Articulata (Echinodermata) - Accessscience from Mcgraw-Hill Education

Total Page:16

File Type:pdf, Size:1020Kb

Articulata (Echinodermata) - Accessscience from Mcgraw-Hill Education Articulata (Echinodermata) - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/articulata-echinodermata/053200 (http://www.accessscience.com/) Article by: Fell, Howard B. Formerly, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.053200 (http://dx.doi.org/10.1036/1097-8542.053200) Content Bibliography Additional Readings The only surviving subclass of the Crinoidea, differentiated during Triassic times. The calyx is dicyclic, but considerable reduction of the infrabasals and basals may occur. The uniserial arms bear pinnules and usually branch, and the arm retains its movable articulation with the radial plate, despite the incorporation of the lower brachial ossicles into the calyx. Extant stalked forms with nodal rings of cirri (Metacrinus) are included in the order Isocrinida (see illustration). They do not tolerate turbulant waters and live at depths below current action, although they do inhabit shallow water when the conditions are suitable. These forms may trail the stem during temporary free-swimming phases, using the cirri for reattachment. The feather stars, of the order Comatulida, discard the stem when young, and thereafter remain free, either as swimming animals or as creeping benthic forms. They prefer shallow, clear water, rich in nutrients, and therefore abound on tropical coasts and in polar seas rather than in temperate waters. Four other orders have been defined; one of them includes extinct floating forms. See also: Crinoidea (/content/crinoidea/168000); Echinodermata (/content/echinodermata/210700) Metacrinus cyaneus, a living, articulate stalked crinoid from Bass Strait, at 200 fathoms (1200 ft or 365 m). Howard B. Fell 1 of 3 3/15/2016 9:26 AM Articulata (Echinodermata) - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/articulata-echinodermata/053200 Bibliography A. H. Clark, Monograph of the Existing Crinoids, U.S. Nat. Mus. Bull. 82, 1915–1967 Additional Readings M. J. Benton and D. A. T. Harper, Introduction to Paleobiology and the Fossil Record, Wiley-Blackwell, Chichester, West Sussex, UK, 2009 2 of 3 3/15/2016 9:26 AM.
Recommended publications
  • Early Stalked Stages in Ontogeny of the Living Isocrinid Sea Lily Metacrinus Rotundus
    Published for The Royal Swedish Academy of Sciences and The Royal Danish Academy of Sciences and Letters Acta Zoologica (Stockholm) 97: 102–116 (January 2016) doi: 10.1111/azo.12109 Early stalked stages in ontogeny of the living isocrinid sea lily Metacrinus rotundus Shonan Amemiya,1,2,3 Akihito Omori,4 Toko Tsurugaya,4 Taku Hibino,5 Masaaki Yamaguchi,6 Ritsu Kuraishi,3 Masato Kiyomoto2 and Takuya Minokawa7 Abstract 1Department of Integrated Biosciences, Amemiya,S.,Omori,A.,Tsurugaya,T.,Hibino,T.,Yamaguchi,M.,Kuraishi,R., Graduate School of Frontier Sciences, The Kiyomoto,M.andMinokawa,T.2016.Earlystalkedstagesinontogenyoftheliving University of Tokyo, Kashiwa, Chiba, isocrinid sea lily Metacrinus rotundus. — Acta Zoologica (Stockholm) 97: 102–116. 277-8526, Japan; 2Marine and Coastal Research Center, Ochanomizu University, The early stalked stages of an isocrinid sea lily, Metacrinus rotundus,wereexam- Ko-yatsu, Tateyama, Chiba, 294-0301, ined up to the early pentacrinoid stage. Larvae induced to settle on bivalve shells 3 Japan; Research and Education Center of and cultured in the laboratory developed into late cystideans. Three-dimensional Natural Sciences, Keio University, Yoko- (3D) images reconstructed from very early to middle cystideans indicated that hama, 223-8521, Japan; 4Misaki Marine 15 radial podia composed of five triplets form synchronously from the crescent- Biological Station, Graduate School of Sci- ence, The University of Tokyo, Misaki, shaped hydrocoel. The orientation of the hydrocoel indicated that the settled Kanagawa, 238-0225, Japan; 5Faculty of postlarvae lean posteriorly. In very early cystideans, the orals, radials, basals and Education, Saitama University, 255 Shim- infrabasals, with five plates each in the crown, about five columnals in the stalk, o-Okubo, Sakura-ku, Saitama City, 338- and five terminal stem plates in the attachment disc, had already formed.
    [Show full text]
  • Isocrinid Crinoids from the Late Cenozoic of Jamaica
    A tlantic G eology 195 Isocrinid crinoids from the late Cenozoic of Jamaica Stephen K. Donovan Department of Geology, University of the West Indies, Mona, Kingston 7, Jamaica Date Received April 8, 1994 Date A ccepted A ugust 26, 1994 Eight species of isocrinines have been documented from the Lower Cretaceous to Pleistocene of Jamaica. New finds include a second specimen of a Miocene species from central north Jamaica, previously regarded as Diplocrinus sp. but reclassified as Teliocrinus? sp. herein. Extant Teliocrinus is limited to the Indian Ocean, although Miocene specimens have been recorded from Japan, indicating a wider distribution during the Neogene. One locality in the early Pleistocene Manchioneal Formation of eastern Jamaica has yielded three species of isocrinine, Cenocrirtus asterius (Linne), Diplocrinus maclearanus (Thomson) and Neocrinus decorus Thomson. These occur in association with the bourgueticrinine Democrinus sp. or Monachocrinus sp. These taxa are all extant and suggest a minimum depositional depth for the Manchioneal Formation at this locality of about 180 m. This early Pleistocene fauna represents the most diverse assemblage of fossil crinoids docu­ mented from the Antillean region. Huit especes d’isocrinines de la periode du Cretace inferieur au Pleistocene de la Jamai'que ont ete documentees. Les nouvelles decouvertes comprennent un deuxieme specimen d’une espece du Miocene du nord central de la Jamai'que, auparavant consideree comme l’espece Diplocrinus, mais reclassifiee en tant que Teliocrinus? aux presentes. Le Teliocrinus existant est limite a l’ocean Indien, meme si on a releve des specimens du Miocene au Japon, ce qui est revelateur d’une distribution plus repandue au cours du Neogene.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Predation, Resistance, and Escalation in Sessile Crinoids
    Predation, resistance, and escalation in sessile crinoids by Valerie J. Syverson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in the University of Michigan 2014 Doctoral Committee: Professor Tomasz K. Baumiller, Chair Professor Daniel C. Fisher Research Scientist Janice L. Pappas Professor Emeritus Gerald R. Smith Research Scientist Miriam L. Zelditch © Valerie J. Syverson, 2014 Dedication To Mark. “We shall swim out to that brooding reef in the sea and dive down through black abysses to Cyclopean and many-columned Y'ha-nthlei, and in that lair of the Deep Ones we shall dwell amidst wonder and glory for ever.” ii Acknowledgments I wish to thank my advisor and committee chair, Tom Baumiller, for his guidance in helping me to complete this work and develop a mature scientific perspective and for giving me the academic freedom to explore several fruitless ideas along the way. Many thanks are also due to my past and present labmates Alex Janevski and Kris Purens for their friendship, moral support, frequent and productive arguments, and shared efforts to understand the world. And to Meg Veitch, here’s hoping we have a chance to work together hereafter. My committee members Miriam Zelditch, Janice Pappas, Jerry Smith, and Dan Fisher have provided much useful feedback on how to improve both the research herein and my writing about it. Daniel Miller has been both a great supervisor and mentor and an inspiration to good scholarship. And to the other paleontology grad students and the rest of the department faculty, thank you for many interesting discussions and much enjoyable socializing over the last five years.
    [Show full text]
  • Morphological Description and Molecular Analysis of Newly Recorded Anneissia Pinguis(Crinoidea: Comatulida: Comatulidae) from Ko
    Journal of Species Research 9(4):467-472, 2020 Morphological description and molecular analysis of newly recorded Anneissia pinguis (Crinoidea: Comatulida: Comatulidae) from Korea Philjae Kim1,2 and Sook Shin1,3,* 1Marine Biological Resource Institute, Sahmyook University, Seoul 01795, Republic of Korea 2Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology, Seocheon-gun, Chungnam 33657, Republic of Korea 3Department of Animal Biotechnology & Resource, Sahmyook University, Seoul 01795, Republic of Korea *Correspondent: [email protected] The crinoid specimens of the genus Anneissia were collected from Nokdong, Korea Strait, and Moseulpo, Jeju Island. The specimens were identified as Anneissia pinguis (A.H. Clark, 1909), which belongs to the family Comatulidae of the order Comatulida. Anneissia pinguis was first described by A.H. Clark in 1909 around southern Japan. This species can be distinguished from other Anneissia species by a longish and stout cirrus, much fewer arms, and short distal cirrus segments. The morphological features of Korean specimens are as follows: large disk (20-35 mm), 28-36 segments and 32-43 mm length cirrus, division series in all 4 (3+4), very stout and strong distal pinnule with 18-19 comb and 40 arms. In Korea fauna, only three species of genus Anneissia were recorded: A. intermedia, A. japonica, and A. solaster. In this study, we provide the morphological description and phylogenetic analysis based on cytochrome c oxidase subunit I. Keywords: Anneissia pinguis, crinoid, cytochrome c oxidase subunit I, morphological feature, phylogeny Ⓒ 2020 National Institute of Biological Resources DOI:10.12651/JSR.2020.9.4.467 INTRODUCTION al cytochrome c oxidase subunit I (COI) is usually used in DNA barcoding studies of echinoderms (Ward et al., The family Comatulidae Fleming 1828 comprises 105 2008; Hoareau and Boissin, 2010).
    [Show full text]
  • Taxonomic Study on the Feather Stars (Crinoidea: Echinodermata) from Egyptian Red Sea Coasts and Suez Canal, Egypt
    Open Journal of Marine Science, 2012, 2, 51-57 http://dx.doi.org/10.4236/ojms.2012.22007 Published Online April 2012 (http://www.SciRP.org/journal/ojms) Taxonomic Study on the Feather Stars (Crinoidea: Echinodermata) from Egyptian Red Sea Coasts and Suez Canal, Egypt Ahmed M. Hellal Marine Biology and Fish Science Section, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt Email: [email protected] Received November 27, 2011; revised January 16, 2012; accepted January 25, 2012 ABSTRACT A taxonomic study on the crinoids (feather stars) collected from 34 sites from the Red Sea coasts and islands as well as the Suez Canal was done during the period from 1992 to 2003. A total of 15 species are now known from the Red Sea belonging to eleven genera under six families. Among them four species are endemic to the Red Sea and the two spe- cies, Decametra chadwicki and Lamprometra klunzingeri, are recorded from the Suez Canal for the first time. Also, the two species, Oligometra serripinna and Dorometra aegyptica, are new record from Gulf of Suez, and Decametra mollis from Gulf of Aqaba and Northern Red Sea. This study represents the first proper documentation of crinoid species in the study area. Summaries are provided of the specific habitats and geographical distribution. Keywords: Crinoidea; Red Sea; Suez Canal; Taxonomy; Habitats; Geographical Distribution 1. Introduction 2. Material and Methods Feather-stars constitute group of echinoderms belonging 2.1. Field Observation, Collection and to class Crinoidea and order Comatulida, having five to Preservation hundreds of arms surrounding their cup-like bodies [1,2].
    [Show full text]
  • Thiolliericrinid Crinoids from the Lower Cretaceous of Crimea
    THIOLLIERICRINID CRINOIDS FROM THE LOWER CRETACEOUS OF CRIMEA by Vladimir G. KLIKUSHIN Geobios, n° 20, fasc. 5 p. 625-665, 18 fig., 2tabl., 1 pi. Lyon, octobre 1987 THIOLLIERICRINID CRINOIDS FROM THE LOWER CRETACEOUS OF CRIMEA by Vladimir G. KLIKUSHIN * Abstract RÉSUMÉ The family Thiolliericrinidae (Oxfordian - Hauteri- La famille Thiolliericrinidae (Oxfordien - Hauteri- vian) includes the stalked crinoids of the order Coma- vien) comprend les crinoïdes pédonculés de l’ordre tulida, inhabiting reef fades. Remains of 12 thiollieri- Comatulida, vivant dans des milieux récifaux. 12 crinid species (10 among them are new) belonging to espèces (dont 10 sont nouvelles) de Thiolliericrinidae six genera (Thiolliericrinus, Burdigalocrinus, Lorioli- sont décrites du Berriasien et du Yalanginien de la crinus, Conoideocrinus nov. gen., Umbocrinus nov. Crimée. Ces espèces appartiennent à six genres : gen., and Heberticrinus nov. gen.) from the Berria- Thiolliericrinus, Burdigalocrinus, Loriolicrinus, sian and Valanginian of Crimea are described. On the Conoideocrinus nov. gen., Umbocrinus nov. gen. et basis of an extensive material (hundreds of calyxes, Heberticrinus nov. gen. L’étude d’un matériel abon­ centr odor sals, brachials and columnals) the skeletal dant (des centaines de coupes dorsales, de pièces cen- morphology, the ontogenetic variations of the calyxes trodorsales et brachiales, de columnales) permet une and the phylogeny of the Thiolliericrinidae are discussion sur la morphologie du squelette, les varia­ reconstructed. The family taxonomy is defined more tions ontogénétiques des coupes dorsales et la phylo­ exactly regarding new morphological data. génie des Thiolliericrinidae. D’après les nouvelles données morphologiques la taxonomie de la famille est précisée. KEY-WORDS : CRINOIDEA, ARTICULATA, COMATULIDA, THIOLLIERICRINIDAE, TAXONOMY, NOMENCLATURE, MOR­ PHOLOGY, ONTOGENY, PHYLOGENY, CRETACEOUS, USSR.
    [Show full text]
  • Crinoids from the Barremian (Lower Cretaceous) of the Serre De Bleyton (Drôme, SE France)
    ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien, Serie A 112 733-774 Wien, Juni 2010 Crinoids from the Barremian (Lower Cretaceous) of the Serre de Bleyton (Drôme, SE France) By Manfred JÄGER (With 2 figures and 7 plates) Manuscript submitted on September 11th 2009, the revised manuscript on January 11th 2010 Abstract The Barremian of the Serre de Bleyton has yielded many disarticulated but well-preserved ele- ments of a diverse crinoid fauna of at least six species, dominated by comatulids (three species) and isocrinids (two species). The single apiocrinitid species is rare. Except for the large and well- known comatulid Decameros ricordeanus D’ORBIGNY, 1850, with specimens similar to the subspe- cies or variety vagnasensis (DE LORIOL, 1888), five of the six species are new. However, only for three of them a new species name is introduced, Isocrinus? bleytonensis nov. spec., Comatulina moosleitneri nov. spec. and Semiometra barremiensis nov. spec. Two fairly rare species, Per- cevalicrinus sp. and Apiocrinites sp., are described in open nomenclature. This Barremian fauna fills a stratigraphic gap from which only few crinoids had so far been de- scribed. Apart from some Hauterivian crinoids (mainly isocrinids), the stratigraphically nearest crinoid-rich (and especially comatulid-rich) horizons are the Valanginian of western Switzerland and southeastern France and especially the Aptian of southeastern France and Spain. The high percentage of new species is not surprising due to phylogenetic changes during the time span Valanginian – Aptian. Apart from these differences at species level, the crinoid fauna from the Serre de Bleyton fits well into the overall faunal composition known from Late Jurassic to Early Cretaceous sites.
    [Show full text]
  • Experimental Neoichnology of Crawling Stalked Crinoids
    Swiss Journal of Palaeontology https://doi.org/10.1007/s13358-018-0158-9 (0123456789().,-volV)(0123456789().,-volV) REGULAR RESEARCH ARTICLE Experimental neoichnology of crawling stalked crinoids 1,2 3 4 1,2 5 Krzysztof R. Brom • Kazumasa Oguri • Tatsuo Oji • Mariusz A. Salamon • Przemysław Gorzelak Received: 13 June 2018 / Accepted: 5 July 2018 Ó The Author(s) 2018 Abstract Stalked crinoids have long been considered sessile. In the 1980s, however, observations both in the field and of laboratory experiments proved that some of them (isocrinids) can actively relocate by crawling with their arms on the substrate, and dragging the stalk behind them. Although it has been argued that this activity may leave traces on the sediment surface, no photographs or images of the traces produced by crawling crinoids have been available. Herein, we present results of neoichnological experiments using the shallowest species of living stalked crinoid, Metacrinus rotundus, dredged from Suruga Bay (near the town of Numazu, Shizuoka Prefecture, * 140 m depth). Our results demonstrate that isocrinids produce characteristic locomotion traces, which have some preservation potential. They are composed of rather deep and wide, sometimes weakly sinuous, central drag marks left by the stalk and cirri, and short, shallow scratch marks made by the arms. Based on the functional morphology and taphonomy, it has been argued that the ability to autotomize the stalk and relocate had already evolved in the oldest stem-group isocrinids (holocrinids), likely in response to increased benthic predation pressure during the so-called Mesozoic marine revolution. Our data show that this hypothesis may be corrob- orated in the future by ichnological findings, which may provide more direct proof of active locomotion in Triassic holocrinids.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • The Pelagic Propagule's Toolkit
    The pelagic propagule’s toolkit: An exploration of the morphology, swimming capacity and behaviour of marine invertebrate propagules by © Emaline M. Montgomery A Dissertation submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Biology, Department of Ocean Sciences, Faculty of Science, Memorial University of Newfoundland June 2017 St. John’s, Newfoundland and Labrador Abstract The pelagic propagules of benthic marine animals often exhibit behavioural responses to biotic and abiotic cues. These behaviours have implications for understanding the ecological trade-offs among complex developmental strategies in the marine environment, and have practical implications for population management and aquaculture. But the lack of life stage-specific data leaves critical questions unanswered, including: (1) Why are pelagic propagules so diverse in size, colour, and development mode; and (2) do certain combinations of traits yield propagules that are better adapted to survive in the plankton and under certain environments? My PhD research explores these questions by examining the variation in echinoderm propagule morphology, locomotion and behaviour during ontogeny, and in response to abiotic cues. Firstly, I examined how egg colour patterns of lecithotrophic echinoderms correlated with behavioural, morphological, geographic and phylogenetic variables. Overall, I found that eggs that developed externally (pelagic and externally-brooded eggs) had bright colours, compared
    [Show full text]
  • The First Record of an Isocrinid Crinoid from the Tertiary of Australia
    Rec. Wes/. AWl. Mw 1989 14(Jj J85-J89 The first record of an isocrinid crinoid from the Tertiary of Australia Gregory J. Milner* Abstract An isocrinid crinoid. tcntatively assigned to :'Nielsenicrinus sp., from the Paleogcne Cardabia Calcarenite, Carnarvon Basin, Western Australia is the first record of the group in the Australian lertiary. Foraminiferal evidencc dates the cnnoid as latc Paleocene (mid­ Thanetian, planktonic foraminiferal Planorotalites pseudomenardii Zone 1'4). The crinoid lived in an open shelf sea at SOm to lOOm depth. Introduction Within Australia articulate crinoids of the Isocrinidae have previously been described only from Cretaceous deposits in Queensland and New South Wales (eg: Moore 1870; Jack and Etheridge 1892, Etheridge 190 I, 1902). During recent stratigraphic fieldwork in Toothawarra Creek, northern Carnarvon Basin, Western Australia (latitude 220 49' 45" S and longitude 1140 08' 30" E, Fig. I) crinoidal remains were collected from a homogenous, soft, white, bryozoal calcarenite bed ofthe Wadera Member type-section, Cardabia Calcarenite (Condon et al. 1956; Hocking et al. 1987) near the contact with the underlying Boongerooda Greensand Member. Indian 30' OCean 40 km 30' x Figure I Locality map showing collection location as denoted by X. *Department of Geology, the University of Western Australia, Nedlands, 6009 3~5 F'irst record of isocrinid crinoid Many isocrinids have been assigned generic names on the basis of stem elements (Rasmussen 1961). Although reservations concerning this practice were expressed by Moore as early as 1939, and later Donovan (1984), it has continued, mainly because of the lack of diagnostic calyx or cup elements in recovered material.
    [Show full text]