Crinoidea, Echinodermata) Research: an Example from the Lower Jurassic of Montenegro

Total Page:16

File Type:pdf, Size:1020Kb

Crinoidea, Echinodermata) Research: an Example from the Lower Jurassic of Montenegro Carnets Geol. 19 (12) E-ISSN 1634-0744 DOI 10.4267/2042/70491 A new prospect in crinoid (Crinoidea, Echinodermata) research: An example from the Lower Jurassic of Montenegro Mariusz A. SALAMON 1 Abstract: Lower Jurassic (Hettangian-Pliensbachian) shallow-marine ooidal limestones of southern Montenegro contain a large number of isocrinid ossicles. They are assigned to the following taxa: Iso- crinus psilonoti (QUENSTEDT), Isocrinus sp., and Pentacrinites cf. fossilis BLUMENBACH. The echinoderm assemblage also yields cyrtocrinid ossicles (Cotylederma sp., Cyrtocrinina indet.) and echinoid spines (only spotted in thin sections); however, these elements are rare. Given the fact that the recorded assemblage comes from a single locality, there is a growing need for further research that will require intense sampling to compile and complete the faunal list of crinoids and other echinoderm taxa. Key-words: • echinoderms; • crinoids; • Lower Jurassic; • Hettangian-Pliensbachian; • Montenegro Citation : SALAMON M.A. (2019).- A new prospect in crinoid (Crinoidea, Echinodermata) research: An example from the Lower Jurassic of Montenegro.- Carnets Geol., Madrid, vol. 19, no. 12, p. 211-220. Résumé : Une nouvelle perspective dans l'étude des crinoïdes (Crinoidea, Echinodermata) : Un exemple du Jurassique inférieur du Monténégro.- Les calcaires oolithiques du Jurassique infé- rieur (Hettangien-Pliensbachien) du sud du Monténégro renferment un grand nombre d'éléments sque- lettiques de crinoïdes isocrinides. Ils sont attribués aux taxons suivants : Isocrinus psilonoti (QUEN- STEDT), Isocrinus sp. et Pentacrinites cf. fossilis BLUMENBACH. L'échinofaune comporte également des pièces de crinoïdes cyrtocrinides (Cotylederma sp., Cyrtocrinina indet.) et des radioles d'oursin (seule- ment repérés en lames minces); toutefois, ces éléments sont rares. Compte tenu du fait que l'assem- blage répertorié provient d'une seule localité, il importe de poursuivre les recherches, ce qui nécessite- ra, entre autres, un échantillonnage plus intensif afin d'établir et de compléter la liste des faunes de crinoïdes et autres échinodermes. Mots-clefs : • échinodermes ; • crinoïdes ; • Jurassique inférieur ; • Hettangien-Pliensbachien ; • Monténégro 1. Introduction only briefly mentions their presence in sedimen- tary rocks (e.g., ČAĐENOVIĆ et al., 2008; ČRNE & To date Early Jurassic crinoids of the former GORIČAN, 2008; RADULOVIĆ, 2013; BUCKOVIĆ & SVI- Yugoslavia have remained undescribed. However, LIČIĆ, 2016). The latter authors mentioned or as documented in the present study, they repre- illustrated echinoderms (mostly crinoids in thin sent a common component of the fossil remains sections) from the Lower Jurassic of Croatia, that can be found in the Hettangian-Pliensbachian Montenegro, Serbia or Slovenia. Especially abun- interval. The existing literature, mostly geological dant are echinoderms in Montenegro, with local or general paleontological papers (yet not direct- mass-occurrences within ooidal limestones (e.g., ly, partly or exclusively, dedicated to crinoids), Fig. 4.f in ČRNE & GORIČAN, 2008; this study). 1 Department of Palaeontology and Stratigraphy, Faculty of Earth Science, University of Silesia in Katowice, Będ- zińska Str. 60, PL-41-200 Sosnowiec (Poland) [email protected] Published online in final form (pdf) on October 10, 2019 [Editor: Bruno GRANIER; language editor: Simon MITCHELL] 211 Carnets Geol. 19 (12) Figure 1: A. Map of Europe with area of Montenegro shaded in black, and the geological map of Tejani area (taken from ČAĐENOVIĆ et al., 2014; simplified). B. Studied section. H-P - Hettangian-Pliensbachian, P-T - Pliensbachian- Toarcian, T-A - Toarcian-Aalenian, B-Bajocian (taken from ČRNE & GORIČAN, 2008, modified). Figure 1 : A. Carte de l'Europe, le Monténégro est indiqué en noir, et carte géologique de la région de Tejani (tirée de ČAĐENOVIĆ et al., 2014, simplifiée). B. Coupe étudiée. H-P - Hettangien-Pliensbachien, P-T - Pliensbachien-Toar- cien, T-A - Toarcien-Aalénien, B-Bajocien (modifié d'après ČRNE & GORIČAN, 2008). ĐAKOVIĆ et al. (2017) illustrated isocrinid plurico- 2. Geological setting, material and lumnals and columnals from the Rumija Moun- tains (Montenegro). The latter authors assigned methods their material to Chladocrinus basaltiformis (MIL- The study area is located in the southern part LER), however, it is difficult to determine that this of Montenegro, close to the Albanian border (Fig. material really belongs to this taxa (there is no 1). The outcrops around Tejani consist of carbo- tuberculation present on the lateral surfaces, and nate sediments of the Lower and possibly Middle all but one of the articular facets has a visible Jurassic (ČRNE & GORIČAN, 2008; Fig. 1). The ornamentation). These are also mentioned in the lowermost deposits are thin-bedded limestones Liassic of Greece (e.g., KARAKITSIOS et al., 2015). that lack any macrofaunal remains. Above this Still noteworthy is the only detailed study of Early are thick-bedded ooidal limestones, ca. 100 m- Jurassic (Pliensbachian) crinoids from Balkans thick, containing numerous isocrinids, echinoids (Bulgaria): KLIKUSHIN (1987) identified cyrtocri- (Fig. 2.G), algae, and foraminifers. According to nids [Cyrtocrinida; Cotylederma manchevi KLIKU- ČRNE & GORIČAN (2008), the foraminiferal assem- SHIN], isocrinids [Isocrinida; Chladocrinus basalti- blage displays index taxa indicative of the Het- formis (MILLER), "Isocrinus" schlumbergeri (LO- tangian-Pliensbachian interval [e.g., Agerina mar- RIOL), Seirocrinus laevisutus (POMPECKI)], and tana (FARINACCI)]. Higher deposits are marls, mar- millericrinids [Millericrinida; Amaltheocrinus ly limestones, and limestones, with scarce micro- amalthei (QUENSTEDT)]. Significantly the crinoids fossils, which are mostly represented by radiola- documented from the Sinemurian-Toarcian inter- rians and sponge spicules. They are overlain by val of the neighbouring countries are more diver- oolitic limestones, with locally abundant crinoids, se. DELOGU & NICOSIA (1987) and NICOSIA (1991) brachiopods, and foraminifers, indicative of the reported 14 different taxa in NW Turkey. Besides middle? Toarcian-Aalenian interval. The topmost cyrtocrinids, isocrinids and millericrinids, they part of the Tejani section is represented by thick- also noticed comatulids (Comatulida). A similar bedded ooidal limestones with algae and forami- level of taxonomic diversity among crinoids for nifers, most probably of Bajocian age (ČRNE & the same interval can be found in Italy (15 taxa GORIČAN, 2008). of cyrtocrinids, isocrinids and millericrinids; PARO- Field investigations in the Tejani area had NA, 1892; MANNI & NICOSIA, 1990, 1999). been conducted in 2017-2018. From the lower Present investigations, as a preliminary study, part of the section (Rumija Oolites Fm, Hettan- had been carried out in the surroundings of gian-Pliensbachian; Fig. 1) 32 small (0.4 kg - 0.7 Tejani; they document a low diversity, isocrinid- kg) samples were collected. Additionally a ~40 kg dominated assemblage. There are good opportu- bulk sample of weathered material was also col- nities to find material in the Lower Jurassic oolitic lected. In the Laboratory of Palaeontology and limestone belt, which stretches for over a few Stratigraphy at the University of Silesia in Kato- tens of kilometers, south- and southeast-wards wice, the weathered sample was washed through close to the Albanian border, and north- and with hot water and screened on a sieve column, northwest-wards along Lake Skadar. using 1.0, 0.5, 0.315 and 0.1 mm mesh sizes. This preliminary note aims to describe the cri- After drying residues at 220°C, the fossil remains noids, and to compare them with previously re- were picked manually under a binocular micro- corded forms from adjacent areas. scope. 212 Carnets Geol. 19 (12) Fossils showing on rock surface were photo- sented by SIMMS (1989, 2010) who also pointed graphed and, subsequently, treated with GLAU- out that I. psilonoti differs from all pre-Toarcian BER's salt (i.e., frozen and thawed at least 9 times representatives of Isocrinus in the lack of orna- and, after relaxation, washed in the same way as mentation of columnal latera. He also noted that the weathered sample). An additional set of ten the cirrus scars of I. psilonoti are larger than tho- thin sections was prepared and analyzed by se of other Lower Jurassic taxa recorded from means of microfacies. Europe [I. robustus (WRIGHT) and I. tuberculatus; The investigated material is housed at the Fa- see also GŁUCHOWSKI, 1987; KLIKUSHIN, 1992]. culty of Earth Sciences, University of Silesia in Isocrinus sp. Katowice, Sosnowiec, under catalogue number GIUS 8-3667. (Figs. 2.A-F, 3.E-H) 3. Systematic palaeontology Material. Several columnals (nodals and inter- nodals, pluricolumnals), brachials and cirrals. We Systematics follows the taxonomic views ex- must bear in mind that some of the ossicles clas- pressed by HESS (2006) and HESS & MESSING sified here as Isocrinus sp. could belong to I. psi- (2011). lonoti (QUENSTEDT) as described below. Order Isocrinida Description. Columnals are circular, pentago- SIEVERTS-DORECK in MOORE et al., 1952 nal, pentalobate to sub-pentalobate. Nodals are higher than internodals. Columnal diameter ran- Suborder Isocrinina ges from 0.6 mm up to 3.9 mm. Small columnals SIEVERTS-DORECK in UBAGHS, 1953 are nearly as high as wide. Articular facets are not visible (or very poorly visible; covered by Family Isocrinidae GISLÉN, 1924 rock matrix), with smooth latera
Recommended publications
  • Silurian Crinoids of the New Brunswick Museum, Saint John, Canada Stephen K
    Document generated on 09/28/2021 1:58 p.m. Atlantic Geology Silurian crinoids of the New Brunswick Museum, Saint John, Canada Stephen K. Donovan and Randall F. Miller Volume 52, 2016 Article abstract The New Brunswick Museum’s collection of Silurian crinoids from eastern URI: https://id.erudit.org/iderudit/ageo52art09 Canada is small, and includes specimens from New Brunswick, Quebec and Nova Scotia. Material considered herein is, with one exception, from New See table of contents Brunswick. Included are: the cladid Syndetocrinus dartae (Upper Silurian of Quebec); the camerates Scyphocrinites sp. (Pridoli or Lochkovian) and camerate crinoid arms gen. et sp. indet. (Lower Silurian); columnal Publisher(s) morphotaxa Floricrinus (col.) sp. (Ludlow or Pridoli) and Lanxocolumnus (col.) sp. cf. L. chaleurensis Donovan and Keighley (probably Llandovery, Telychian); Atlantic Geoscience Society distal dendritic radicular attachments (Ludlow or Pridoli); and disarticulated brachials (Ludlow or Pridoli). The fossil record of crinoids from the Silurian of ISSN New Brunswick appears depauperate, but this most likely reflects the poor preservation of the specimens (commonly disarticulated and moldic) and the 0843-5561 (print) lack of interest shown by collectors. The only remedy for this problem would 1718-7885 (digital) be either discovery of a crinoid Lagerstätte, which would be attractive to collectors, or a focused campaign of collecting of disarticulated material from Explore this journal multiple outcrops. Cite this article Donovan, S. K. & Miller, R. F. (2016). Silurian crinoids of the New Brunswick Museum, Saint John, Canada. Atlantic Geology, 52, 223–236. All rights reserved © Atlantic Geology, 2016 This document is protected by copyright law.
    [Show full text]
  • Early Stalked Stages in Ontogeny of the Living Isocrinid Sea Lily Metacrinus Rotundus
    Published for The Royal Swedish Academy of Sciences and The Royal Danish Academy of Sciences and Letters Acta Zoologica (Stockholm) 97: 102–116 (January 2016) doi: 10.1111/azo.12109 Early stalked stages in ontogeny of the living isocrinid sea lily Metacrinus rotundus Shonan Amemiya,1,2,3 Akihito Omori,4 Toko Tsurugaya,4 Taku Hibino,5 Masaaki Yamaguchi,6 Ritsu Kuraishi,3 Masato Kiyomoto2 and Takuya Minokawa7 Abstract 1Department of Integrated Biosciences, Amemiya,S.,Omori,A.,Tsurugaya,T.,Hibino,T.,Yamaguchi,M.,Kuraishi,R., Graduate School of Frontier Sciences, The Kiyomoto,M.andMinokawa,T.2016.Earlystalkedstagesinontogenyoftheliving University of Tokyo, Kashiwa, Chiba, isocrinid sea lily Metacrinus rotundus. — Acta Zoologica (Stockholm) 97: 102–116. 277-8526, Japan; 2Marine and Coastal Research Center, Ochanomizu University, The early stalked stages of an isocrinid sea lily, Metacrinus rotundus,wereexam- Ko-yatsu, Tateyama, Chiba, 294-0301, ined up to the early pentacrinoid stage. Larvae induced to settle on bivalve shells 3 Japan; Research and Education Center of and cultured in the laboratory developed into late cystideans. Three-dimensional Natural Sciences, Keio University, Yoko- (3D) images reconstructed from very early to middle cystideans indicated that hama, 223-8521, Japan; 4Misaki Marine 15 radial podia composed of five triplets form synchronously from the crescent- Biological Station, Graduate School of Sci- ence, The University of Tokyo, Misaki, shaped hydrocoel. The orientation of the hydrocoel indicated that the settled Kanagawa, 238-0225, Japan; 5Faculty of postlarvae lean posteriorly. In very early cystideans, the orals, radials, basals and Education, Saitama University, 255 Shim- infrabasals, with five plates each in the crown, about five columnals in the stalk, o-Okubo, Sakura-ku, Saitama City, 338- and five terminal stem plates in the attachment disc, had already formed.
    [Show full text]
  • A New Early Jurassic Marine Locality from Southwestern Chubut Basin, Argentina
    Andean Geology 42 (3): 349-363. September, 2015 Andean Geology doi: 10.5027/andgeoV42n3-a0410.5027/andgeoV40n2-a?? www.andeangeology.cl A new Early Jurassic marine locality from southwestern Chubut Basin, Argentina * S. Mariel Ferrari1, Santiago Bessone1 1 Centro Nacional Patagónico (CENPAT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Boulevard A. Brown 2915, Puerto Madryn 9120, Chubut, Argentina. [email protected]; [email protected] * Corresponding author: [email protected] ABSTRACT. A shallow marine invertebrate association is reported from a new Early Jurassic locality namely La Casilda, which is situated in the southwestern region of the Chubut Basin (Patagonia, Argentina). The marine deposits of La Casilda are located in the Río Genoa valley and bear a diverse invertebrate fauna including bivalves, gastropods, brachiopods, echinoderms and corals. A preliminary taxonomic analysis of the invertebrate fauna suggests that La Casilda deposits belong to the Mulanguiñeu Formation of late Pliensbachian-early Toarcian age, and may be coeval with those from the marine localities previously sampled in other regions of the Río Genoa valley. The preliminary results of a biodiversity analysis displayed that La Casilda is one of the most diverse localities at the Chubut Basin and could be assigned to the biofacies at the mixed siliciclastic-carbonate ramp proposed for the marine Early Jurassic at the Andean Basin of northern Chile. The evolution of the marine transgression during the early Pliensbachian-early Toarcian is also interpreted here in a time scale based on ammonite faunas, giving a preliminary temporal reconstruction of the entire Chubut Basin. Keywords: Invertebrates, La Casilda, Mulanguiñeu Formation, Chubut Basin, Argentina.
    [Show full text]
  • Upper Bajocian– Callovian) of the Polish Jura Chain and Holy Cross Mountains (South-Central Poland)
    1661-8726/07/010153-12 Swiss j. geosci. 100 (2007) 153–164 DOI 10.1007/s00015-007-1207-3 Birkhäuser Verlag, Basel, 2007 A diverse crinoid fauna from the Middle Jurassic (Upper Bajocian– Callovian) of the Polish Jura Chain and Holy Cross Mountains (south-central Poland) MARIUSZ A. SALAMON*& MICHA¸ ZATO¡ Key words: crinoids, Middle Jurassic, Poland, palaeobiogeography, taphonomy, epibiontism ABSTRACT ZUSAMMENFASSUNG A systematic account of a diverse crinoid fauna from the Middle Jurassic Aus mitteljurassischen (Bajocian–Callovian) Sedimenten des südlichen (Upper Bajocian–Callovian) of the Polish Jura Chain and Holy Cross Moun- Zentralpolens (Krakow–Cz´stochowa Hochland und Heilig-Kreuz Gebirge) tains (south-central Poland) is presented. The description is supplemented wird eine diverse Crinoidenfauna systematisch beschrieben und stratigra- with a list of all crinoid species found hitherto in the Tatra Mountains and the phisch eingestuft. Die Beschreibung wird durch eine Zusammenstellung sämt- Pieniny Klippen Belt (Poland), which were a part of the northern margin of licher Crinoiden-Spezies ergänzt, die bislang im Tatra-Gebirge und im Pieniny the Tethys during Middle Jurassic time. Balanocrinus hessi seems to be en- Klippen-Gürtel gefunden wurden. Beide Regionen waren während des Mitt- demic and established its own population in the epicontinental sea. Other leren Jura Teil des Nordrandes der Tethys. Balanocrinus hessi bildete eigen- stalked crinoids entered from the Tethys through the East-Carpathian Gate or ständige Populationen in diesem epikontinentalen Meeresbereich und scheint from a westerly way, and constitute a typical Mediterranean fauna. Stemless endemisch gewesen zu sein. Andere gestielte Crinoiden drangen aus der forms are regarded to be unsuccessful immigrants.
    [Show full text]
  • Crinoids from the Middle Jurassic (Bajocian–Lower Callovian) of Arde`Che, France
    Swiss J Palaeontol (2012) 131:211–253 DOI 10.1007/s13358-012-0044-9 Crinoids from the Middle Jurassic (Bajocian–Lower Callovian) of Arde`che, France Hans Hess Received: 24 February 2012 / Accepted: 25 April 2012 / Published online: 6 June 2012 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2012 Abstract Several Middle Jurassic outcrops in the Arde`che results demonstrate that the Middle Jurassic crinoids from Department near La Voulte-sur-Rhoˆne and St-E´tienne-de- the Arde`che are one of the important and diverse Mesozoic Boulogne are rich in the remains of crinoids, but these were crinoid faunas. Some forms bridge the gap between the known from surface collections only and were not descri- Early Jurassic and the Late Jurassic hardground faunas of bed using present standards of systematics. This paper cyrtocrinids. Cyrtocrinus praenutans n. sp., a form similar brings the taxonomic status of the previously described to Cyrtocrinus nutans (GOLDFUSS) from the Oxfordian, is crinoids up to date, reassesses the systematic position of described as a separate species despite some overlapping some of the species based on cups and describes new phenotypic variability of cups and columnals. Pathological forms. Sampling and washing of bulk material from the deformations on all types of ossicles of C. praenutans n. sp. Lower Bathonian of the La Pouza locality yielded nearly are ascribed to the epizoan commensal Oichnus para- 100,000 crinoid ossicles. Among them are rare comatulids boloides BROMLEY. Different species are dominant at the with the following recognized as new: Andymetra galei n. different Bathonian localities, namely C. praenutans n.
    [Show full text]
  • Late Cretaceous-Early Palaeogene Echinoderms and the K/T Boundary in the Southeast Netherlands and Northeast Belgium — Part 2: Crinoids
    pp 061-164 (Jagt-2) 15-01-2007 10:23 Pagina 59 Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 2: Crinoids John W.M. Jagt Jagt, J.W.M. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 2: Crinoids. — Scripta Geol., 116: 59-255, 51 figs., 46 pls, Leiden, May 1999. John W.M. Jagt, Natuurhistorisch Museum Maastricht, Postbus 882, NL-6200 AW Maastricht, The Netherlands, E-mail: [email protected] Key words: Echinodermata, Crinoidea, Late Cretaceous, Early Palaeogene, taxonomy, stratigraphy. All Campanian, Maastrichtian and Danian articulate (cladid) crinoids known to date from the extend- ed type area of the Maastrichtian Stage, are described and illustrated. The geographic and strati- graphic distribution of this unexpectedly diverse echinoderm group are documented. A total of twen- ty genera (three of them new) and thirty-six species (six of them new) are defined: Austinocrinus bico- ronatus (von Hagenow, 1840), ‘Isocrinus’ sp., ‘I.’ lanceolatus (Roemer, 1840)?, Isselicrinus buchii (Roemer, 1840), Praeisselicrinus? limburgicus (Rasmussen, 1961), Nielsenicrinus agassizii (von Hagenow, 1840) (= ‘Pentacrinites’ kloedeni von Hagenow, 1840), N. ewaldi sp. nov., Jaekelometra gr. belgica (Jaekel, 1902), J. gr. concava (Schlüter, 1878) (= J. columnaris Gislén, 1924 and including forma meijeri Rasmussen, 1961), J.? defectiva sp. nov., Placometra gr. laticirra (Carpenter, 1880), Atuatucametra annae gen. et sp. nov., Amphorometra gr. conoidea (Goldfuss, 1839), Semiometra impressa (Carpenter, 1881), S. lenticularis (Schlüter, 1878), S. saskiae sp. nov., Loriolometra retzii (Lundgren, 1875), Hertha gr. pygmea Gislén, 1924, H. gr. plana (Brünnich Nielsen, 1913), H.
    [Show full text]
  • Isocrinid Crinoids from the Late Cenozoic of Jamaica
    A tlantic G eology 195 Isocrinid crinoids from the late Cenozoic of Jamaica Stephen K. Donovan Department of Geology, University of the West Indies, Mona, Kingston 7, Jamaica Date Received April 8, 1994 Date A ccepted A ugust 26, 1994 Eight species of isocrinines have been documented from the Lower Cretaceous to Pleistocene of Jamaica. New finds include a second specimen of a Miocene species from central north Jamaica, previously regarded as Diplocrinus sp. but reclassified as Teliocrinus? sp. herein. Extant Teliocrinus is limited to the Indian Ocean, although Miocene specimens have been recorded from Japan, indicating a wider distribution during the Neogene. One locality in the early Pleistocene Manchioneal Formation of eastern Jamaica has yielded three species of isocrinine, Cenocrirtus asterius (Linne), Diplocrinus maclearanus (Thomson) and Neocrinus decorus Thomson. These occur in association with the bourgueticrinine Democrinus sp. or Monachocrinus sp. These taxa are all extant and suggest a minimum depositional depth for the Manchioneal Formation at this locality of about 180 m. This early Pleistocene fauna represents the most diverse assemblage of fossil crinoids docu­ mented from the Antillean region. Huit especes d’isocrinines de la periode du Cretace inferieur au Pleistocene de la Jamai'que ont ete documentees. Les nouvelles decouvertes comprennent un deuxieme specimen d’une espece du Miocene du nord central de la Jamai'que, auparavant consideree comme l’espece Diplocrinus, mais reclassifiee en tant que Teliocrinus? aux presentes. Le Teliocrinus existant est limite a l’ocean Indien, meme si on a releve des specimens du Miocene au Japon, ce qui est revelateur d’une distribution plus repandue au cours du Neogene.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 72, NUMBER 7 SEA-LILIES AND FEATHER-STARS (With i6 Plates) BY AUSTIN H. CLARK (Publication 2620) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1921 C^e Both (§aitimove (prcee BALTIMORE, MD., U. S. A. SEA-LILIES AND FEATHER-STARS By AUSTIN H. CLARK (With i6 Plates) CONTENTS p^^E Preface i Number and systematic arrangement of the recent crinoids 2 The interrelationships of the crinoid species 3 Form and structure of the crinoids 4 Viviparous crinoids, and sexual differentiation lo The development of the comatulids lo Regeneration 12 Asymmetry 13 The composition of the crinoid skeleton 15 The distribution of the crinoids 15 The paleontological history of the living crinoids 16 The fossil representatives of the recent crinoid genera 17 The course taken by specialization among the crinoids 18 The occurrence of littoral crinoids 18 The relation of crinoids to temperature 20 Food 22 Locomotion 23 Color 24 The similarity between crinoids and plants 29 Parasites and commensals 34 Commensalism of the crinoids 39 Economic value of the living crinoids 39 Explanation of plates 40 PREFACE Of all the animals living in the sea none have aroused more general interest than the sea-lilies and the feather-stars, the modern repre- sentatives of the Crinoidea. Their delicate, distinctive and beautiful form, their rarity in collections, and the abundance of similar types as fossils in the rocks combined to set the recent crinoids quite apart from the other creatures of the sea and to cause them to be generally regarded as among the greatest curiosities of the animal kingdom.
    [Show full text]
  • Predation, Resistance, and Escalation in Sessile Crinoids
    Predation, resistance, and escalation in sessile crinoids by Valerie J. Syverson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in the University of Michigan 2014 Doctoral Committee: Professor Tomasz K. Baumiller, Chair Professor Daniel C. Fisher Research Scientist Janice L. Pappas Professor Emeritus Gerald R. Smith Research Scientist Miriam L. Zelditch © Valerie J. Syverson, 2014 Dedication To Mark. “We shall swim out to that brooding reef in the sea and dive down through black abysses to Cyclopean and many-columned Y'ha-nthlei, and in that lair of the Deep Ones we shall dwell amidst wonder and glory for ever.” ii Acknowledgments I wish to thank my advisor and committee chair, Tom Baumiller, for his guidance in helping me to complete this work and develop a mature scientific perspective and for giving me the academic freedom to explore several fruitless ideas along the way. Many thanks are also due to my past and present labmates Alex Janevski and Kris Purens for their friendship, moral support, frequent and productive arguments, and shared efforts to understand the world. And to Meg Veitch, here’s hoping we have a chance to work together hereafter. My committee members Miriam Zelditch, Janice Pappas, Jerry Smith, and Dan Fisher have provided much useful feedback on how to improve both the research herein and my writing about it. Daniel Miller has been both a great supervisor and mentor and an inspiration to good scholarship. And to the other paleontology grad students and the rest of the department faculty, thank you for many interesting discussions and much enjoyable socializing over the last five years.
    [Show full text]
  • Crinoids from the Barremian (Lower Cretaceous) of the Serre De Bleyton (Drôme, SE France)
    ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien, Serie A 112 733-774 Wien, Juni 2010 Crinoids from the Barremian (Lower Cretaceous) of the Serre de Bleyton (Drôme, SE France) By Manfred JÄGER (With 2 figures and 7 plates) Manuscript submitted on September 11th 2009, the revised manuscript on January 11th 2010 Abstract The Barremian of the Serre de Bleyton has yielded many disarticulated but well-preserved ele- ments of a diverse crinoid fauna of at least six species, dominated by comatulids (three species) and isocrinids (two species). The single apiocrinitid species is rare. Except for the large and well- known comatulid Decameros ricordeanus D’ORBIGNY, 1850, with specimens similar to the subspe- cies or variety vagnasensis (DE LORIOL, 1888), five of the six species are new. However, only for three of them a new species name is introduced, Isocrinus? bleytonensis nov. spec., Comatulina moosleitneri nov. spec. and Semiometra barremiensis nov. spec. Two fairly rare species, Per- cevalicrinus sp. and Apiocrinites sp., are described in open nomenclature. This Barremian fauna fills a stratigraphic gap from which only few crinoids had so far been de- scribed. Apart from some Hauterivian crinoids (mainly isocrinids), the stratigraphically nearest crinoid-rich (and especially comatulid-rich) horizons are the Valanginian of western Switzerland and southeastern France and especially the Aptian of southeastern France and Spain. The high percentage of new species is not surprising due to phylogenetic changes during the time span Valanginian – Aptian. Apart from these differences at species level, the crinoid fauna from the Serre de Bleyton fits well into the overall faunal composition known from Late Jurassic to Early Cretaceous sites.
    [Show full text]
  • Middle Jurassic of Northern Switzerland
    25 Middle Jurassic of Northern Switzerland HANS HESS A SCHOOLBOY’S DELIGHT tory Museum in London, and from the Bajocian of Department Ise`re, France. In the surroundings of Basel, four different and unique 3. A lens with the comatulid Paracomatula helvetica was crinoid beds occur. These fossils fascinated the author exposed in a trench dug in 1940 as a defensive mea- of this chapter when he was a young boy. The descrip- sure by the Swiss Army near Hottwil, on a strategic tion of Paracomatula helvetica was also his first publica- hill not far from the Rhine. A few individuals of this tion (Hess 1950). species have also been found in the Schinznach The crinoid beds with four different species are ex- Quarry mentioned in the next section. posed in the Jura Mountains of northwestern Switzer- 4. A lens with the isocrinid Hispidocrinus (formerly as- land (Fig. 207). One species also occurs in eastern signed to Chariocrinus) leuthardti was discovered on a France and ranges as far as England. Four different ho- shooting range near Liestal and exploited between rizons, each characterized by its fauna, can be distin- 1892 and 1903 by Franz Leuthardt (1904), a school- guished (Fig. 208): teacher and renowned naturalist. This is the youngest of the four beds and the only one that the author has 1. Beds with well-preserved specimens of the isocrinid not seen in the field. So far this species has not been Chariocrinus andreae occur within an area of about found elsewhere. 200 km 2 in the canton of Baselland.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]