsala University, Norbyvägen 16, SE –75236 Uppsala, Sweden. Email: [email protected] M. Wedin: Dept. of Botany, Swedish Museum of Natural History, Box 50007, SE –10405 Stockholm, Sweden. L. Lindblom and P. M. Jørgensen: Dept. of Natural History, University Museum of Bergen, Box 7800, NO –5020 Bergen, Norway. Abstract: We estimated phylogeny in the lichen-forming ascomycete family Pannariaceae. We specifically modelled spatial (across-site) heterogeneity in nucleotide frequencies, as models not incorporating this heterogeneity were found to be inadequate for our data. Model adequacy was measured here as the ability of the model to reconstruct nucleotide diversity per site in the original sequence data. A potential non-orthologue in the internal transcribed spacer region (ITS) of Degelia plumbea was observed. We propose a revised generic classification for the Pannariaceae, accepting 30 genera, based on our phylogeny, previously published phylogenies, as well as morphological and chemical data available. -
Revisions of British and Irish Lichens
Revisions of British and Irish Lichens Volume 9 February 2021 Peltigerales: Pannariaceae Cover image: Pectenia atlantica, on bark of Fraxinus excelsior, Strath Croe, Kintail, Wester Ross. Revisions of British and Irish Lichens is a free-to-access serial publication under the auspices of the British Lichen Society, that charts changes in our understanding of the lichens and lichenicolous fungi of Great Britain and Ireland. Each volume will be devoted to a particular family (or group of families), and will include descriptions, keys, habitat and distribution data for all the species included. The maps are based on information from the BLS Lichen Database, that also includes data from the historical Mapping Scheme and the Lichen Ireland database. The choice of subject for each volume will depend on the extent of changes in classification for the families concerned, and the number of newly recognized species since previous treatments. To date, accounts of lichens from our region have been published in book form. However, the time taken to compile new printed editions of the entire lichen biota of Britain and Ireland is extensive, and many parts are out-of-date even as they are published. Issuing updates as a serial electronic publication means that important changes in understanding of our lichens can be made available with a shorter delay. The accounts may also be compiled at intervals into complete printed accounts, as new editions of the Lichens of Great Britain and Ireland. Editorial Board Dr P.F. Cannon (Department of Taxonomy & Biodiversity, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK). Dr A. Aptroot (Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n, Bairro Universitário, CEP 79070-900, Campo Grande, MS, Brazil) Dr B.J. -
Lichens of Alaska's South Coast
United States Department of Agriculture Lichens of Alaska’s South Coast Forest Service R10-RG-190 Alaska Region Reprint April 2014 WHAT IS A LICHEN? Lichens are specialized fungi that “farm” algae as a food source. Unlike molds, mildews, and mushrooms that parasitize or scavenge food from other organisms, the fungus of a lichen cultivates tiny algae and / or blue-green bacteria (called cyanobacteria) within the fabric of interwoven fungal threads that form the body of the lichen (or thallus). The algae and cyanobacteria produce food for themselves and for the fungus by converting carbon dioxide and water into sugars using the sun’s energy (photosynthesis). Thus, a lichen is a combination of two or sometimes three organisms living together. Perhaps the most important contribution of the fungus is to provide a protective habitat for the algae or cyanobacteria. The green or blue-green photosynthetic layer is often visible between two white fungal layers if a piece of lichen thallus is torn off. Most lichen-forming fungi cannot exist without the photosynthetic partner because they have become dependent on them for survival. But in all cases, a fungus looks quite different in the lichenized form compared to its free-living form. HOW DO LICHENS REPRODUCE? Lichens sexually reproduce with fruiting bodies of various shapes and colors that can often look like miniature mushrooms. These are called apothecia (Fig. 1) and contain spores that germinate and Figure 1. Apothecia, fruiting grow into the fungus. Each bodies fungus must find the right photosynthetic partner in order to become a lichen. Lichens reproduce asexually in several ways. -
BLS Bulletin 111 Winter 2012.Pdf
1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S. -
One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K. -
Species Fact Sheet
SPECIES FACT SHEET Common Name: pink-eyed mouse, shingle lichen. Scientific Name: Fuscopannaria saubinetii (Mont.) P. M. Jørg. Synonym: Pannaria saubinetii (Mont.) Nyl. Division: Ascomycota Class: Lecanoromycetes Order: Peltigerales Family: Pannariaceae Note: This species not found in North America. Previous records misidentifications, most often Fuscopannaria pacifica (see below for details and references). Technical Description: Thallus made of small (to 1 mm diameter), smooth, delicately incised, bluish leaf-like flaps (squamulose). The squamules have an upper cortex, a medulla with the cyanobacteria Nostoc (photobiont) and fungal hyphae, and no lower cortex. Apothecia convex, flesh-colored, to 0.5 mm diam., with a pale margin of fungal tissue (proper margin) but without an obvious ring of thallus-colored tissue around the edge (thalline margin). Hymenium reacts blue-green then turns red-brown rapidly in I. Asci with apical amyloid sheet (this is a microscopic character that takes acquired skill to locate). Spores simple, colorless, ellipsoid, 15- 17x5-6 µm. Other descriptions and illustrations: Jørgensen 1978, Brodo 2001. Chemistry: All spot tests on thallus negative. Distinctive Characters: (1) pale blue-gray, delicately incised squamules with small flesh- colored apothecia, (2) spores 15-17X5-6 µm, (3) asci with amyloid sheet. Similar Species: Many Pannaria and Fuscopannaria species look similar and are very difficult to distinguish. Fuscopannaria pacifica is the species described from North America that is most often confused with F. saubinetii. Fuscopannaria pacifica has squamules that are brownish gray and minutely incised, lying on a black mat of hyphal strands. Its pale orangish brown convex apothecia lack a margin of thallus-colored tissue, the spores are 16-20x7-10 µm, and the asci have amyloid rings instead of an amyloid sheet. -
The Lichen Genus Hypogymnia in Southwest China Article
Mycosphere 5 (1): 27–76 (2014) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2014 Online Edition Doi 10.5943/mycosphere/5/1/2 The lichen genus Hypogymnia in southwest China McCune B1 and Wang LS2 1 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331-2902 U.S.A. 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtan, Kunming 650204, China McCune B, Wang LS 2014 – The lichen genus Hypogymnia in southwest China. Mycosphere 5(1), 27–76, Doi 10.5943/mycosphere/5/1/2 Abstract A total of 36 species of Hypogymnia are known from southwestern China. This region is a center of biodiversity for the genus. Hypogymnia capitata, H. nitida, H. saxicola, H. pendula, and H. tenuispora are newly described species from Yunnan and Sichuan. Olivetoric acid is new as a major lichen substance in Hypogymnia, occurring only in H. capitata. A key and illustrations are given for the species known from this region, along with five species from adjoining regions that might be confused or have historically been misidentified in this region. Key words – Lecanorales – lichenized ascomycetes – Parmeliaceae – Shaanxi – Sichuan – Tibet – Yunnan – Xizang. Introduction The first major collections of Hypogymnia from southwestern China were by Handel- Mazzetti, from which Zahlbruckner (1930) reported six species now placed in Hypogymnia, and Harry Smith (1921-1934, published piecewise by other authors; Herner 1988). Since the last checklist of lichens in China (Wei 1991), which reported 16 species of Hypogymnia from the southwestern provinces, numerous species of Hypogymnia from southwestern China have been described or revised (Chen 1994, Wei & Bi 1998, McCune & Obermayer 2001, McCune et al. -
Heritage Rank Status Factors
Heritage Rank Status Factors Elcode NLLEC84160 Gname HYPOGYMNIA VITTATA Gcomname Number of Occurrences E = >300 Comments Wide distribution in the northern hemisphere, so probably a large number of occurences. Number of Occurrences with Good Viability F = Very many (>125) occurrences with good viability Comments Population Size F = 10,000-100,000 individuals Comments Range Extent H = > 2,500,000 km2 (greater than 1,000,000 square miles) Comments Known from coastal Alaska, British Columbia (McCune & Geiser 1997) and also reported by Brodo et al. (2001) in Washington and Oregon, the Appalachian Mountains, as well as other parts of Canada and New England. Reported from high montane areas in Germany (Wirth 1995), from Austria (Berger and Priemetzhofer 2000), the Kanin-Pechora subprovince of the Arctic floristic region (rare) (Lavrinenko et al. 2000), the Ukraine. (Kodnratyuk 1992), northernmost Siberia (Zhurbenko and Hansen 1992), Australasia (Elix 1980), and Japan (Kurokawa 1971). A boreal- temperate, slightly oceanic, more-or-less circumpolar species (Krog 1968). Area of Occupancy H = >20,000 km2 (greater than 5,000,000 acres) LH = >200,000 km (greater than 125,000 miles) Comments Long-term Trend in Population Size, Extent of Occurrence, Area of Occupancy, and/or Number or Condition of Occurrences E = Relatively Stable (±25% change) Comments Short-term Trend in Population Size, Extent of Occurrence, Area of Occupancy, and/or Number or Condition of Occurrences E = Stable. Population, range, area occupied, and/or number or condition of occurrences unchanged or remaining within ±10% fluctuation Comments Threats U = Unknown. The available information is not sufficient to assign degree of threat as above. -
<I> Lecanoromycetes</I> of Lichenicolous Fungi Associated With
Persoonia 39, 2017: 91–117 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.05 Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera R. Pino-Bodas1,2, M.P. Zhurbenko3, S. Stenroos1 Key words Abstract Though most of the lichenicolous fungi belong to the Ascomycetes, their phylogenetic placement based on molecular data is lacking for numerous species. In this study the phylogenetic placement of 19 species of cladoniicolous species lichenicolous fungi was determined using four loci (LSU rDNA, SSU rDNA, ITS rDNA and mtSSU). The phylogenetic Pilocarpaceae analyses revealed that the studied lichenicolous fungi are widespread across the phylogeny of Lecanoromycetes. Protothelenellaceae One species is placed in Acarosporales, Sarcogyne sphaerospora; five species in Dactylosporaceae, Dactylo Scutula cladoniicola spora ahtii, D. deminuta, D. glaucoides, D. parasitica and Dactylospora sp.; four species belong to Lecanorales, Stictidaceae Lichenosticta alcicorniaria, Epicladonia simplex, E. stenospora and Scutula epiblastematica. The genus Epicladonia Stictis cladoniae is polyphyletic and the type E. sandstedei belongs to Leotiomycetes. Phaeopyxis punctum and Bachmanniomyces uncialicola form a well supported clade in the Ostropomycetidae. Epigloea soleiformis is related to Arthrorhaphis and Anzina. Four species are placed in Ostropales, Corticifraga peltigerae, Cryptodiscus epicladonia, C. galaninae and C. cladoniicola