A COMPARATIVE GENOMIC ANALYSIS of CHLORELLA NC64A VIRUS NY-2A and CHLORELLA Pbi VIRUS MT325 from the FAMILY PHYCODNAVIRIDAE

Total Page:16

File Type:pdf, Size:1020Kb

A COMPARATIVE GENOMIC ANALYSIS of CHLORELLA NC64A VIRUS NY-2A and CHLORELLA Pbi VIRUS MT325 from the FAMILY PHYCODNAVIRIDAE University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Theses - Chemistry Department Chemistry, Department of 3-30-2006 A COMPARATIVE GENOMIC ANALYSIS OF CHLORELLA NC64A VIRUS NY-2A AND CHLORELLA Pbi VIRUS MT325 FROM THE FAMILY PHYCODNAVIRIDAE Lisa A. Fitzgerald University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemistrydiss Part of the Chemistry Commons Fitzgerald, Lisa A., "A COMPARATIVE GENOMIC ANALYSIS OF CHLORELLA NC64A VIRUS NY-2A AND CHLORELLA Pbi VIRUS MT325 FROM THE FAMILY PHYCODNAVIRIDAE" (2006). Student Research Projects, Dissertations, and Theses - Chemistry Department. 1. https://digitalcommons.unl.edu/chemistrydiss/1 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A COMPARATIVE GENOMIC ANALYSIS OF CHLORELLA NC64A VIRUS NY-2A AND CHLORELLA Pbi VIRUS MT325 FROM THE FAMILY PHYCODNAVIRIDAE by Lisa A. Fitzgerald A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Chemistry Under the Supervision of Professor James L. Van Etten Lincoln, Nebraska May 2006 A COMPARATIVE GENOMIC ANALYSIS OF CHLORELLA NC64A VIRUS NY-2A AND CHLORELLA Pbi VIRUS MT325 FROM THE FAMILY PHYCODNAVIRIDAE Lisa A. Fitzgerald, Ph.D. University of Nebraska, 2006 Adviser: James L. Van Etten The family Phycodnaviridae consists of a morphologically similar but genetically diverse group of large dsDNA viruses which infect both fresh and marine water eukaryotic algae. Two viruses, the 370 kb Chlorella NC64A virus NY-2A and the 313 kb Chlorella Pbi virus MT325, from the family Phycodnaviridae, genus Chlorovirus, were sequenced, analyzed, and compared to the prototype chlorella virus PBCV-1. The NY-2A genome, the largest chlorella viral genome sequenced to date, contains 886 open reading frames (ORFs) of 65 codons or larger and encodes 404 putative proteins and 7 tRNAs. The MT325 genome, the smallest chlorella viral genome sequenced to date, contains 845 ORFs and encodes 331 putative proteins and 10 tRNAs. The protein- encoding genes are evenly distributed on both strands, and the intergenic space is minimal. Approximately 50% of the viral gene products have been identified, including some which are the first of their type to be detected in a virus. Domain scatter plots revealed that NY-2A and MT325 are mosaics of both prokaryotic- and eukaryotic-like proteins. A comparison of the three chlorella viruses sequenced, NY-2A, MT325, and the previously sequenced PBCV-1, revealed that ~75% of the viral encoded proteins are homolgous. However, 64% of these homologs are classified as unknowns based on a lack of sequence similarity to proteins in public databases. In addition to the genomic annotations, I conducted an extensive comparison of the chloroviruses to other phycodnavirus members as well as other large dsDNA viruses. Surprisingly, only 10 (~3%) of the chlorovirus genes are encoded by all six of the sequenced phycodnaviruses. iv TABLE OF CONTENTS TITLE PAGE……………………………………………………………………. i ABSTRACT…………………………………………………………………………. ii TABLE OF CONTENTS…………………………………………………………… iv LIST OF FIGURES AND TABLES…………………………………………………viii LIST OF ABBREVIATIONS……………………………………………………… xi ACKNOWLEDGMENTS……………………………………………………………xiii DEDICATION…………………………………………………………………………xiv CHAPTER 1 INTRODUCTION AND BACKGROUND: PHYCODNAVIRIDAE- LARGE DNA ALGAL VIRUSES 1.1 INTRODUCTION………………………………..……………………………… 1 1.2 DISCOVERY OF ALGAL VIRUSES……………………………...…………… 2 1.3 GENERAL CHARACTERISTICS AND TAXONOMY…………...…………… 4 1.4 CHLORELLA VIRUSES……………………………………...………………… 7 1.5 NATURAL HISTORY OF THE CHLORELLA VIRUSES………………..…… 8 1.6 PARAMECIUM BURSARIA CHLORELLA VIRUS TYPE-1……………….……15 1.6.1 The Life Cycle……………………………………………………….……15 1.6.2 PBCV-1 Genome……………………………………………..………… 17 1.6.3 PBCV-1-encoded Proteins……………………………..…………………18 1.7 DIVERSITY OF CHLOROVIRUS GENOMES…………………………...…… 20 1.8 PHYCODNAVIRUS GENES ARE LIKELY VERY OLD……………………… 22 1.9 CONCLUSION……………………………………………….……………………24 1.10 REFERENCES…………………………………………..……………………… 26 v CHAPTER 2 GENOMIC ANALYSES OF CHLORELLA NC64A VIRUS NY-2A AND CHLORELLA Pbi VIRUS MT325 2.1 INTRODUCTION…………………………………………………………….. 37 2.2 EXPERIMENTAL METHODS………………………………………………. 38 2.2.1 Viral DNA Isolation and Sequencing…………………………………… 38 2.2.2 Genomic Sequence Analysis…………………………………………… 39 2.2.2.1 Initial Analysis of Viral Genomes…………………………………… 39 2.2.2.2 Identification of Putative tRNAs…………………………………… 39 2.2.2.3 Identification and Naming of Open Reading Frames…………………39 2.2.2.4 Identification of Major versus Minor Open Reading Frames……… 40 2.2.2.5 Characterization of Open Reading Frames………………………… 42 2.2.2.6 Analysis with the Non-redundant Database at NCBI…………………43 2.2.2.7 Analysis with the Protein Families Database…………………………43 2.2.2.8 Identification of Clusters of Orthologous Groups…………………… 43 2.2.2.9 Identification of Inteins and Introns………………………………… 43 2.3 RESULTS………………………………………………………………………… 45 2.3.1 Analysis and Annotation of the NY-2A Genome……………………… 45 2.3.1.1 Identification of Putative tRNAs…………………………………… 47 2.3.1.2 Identification of Major and Minor Open Reading Frames……………47 2.3.1.3 Characterization of Open Reading Frames………………………… 53 2.3.1.4 Annotation of NY-2A Genome……………………………………… 59 2.3.1.5 Identification of Inteins and Introns………………………………… 61 2.3.1.6 Identification of Gene Families……………………………………… 62 2.3.2 Analysis and Annotation of the MT325 Genome……………………… 62 2.3.2.1 Identification of Putative tRNAs…………………………………… 64 2.3.2.2 Identification of Major and Minor Open Reading Frames……………65 2.3.2.3 Characterization of Open Reading Frames………………………… 70 2.3.2.4 Annotation of MT325 Genome……………………………………… 76 2.3.2.5 Identification of Inteins and Introns………………………………… 78 2.3.2.6 Identification of Gene Families……………………………………… 78 2.4 DISCUSSION………………………………………………………………… 79 2.4.1 DNA Replication and Repair-Associated Proteins……………………… 82 2.4.2 Transcription-Associated Proteins……………………………………… 83 2.4.3 Protein Synthesis, Modification, and Degradation……………………… 84 vi 2.4.4 Nucleotide Metabolism-Associated Proteins…………………………… 85 2.4.5 Protein Kinases, Phosphatases, and Channel Proteins……………………86 2.4.6 Sugar- and Lipid-Manipulating Proteins………………………………… 87 2.4.7 Cell Wall-Degrading Enzymes………………………………………… 88 2.4.8 Restriction-Modification Enzymes……………………………………… 88 2.4.9 Integration and Transposition Enzymes………………………………… 88 2.4.10 Miscellaneous Proteins………………………………………………… 89 2.5 REFERENCES…………………………………………………………………… 91 2.6 ADDENDUM………………………………………………………………….. 96 2.6.1 Termini of the PBCV-1, NY-2A, and MT325 Genomes…………………96 2.6.1.1 Termini of the PBCV-1 Genome…………………………………… 96 2.6.1.2 Termini of the NY-2A Genome………………………………………99 2.6.1.3 Termini of the MT325 Genome………………………………………102 2.6.2 NY-2A Genome…………………………………………………………105 2.6.2.1 General Characteristics of Open Reading Frames……………………105 2.6.2.2 Analysis of Open Reading Frames……………………………………128 2.6.2.3 Results from Analysis with the Protein Families (Pfam) Database…162 2.6.2.4 Results of Analysis with Clusters of Orthologous Groups (COGs)…166 2.6.3 MT325 Genome…………………………………………………………169 2.6.3.1 General Characteristics of Open Reading Frames……………………169 2.6.3.2 Analysis of Open Reading Frames……………………………………190 2.6.3.3 Results from Analysis with the Protein Families (Pfam) Database…222 2.6.3.4 Results of Analysis with Clusters of Orthologous Groups (COGs)…225 CHAPTER 3 GENOMIC COMPARISONS OF THREE CHLORELLA VIRUSES, PBCV-1, NY- 2A, AND MT325 3.1 INTRODUCTION…………………………………………………………….. 228 3.2 EXPERIMENTAL METHODS………………………………………………. 229 3.2.1 Comparing the Orientations of the Chlorella Viral Genomes……………229 3.2.2 Genomic Comparisons……………………………………………………229 3.2.3 Domain and Kingdom Scatter Plots………………………………………230 3.3 RESULTS……………………………………………………………………… 230 3.3.1 Comparison of the Orientations of the Chlorella Viral Genomes……… 230 vii 3.3.2 Comparison of the Chlorella Virus Open Reading Frames………………234 3.3.3 Domain and Kingdom Scatter Plots………………………………………238 3.4 DISCUSSION…………………………………………………………………… 239 3.5 REFERENCES……………………………………………………………………248 3.6 ADDENDUM…………………………………………………………………… 250 3.6.1 Homologous ORFs in Chlorella Viruses…………………………………250 3.6.1.1 PBCV-1 Homologous ORFs…………………………………………250 3.6.1.2 NY-2A Homologous ORFs………………………………………… 258 3.6.1.3 MT325 Homologous ORFs………………………………………… 268 3.6.2 Domain and Kingdom Scatter Plots………………………………………277 3.6.2.1 PBCV-1 Domain and Kingdom Scatter Plots……………………… 277 3.6.2.2 NY-2A Domain and Kingdom Scatter Plots…………………………281 3.6.2.3 MT325 Domain and Kingdom Scatter Plots…………………………285 CHAPTER 4 COMPARATIVE ANALYSES OF CHLOROVIRUSES, PHYCODNAVIRIDAES, AND NUCLEO-CYTOPLASMIC LARGE DNA VIRUSES 4.1 INTRODUCTION…………………………………………………………………289 4.2 BACKGROUND………………………………………………………………. 290 4.2.1 Characteristics and Taxonomy of Sequenced Phycodnaviruses…………290 4.2.1.1 Coccolithoviruses……………………………………………………290 4.2.1.2 Phaeoviruses…………………………………………………………291 4.2.2 Nucleo-Cytoplasmic Large DNA Viruses……………………………… 292 4.3 EXPERIMENTAL METHODS……………………………………………………294 4.3.1 Comparisons of Phycodnavirus Metabolic Domains……………………294 4.3.2 Analysis of NCLDVs Core Genes……………………………………… 294
Recommended publications
  • Chapitre Quatre La Spécificité D'hôtes Des Virophages Sputnik
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE THESE DE DOCTORAT Présentée par Morgan GAÏA Né le 24 Octobre 1987 à Aubagne, France Pour obtenir le grade de DOCTEUR de l’UNIVERSITE AIX -MARSEILLE SPECIALITE : Pathologie Humaine, Maladies Infectieuses Les virophages de Mimiviridae The Mimiviridae virophages Présentée et publiquement soutenue devant la FACULTE DE MEDECINE de MARSEILLE le 10 décembre 2013 Membres du jury de la thèse : Pr. Bernard La Scola Directeur de thèse Pr. Jean -Marc Rolain Président du jury Pr. Bruno Pozzetto Rapporteur Dr. Hervé Lecoq Rapporteur Faculté de Médecine, 13385 Marseille Cedex 05, France URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Directeur : Pr. Didier RAOULT Avant-propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Elisabeth Mendes Martins De Moura Diversidade De Vírus DNA
    Elisabeth Mendes Martins de Moura Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo Tese apresentada ao Programa de Pós- Graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Titulo de Doutor em Ciências. Área de concentração: Microbiologia Orienta: Prof (a). Dr (a). Dolores Ursula Mehnert versão original São Paulo 2017 RESUMO MOURA, E. M. M. Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo. 2017. 134f. Tese (Doutorado em Microbiologia) - Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2017. A água doce no Brasil, assim como o seu consumo é extremamente importante para as diversas atividades criadas pelo ser humano. Por esta razão o consumo deste bem é muito grande e consequentemente, provocando o seu impacto. Os mananciais são normalmente usados para abastecimento doméstico, comercial, industrial e outros fins. Os estudos na área de ecologia de micro-organismos nos ecossistemas aquáticos (mananciais) e em esgotos vêm sendo realizados com mais intensidade nos últimos anos. Nas últimas décadas foi introduzido o conceito de virioplâncton com base na abundância e diversidade de partículas virais presentes no ambiente aquático. O virioplâncton influencia muitos processos ecológicos e biogeoquímicos, como ciclagem de nutriente, taxa de sedimentação de partículas, diversidade e distribuição de espécies de algas e bactérias, controle de florações de fitoplâncton e transferência genética horizontal. Os estudos nesta área da virologia molecular ainda estão muito restritos no país, bem como muito pouco se conhece sobre a diversidade viral na água no Brasil.
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • Chlorovirus: a Genus of Phycodnaviridae That Infects Certain Chlorella-Like Green Algae
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 2005 Chlorovirus: A Genus of Phycodnaviridae that Infects Certain Chlorella-Like Green Algae Ming Kang University of Nebraska-Lincoln, [email protected] David Dunigan University of Nebraska-Lincoln, [email protected] James L. Van Etten University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Kang, Ming; Dunigan, David; and Van Etten, James L., "Chlorovirus: A Genus of Phycodnaviridae that Infects Certain Chlorella-Like Green Algae" (2005). Papers in Plant Pathology. 130. https://digitalcommons.unl.edu/plantpathpapers/130 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Molecular Plant Pathology 6:3 (2005), pp. 213–224; doi 10.1111/j.1364-3703.2005.00281.x Copyright © 2005 Black- well Publishing Ltd. Used by permission. http://www3.interscience.wiley.com/journal/118491680/ Published online May 23, 2005. Chlorovirus: a genus of Phycodnaviridae that infects certain chlorella-like green algae Ming Kang,1 David D. Dunigan,1,2 and James L. Van Etten 1,2 1 Department of Plant Pathology and 2 Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, USA Correspondence — M. Kang, [email protected] ; J. L. Van Etten, [email protected] Abstract INTRODUCTION Taxonomy: Chlorella viruses are assigned to the family Phy- The chlorella viruses are large, icosahedral, plaque-form- codnaviridae, genus Chlorovirus, and are divided into ing, dsDNA viruses that infect certain unicellular, chlorella- three species: Chlorella NC64A viruses, Chlorella Pbi vi- like green algae (Van Etten et al., 1991).
    [Show full text]
  • Virus–Host Interactions and Their Roles in Coral Reef Health and Disease
    !"#$"%& Virus–host interactions and their roles in coral reef health and disease Rebecca Vega Thurber1, Jérôme P. Payet1,2, Andrew R. Thurber1,2 and Adrienne M. S. Correa3 !"#$%&'$()(*+%&,(%--.#(+''/%!01(1/$%0-1$23++%(#4&,,+5(5&$-%#6('+1#$0$/$-("0+708-%#0$9(&17( 3%+7/'$080$9(4+$#3+$#6(&17(&%-($4%-&$-1-7("9(&1$4%+3+:-10'(70#$/%"&1'-;(<40#(=-80-5(3%+807-#( &1(01$%+7/'$0+1($+('+%&,(%--.(80%+,+:9(&17(->34&#0?-#($4-(,01@#("-$5--1(80%/#-#6('+%&,(>+%$&,0$9( &17(%--.(-'+#9#$->(7-',01-;(A-(7-#'%0"-($4-(70#$01'$08-("-1$40'2&##+'0&$-7(&17(5&$-%2'+,/>12( &##+'0&$-7(80%+>-#($4&$(&%-(/10B/-($+('+%&,(%--.#6(540'4(4&8-(%-'-08-7(,-##(&$$-1$0+1($4&1( 80%/#-#(01(+3-12+'-&1(#9#$->#;(A-(493+$4-#0?-($4&$(80%/#-#(+.("&'$-%0&(&17(-/@&%9+$-#( 791&>0'&,,9(01$-%&'$(50$4($4-0%(4+#$#(01($4-(5&$-%('+,/>1(&17(50$4(#',-%&'$010&1(C#$+19D('+%&,#($+( 01.,/-1'-(>0'%+"0&,('+>>/10$9(791&>0'#6('+%&,(",-&'401:(&17(70#-&#-6(&17(%--.("0+:-+'4->0'&,( cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest $4&$($4-(01.,/-1'-(+.(80%/#-#(+1(%--.(./1'$0+1(0#(&1(-##-1$0&,('+>3+1-1$(+.($4-#-(:,+"&,,9( 0>3+%$&1$(-180%+1>-1$#; To p - d ow n e f f e c t s Viruses infect all cellular life, including bacteria and evidence that macroorganisms play important parts in The ecological concept that eukaryotes, and contain ~200 megatonnes of carbon the dynamics of viroplankton; for example, sponges can organismal growth and globally1 — thus, they are integral parts of marine eco- filter and consume viruses6,7.
    [Show full text]
  • Elucidating Viral Communities During a Phytoplankton Bloom on the West Antarctic Peninsula
    fmicb-10-01014 May 10, 2019 Time: 14:46 # 1 ORIGINAL RESEARCH published: 14 May 2019 doi: 10.3389/fmicb.2019.01014 Elucidating Viral Communities During a Phytoplankton Bloom on the West Antarctic Peninsula Tomás Alarcón-Schumacher1,2†, Sergio Guajardo-Leiva1†, Josefa Antón3 and Beatriz Díez1,4* 1 Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile, 2 Max Planck Institute for Marine Microbiology, Bremen, Germany, 3 Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain, 4 Center for Climate and Resilience Research (CR2), University of Chile, Santiago, Chile In Antarctic coastal waters where nutrient limitations are low, viruses are expected to play a major role in the regulation of bloom events. Despite this, research in viral identification and dynamics is scarce, with limited information available for the Southern Ocean (SO). This study presents an integrative-omics approach, comparing variation in the viral and microbial active communities on two contrasting sample conditions from Edited by: a diatom-dominated phytoplankton bloom occurring in Chile Bay in the West Antarctic David Velazquez, Autonomous University of Madrid, Peninsula (WAP) in the summer of 2014. The known viral community, initially dominated Spain by Myoviridae family (∼82% of the total assigned reads), changed to become dominated Reviewed by: by Phycodnaviridae (∼90%), while viral activity was predominantly driven by dsDNA Carole Anne Llewellyn, ∼ ∼ Swansea University, United Kingdom members of the Phycodnaviridae ( 50%) and diatom infecting ssRNA viruses ( 38%), Márcio Silva de Souza, becoming more significant as chlorophyll a increased. A genomic and phylogenetic Fundação Universidade Federal do characterization allowed the identification of a new viral lineage within the Myoviridae Rio Grande, Brazil family.
    [Show full text]
  • Seasonal Determinations of Algal Virus Decay Rates Reveal Overwintering in a Temperate Freshwater Pond
    The ISME Journal (2016) 10, 1602–1612 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond Andrew M Long1 and Steven M Short1,2 1Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada and 2Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h− 1. Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature.
    [Show full text]
  • Extended Evaluation of Viral Diversity in Lake Baikal Through Metagenomics
    microorganisms Article Extended Evaluation of Viral Diversity in Lake Baikal through Metagenomics Tatyana V. Butina 1,* , Yurij S. Bukin 1,*, Ivan S. Petrushin 1 , Alexey E. Tupikin 2, Marsel R. Kabilov 2 and Sergey I. Belikov 1 1 Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, 664033 Irkutsk, Russia; [email protected] (I.S.P.); [email protected] (S.I.B.) 2 Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; [email protected] (A.E.T.); [email protected] (M.R.K.) * Correspondence: [email protected] (T.V.B.); [email protected] (Y.S.B.) Abstract: Lake Baikal is a unique oligotrophic freshwater lake with unusually cold conditions and amazing biological diversity. Studies of the lake’s viral communities have begun recently, and their full diversity is not elucidated yet. Here, we performed DNA viral metagenomic analysis on integral samples from four different deep-water and shallow stations of the southern and central basins of the lake. There was a strict distinction of viral communities in areas with different environmental conditions. Comparative analysis with other freshwater lakes revealed the highest similarity of Baikal viromes with those of the Asian lakes Soyang and Biwa. Analysis of new data, together with previ- ously published data allowed us to get a deeper insight into the diversity and functional potential of Baikal viruses; however, the true diversity of Baikal viruses in the lake ecosystem remains still un- Citation: Butina, T.V.; Bukin, Y.S.; Petrushin, I.S.; Tupikin, A.E.; Kabilov, known.
    [Show full text]
  • <I>AUREOCOCCUS ANOPHAGEFFERENS</I>
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS Mohammad Moniruzzaman University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Moniruzzaman, Mohammad, "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4152 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Mohammad Moniruzzaman entitled "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this dissertation
    [Show full text]
  • Whole-Proteome Phylogeny of Large Dsdna Virus Families by an Alignment-Free Method
    Whole-proteome phylogeny of large dsDNA virus families by an alignment-free method Guohong Albert Wua,b, Se-Ran Juna, Gregory E. Simsa,b, and Sung-Hou Kima,b,1 aDepartment of Chemistry, University of California, Berkeley, CA 94720; and bPhysical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 Contributed by Sung-Hou Kim, May 15, 2009 (sent for review February 22, 2009) The vast sequence divergence among different virus groups has self-organizing maps (18) have also been used to understand the presented a great challenge to alignment-based sequence com- grouping of viruses. parison among different virus families. Using an alignment-free In the previous alignment-free phylogenomic studies using l-mer comparison method, we construct the whole-proteome phylogeny profiles, 3 important issues were not properly addressed: (i) the for a population of viruses from 11 viral families comprising 142 selection of the feature length, l, appears to be without logical basis; large dsDNA eukaryote viruses. The method is based on the feature (ii) no statistical assessment of the tree branching support was frequency profiles (FFP), where the length of the feature (l-mer) is provided; and (iii) the effect of HGT on phylogenomic relationship selected to be optimal for phylogenomic inference. We observe was not considered. HGT in LDVs has been documented by that (i) the FFP phylogeny segregates the population into clades, alignment-based methods (19–22), but these studies have mostly the membership of each has remarkable agreement with current searched for HGT from host to a single family of viruses, and there classification by the International Committee on the Taxonomy of has not been a study of interviral family HGT among LDVs.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • A Genomic Journey Through a Genus of Large DNA Viruses
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2013 Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses Adrien Jeanniard Aix-Marseille Université David D. Dunigan University of Nebraska-Lincoln, [email protected] James Gurnon University of Nebraska-Lincoln, [email protected] Irina V. Agarkova University of Nebraska-Lincoln, [email protected] Ming Kang University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Jeanniard, Adrien; Dunigan, David D.; Gurnon, James; Agarkova, Irina V.; Kang, Ming; Vitek, Jason; Duncan, Garry; McClung, O William; Larsen, Megan; Claverie, Jean-Michel; Van Etten, James L.; and Blanc, Guillaume, "Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses" (2013). Virology Papers. 245. https://digitalcommons.unl.edu/virologypub/245 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Adrien Jeanniard, David D. Dunigan, James Gurnon, Irina V. Agarkova, Ming Kang, Jason Vitek, Garry Duncan, O William McClung, Megan Larsen, Jean-Michel Claverie, James L. Van Etten, and Guillaume Blanc This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/245 Jeanniard, Dunigan, Gurnon, Agarkova, Kang, Vitek, Duncan, McClung, Larsen, Claverie, Van Etten & Blanc in BMC Genomics (2013) 14.
    [Show full text]