GBE Evolution of Codon Usage in the Smallest Photosynthetic Eukaryotes and Their Giant Viruses Stephanie Michely1,2,6, Eve Toulza1,2, Lucie Subirana1,2,UweJohn3,Vale´rie Cognat4, Laurence Mare´chal-Drouard4, Nigel Grimsley1,2,Herve´ Moreau1,2,andGwenae¨l Piganeau5,* 1UPMC Univ Paris 06, UMR7232, BIOM, Observatoire Oce´anologique, F-66650, Banyuls-sur-Mer, France 2 CNRS, UMR7232, Observatoire oce´anologique, Banyuls-sur-Mer, France Downloaded from 3Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany 4Institut de Biologie Mole´culaire des Plantes, UPR2357 CNRS, associated with the University of Strasbourg, France 5School of Life Sciences, Sussex University, Falmer, United Kingdom 6Present address: INRA, UMR1319 Micalis, Jouy-en-Josas, France http://gbe.oxfordjournals.org/ *Corresponding author: E-mail:
[email protected]. Accepted: March 29, 2013 Data deposition: The complete microarray data set has been submitted to the ArrayExpress public database at EBI (Parkinson et al. 2009) under the accession number: E-MEXP-3520. Table 1 summarizes the GenBank accession numbers of genomes analyzed in the article. Abstract at Alfred-Wegener-Institut fuer Polar- und Meeresforschung on May 13, 2013 Prasinoviruses are among the largest viruses (>200 kb) and encode several hundreds of protein coding genes, including most genes of the DNA replication machinery and several genes involved in transcription and translation, as well as transfer RNAs (tRNAs). They can infect and lyse small eukaryotic planktonic marine green algae, thereby affecting global algal population dynamics. Here, we investigate the causes of codon usage bias (CUB) in one prasinovirus, OtV5, and its host Ostreococcus tauri, during a viral infection using microarray expression data.