Use of Alkyl Ketene Dimer (AKD) for Surface Modification of Particleboard Chips

Total Page:16

File Type:pdf, Size:1020Kb

Use of Alkyl Ketene Dimer (AKD) for Surface Modification of Particleboard Chips Eur. J. Wood Prod. (2009) 67: 37–45 DOI 10.1007/s00107-008-0275-z ORIGINALARBEITEN · ORIGINALS Use of alkyl ketene dimer (AKD) for surface modification of particleboard chips Ulrich Hundhausen · Holger Militz · Carsten Mai Published online: 28 August 2008 © The Author(s) 2008. This article is published with open access at Springerlink.com Abstract The study objective was to impart urea-formalde- ventionell verwendeten Paraffinprodukten moglich¨ ist. Al- hyde (UF) bonded particleboards higher and longer-lasting kylketendimer (AKD) wird in der Papierindustrie als Mas- hydrophobicity than that resulting from conventionally used seleimungsmittel eingesetzt und kann theoretisch mit Zell- paraffin. Alkyl ketene dimer (AKD) is a paper sizing agent wandbestandteilen Esterbindungen eingehen. Holzspane¨ that can theoretically esterify wood compounds and result wurden 1) mit einer wassrigen¨ AKD Losung¨ impragniert¨ in a surface modification. Particles were 1) impregnated und bei 130 ◦C getrocknet oder 2) mit einer AKD/UF- with an aqueous AKD-solution and cured at 130 ◦Cpriorto Harz Losung¨ bespruht.¨ Platten mit und ohne Paraffinbe- gluing, or 2) sprayed with a mixture of AKD-solution and handlung dienten als Referenzen. Im Vergleich zu Platten UF-resin in a single step. Boards with and without paraf- ohne Hydrophobierungsmittel wiesen Platten aus AKD- fin wax were used as controls. Thickness swelling after 2, impragnierten¨ Spanen¨ nach 2-, 24- und 48-stundiger¨ Was- 24, and 48 h immersion was decreased by 90, 62, and 59% serlagerung eine um 90, 62 und 59% verminderte Dicken- when the chips were impregnated with AKD in comparison quellung auf. Die Wasseraufnahme wurde um 91, 75 und to untreated control boards. Water uptake after 2, 24, and 60% reduziert. Die AKD Impragnierung¨ fuhrte¨ zu einer 48 h was reduced by 91, 75, and 60%. AKD-impregnation Verringerung der Querzugfestigkeit um 53%. Dies deutet with subsequent curing decreased the internal bond strength darauf hin, dass AKD die Verklebbarkeit negativ beein- by 53%, indicating that AKD impedes the adhesion. The flusst. Die Anwendung von AKD im Untermischverfahren mixture of AKD and UF-glue did not result in considerable fuhrte¨ nur zu geringer Hydrophobierung. FTIR Messungen hydrophobicity. Increased methyl/methylene and carbonyl an Furnierstreifen vor und nach einer Toluolextraktion wie- bands in FTIR-spectra after toluene-extraction suggest that sen darauf hin, dass ein Teil des AKD uber¨ Esterbindungen AKD partially formed ester bonds at the wood surface. auf der Holzoberflache¨ fixiert ist. Die Verwendung von Alkylketendimer (AKD) 1 Introduction zur Oberflachenmodifizierung¨ von Spanen¨ fur¨ die Herstellung von Spanplatten The crucial application restrictions of wood-based panels are ascribed to their poor dimensional stability in chang- Zusammenfassung Das Ziel der Untersuchung bestand ing climates and in contact with liquid water. While the darin, Harnstoff-Formaldehyd (UF) gebundene Spanplatten swelling and shrinking behavior of boards parallel to the starker¨ und dauerhafter zu hydrophobieren als es mit kon- plane complies with that of solid wood parallel to the fiber, the values perpendicular to the plane are significantly U. Hundhausen (u) · H. Militz · C. Mai greater (Amthor 1972). Swelling and shrinkage of wood Wood Biology and Wood Products, Burckhardt Institute, particles and hydrolysis of the adhesives limit the applica- Georg-August University Gottingen,¨ tion to low humidity conditions. The dimensional stability Busgenweg¨ 4, 37077 Gottingen,¨ Germany is influenced by board density, wood species, resin type, e-mail: [email protected] resin level, pressing conditions, particle geometry, and hy- 13 38 Eur. J. Wood Prod. (2009) 67: 37–45 drophobic agents (Haaligan 1970). To date, paraffin wax alteration of the wood cell wall structure can strongly emulsions are usually added to improve moisture resis- increase the water resistance of particleboards. Kajita tance. The typical amount of wax ranges from 0.3–1% and Imamura (1991) studied the board properties made based on the oven-dry weight of the particles (Youngquist from chips that were treated with a low-molecular-weight 1999). Higher additions show only marginal hydrophobic phenol-formaldehyde resin. Particleboards at 20% WPG effect and cause reductions in bonding strength (Muller¨ swelled less than 8%, while control boards swelled nearly 1962, Amthor and Bottcher¨ 1984); however, the major 30% during two-hour boiling. Subiyanto et al. (1989)re- problem of paraffin is that it decelerates the uptake of li- ported that boards made from acetylated chips bonded quid water and the swelling but cannot impart durable with isocyanate and phenol-formaldehyde swelled only hydrophobicity (Youngquist 1999). 4% during 30 days of water immersion, whereas the Besides the use of paraffin as a hydrophobic agent, control boards swelled over 20 and 30%, respectively. a variety of treatments have proved as effective means Further studies corroborating the dimension stabilizing to increase the water repellency of particleboards. Fil- effect by acetylation were carried out by Okino et al. cock and Vinden (2000) investigated the use of isocyanate (2004), Youngquist and Rowell (1986), and Rowell et resin to add water repellency to particleboards. Isocyanate- al. (1986). Papadopoulos and Gkaraveli (2003) examined impregnated, not edge-sealed panels showed a thickness the performance of one-layer particleboards made from swelling of approx. 5% after 24 h as compared to con- chips modified with propionic anhydride. The thickness trol boards that revealed 17%. Several researchers reported swelling after 24 h was reduced by 46% as compared to that heat-treatment of particles leads to enhanced dimen- controls. sional stability (Tomek 1966, Tomimura and Matsuda Cell wall modification methods can strongly improve 1986, Boonstra et al. 2006). In addition, numerous stud- water-related properties but are expensive and difficult to ies on chemical modification have demonstrated that an implement in production processes of boards. The present Fig. 1 Reaction mechanisms of AKD with wood hydroxyl groups a and water b. R1 and R2 = C16–22 Abb. 1 Reaktionsschema von AKD mit Hydroxylgruppen des Holzes a und mit Wasser b. R1 und R2 = C16–22 13 Eur. J. Wood Prod. (2009) 67: 37–45 39 study, therefore, investigates the surface modification by 2 Experimental alkyl ketene dimer (AKD), a widely used paper sizing agent. It is assumed that a superficial change of particles, fibers, or 2.1 Wood and chemicals flakes in reconstituted wood products might impart a high and particularly permanent hydrophobicity in combination The raw material for the particleboards came from Pflei- with the binder. derer Holzwerkstoffe (Gutersloh,¨ Germany). Kaurit 350 Internal sizing agents are used in the paper industry to (BASF, Ludwigshafen, Germany) was used as UF-resin accomplish resistance against fluids, improving paper prop- (solid content of 66.5%). The AKD-dispersion Hydrores erties like wet strength and printability. During the 1980s, 157YC (Kemira, Leverkusen, Germany) is a commodity the commonly-used rosin in combination with alum was in- paper sizing product with a solid content of 16%, contain- creasingly substituted by cellulose-reactive systems, partic- ing 10% active AKD, 2% cationic starch, and 4% cationic ularly based on AKD and alkenyl succinic anhydride (ASA) polymers as stabilizers. HydroWax 138 (Sasol, Hamburg, (Neimo 1999). Today, AKD is the most common internal Germany) served as a paraffin reference (solid content of sizing agent in Europe’s papermaking industry. Typical add- 50%). Knife-cut spruce veneer were obtained from Danzer ition lies between 0.05 and 0.2%, based on dry mass of Furnierwerke (Kehl, Germany). fiber (Davis et al. 1956,Neimo1999). ASA’s and AKD’s hydrophobic effect is predominantly ascribed to an esterifi- 2.2 Board production cation with the wood fiber’s hydroxyl groups, as illustrated in Fig. 1 (Hubbe 2006, Seppanen¨ 2007). The main differ- Two different AKD-application processes were compared: ence between both sizing agents is the lower reactivity and In process 1, the AKD-dispersion was applied under vac- hydrolysability of AKD. Thus, it is pre-emulsified by the uum/pressure and subsequently cured. In process 2, the AKD-manufacturer and shipped as a ready-to-use disper- AKD-dispersion was mixed with the glue and sprayed on sion with maximum solid contents of 20–25% to the paper- the particles prior to pressing. maker whereas ASA must be emulsified on-site at the paper In process 1, the particles were filled into pillow cases mill. Both materials need to be stabilized to prevent hydro- to facilitate a better handling. Afterwards, they were sub- lysis and coalescing of the particles. Cationic starch is most mersed in a 1% (wt/wt) AKD-solution and subjected to commonly used as emulsifier. It is assumed that its quater- vacuum (60 min/80 mbar) and pressure (120 min/12 bar) in nary nitrogen facilitates the attachment of the droplets to order to accomplish a maximum penetration into the cell the negatively charged fiber surfaces. The ratio of AKD to lumina (AKD im). After impregnation, the cases were cen- starch is usually in the range of 1.5 : 1to4: 1 whereas the trifuged in a spin dryer to separate the bulk of non-absorbed ratio of ASA to starch is 1 : 2to1: 4 (Neimo 1999). The solution. The particles were then put into a drying cabinet lower starch content in AKD-dispersions can be presumably at 130 ◦C (24 h) to induce the reaction between AKD and considered as advantageous for the use in particleboards wood. After curing, the weight percent gain (WPG) was de- since the hydrophilic nature of an emulsifier works counter- termined as follows: active to the aspired hydrophobicity (Amthor 1972). m2 − m1 While AKD has been extensively investigated in pa- WPG[%]= × 100 (1) m per sciences (Lindstrom¨ and Soderberg¨ 1986, Quillin et al. 1 1992,Neimo1999, Karademir 2002, Wei et al. 2002, Hubbe where m2 [g] is the particle mass after curing and m1 [g] is 2006, Seppanen¨ 2007), there has been only one study found the dry particle mass before impregnation.
Recommended publications
  • The Effect of Light Exposure on Sizing Response
    Western Michigan University ScholarWorks at WMU Paper Engineering Senior Theses Chemical and Paper Engineering 4-1995 The Effect of Light Exposure on Sizing Response Ron W. Aulbach Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/engineer-senior-theses Part of the Wood Science and Pulp, Paper Technology Commons Recommended Citation Aulbach, Ron W., "The Effect of Light Exposure on Sizing Response" (1995). Paper Engineering Senior Theses. 17. https://scholarworks.wmich.edu/engineer-senior-theses/17 This Dissertation/Thesis is brought to you for free and open access by the Chemical and Paper Engineering at ScholarWorks at WMU. It has been accepted for inclusion in Paper Engineering Senior Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu- [email protected]. The Effectof Light Exposureon Sizing Response By Ron W. Aulbach Submitted to Faculty of Paper Science and Engineering In PartialFullfilment of the Requirement for The Degreeof Bachelors of Science Department of Paper Science and Engineering · WesternMichigan University Kalamazoo, MI April 18, 1995 Table of Contents Subject � Abstract 1 Introduction 2 Analysis of Literature 2 Advantages of Alkaline Papermaking 2 Permanence 3 Size Mechanism with AKD 5 Size Reversion 6 Problem Statement 7 Experimental Design 7 Infrared Spectroscopy 7 Papermaking and Size Addition 7 Light Exposure Conditions 8 Paper Sampling 8 Paper Testing 8 Materials 9 Statistical Analysis 9 Presentation and Discussion of Results 9 IR Spectroscopy 9 Sizing Response - Indoor Light Exposure 10 Sizing Response - Fadometer Exposure 14 Brightness Results 15 Statistical Analysis of Data 17 Summary of Results 19 Conclusions 20 Recommendation for Further Research 21 Bibliography 22 Appendix 25 1 ABSTRACT Sizing is the process by which a chemical additive provides paper with resistance to liquid wetting, penetration, and absorption.
    [Show full text]
  • Chapter - 7 Additional Studies
    M/s. Zizer polymers LLP Environmental Impact Assessment Report Survey No.: 93, P-3, Behind Millennium Vitrified, Village: Bhadiyad, Ta. & Dis.: Morbi-363642 Gujarat. CHAPTER - 7 ADDITIONAL STUDIES A. Public Consultation All the aspects of the TORs are incorporated in the final EIA report, the same has been submitted to the Gujarat Pollution Control Board (GPCB) for conducting public hearing/public consultation as per EIA Notification, 2006 and its subsequent amendments. Minutes of Public Consultation / Public Hearing included in final EIA report with suggestions/recommendations in public consultation. B. Risk Assessment Study The said study report is presented in subsequent section. C. Social Impact Assessment, R & R Action Plan The socio-economic study of the study area is carried out and details are presented in the Chapter-3/Section- 3.9. It may be noted that the proposed project will be established on NA land only. The project site is intended for the industrial purpose and thus no displacement of villagers/people will take place. Therefore, the R&R (Rehabilitation & Resettlement) policy/plan is not required and not undertaken. 7.1 Overview of Project M/s. Zizer Polymers LLP is proposing to manufacture Resins Survey No.: 93, P-3, Behind Millennium Vitrified Village: Bhadiyad, Ta. & Dis.: Morbi-363642. Proposed production of resins will be of 1000 MT/Month (Fortified Rosin (100 MT/Month), Neutral Size Rosin (500 MT/Month), A.K.D wax emulsion (50 MT/Month), MF Resin & Fixer (90 MT/Month), Water Based emulsion polymer (100 MT/Month), Polyvinyl Alcohol (10 MT/Month), & Surface sizing agent (150 MT/Month)).Total land area is 4047.00 m2.
    [Show full text]
  • Alkyl Ketene Dimer and Precipitated Calcium Carbonate Interactions in Wet-End Papermaking
    Alkyl ketene dimer and precipitated calcium carbonate interactions in wet-end papermaking by Agatha Poraj-Kozminski Department of Chemical Engineering McGill University, Montreal March 2006 A thesis submitted to McGiII University in partial fulfillment of the requirements of the degree of Master of Engineering ©Agatha Poraj-Kozminski 2006 Library and Bibliothèque et 1+1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre référence ISBN: 978-0-494-25006-8 Our file Notre référence ISBN: 978-0-494-25006-8 NOTICE: AVIS: The author has granted a non­ L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans loan, distribute and sell th es es le monde, à des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, électronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in et des droits moraux qui protège cette thèse. this thesis. Neither the thesis Ni la thèse ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent être imprimés ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • WO 2016/062866 Al 28 April 2016 (28.04.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/062866 Al 28 April 2016 (28.04.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C04B 41/46 (2006.01) C04B 28/04 (2006.01) kind of national protection available): AE, AG, AL, AM, C04B 24/00 (2006.01) C04B 40/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP20 15/0746 18 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 23 October 2015 (23.10.201 5) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 14190059.7 23 October 2014 (23. 10.2014) EP kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: BASF SE [DE/DE]; 67056 Ludwigshafen TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (DE).
    [Show full text]
  • Print This Article
    PEER-REVIEWED ARTICLE bioresources.com Effect of Alkyl Ketene Dimer on the Physical, Mechanical, and Biological Durability of Plywood Gaye Köse Demirel,a Halime Güdül,b Ali Temiz,a,* Süleyman Kuştaş,a and İsmail Aydın a The effect of alkyl ketene dimer (AKD) on plywood properties was studied. AKD is widely used in the paper industry as a sizing agent and can esterify wood cell wall components. Two types of veneers obtained from alder (Alnus glutinosa subsp. barbata (C. A. Mey) Yalt.) and beech (Fagus orientalis L.) wood logs were used. Two different treatment processes and two different concentrations (1% and 3%) of AKD were tested. The first method was AKD-dispersion, which was mixed with glue and sprayed onto veneers. The second method was dipping veneers into the AKD solutions (1% and 3%) for 25 min. Water uptake after 2 h, 24 h, and 48 h was reduced by the AKD treatment. Plywood produced from AKD impregnated veneers showed the lowest thickness swelling versus untreated plywood and plywood produced from AKD blended in glue. The AKD treatment generally reduced the mechanical properties of the plywood. However, AKD treatment considerably improved the biological resistance against brown rot fungi (Coniophera puteana BAM Ebw. 15) and white rot fungi (Trametes versicolor CTB 863A). Increased methyl/methylene and carbonyl groups of the alkyl chain were determined in the Fourier transform infrared (FTIR) spectra of specimens subjected to the AKD- dispersion method. Keywords: Alkyl ketene dimer; Mechanical properties; FTIR; Decay resistance Contact information: a: Department of Forest Industrial Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey; b: Vezirkopru Forest Products Company, Vezirkopru, 55900, Samsun, Turkey; *Corresponding author: [email protected] INTRODUCTION Plywood is made of wood veneers bonded in an odd number of layers and is one of the most used wooden products in the construction and furniture industries (Ferreira et al.
    [Show full text]
  • High-Solids Alkyl Ketene Dimer Dispersion
    iuropaisches Patentamt } 369 328 J) iuropean Patent Office [9 Publication number: \2 )ffice europeen des brevets EUROPEAN PATENT APPLICATION 1/7/4 Application number: 89120803.5 S) Int. CIA D21H 21/16, D21H g) Date of filing: 09.11.89 B) Priority: 10.11.88 US 270338 © Applicant: HERCULES INCORPORATED Hercules Plaza 3) Date of publication of application: Wilmington Delaware 19894(US) 23.05.90 Bulletin 90/21 © Inventor: Edwards Derek Wayne S) Designated Contracting States: 925 East 26th Street AT BE DE ES FR GB IT SE Wilmington, Delaware 19802(US) Inventor: Townsend David Francis 54 Hemingway Drive Hockessin, Delaware 19707(US) © Representative: Lederer, Franz, Dr. et al Van der Werth, Lederer & Riederer Patentanwalte Lucile-Grahn-Strasse 22 D-8000 Munchen 80(DE) © High-solids aikyl ketene dimer dispersion. © Stabilized dispersions of alkyl ketene dimer paper sizing agents that comprise up to about 30% by weight ot 1.5% ketene dimer, a water soluble cationic starch, and a lignin sulfonate, and also contain about 0.15 to about of aluminum sulfate and from about 0.1 to about 5% of a carboxylic acid having from 1 to 10 carbon atoms, a of water being pKa of up to about 5 and a solubility of at least about 0.1 parts in 100 parts (the percentages based upon the weight of the dimer), are disclosed. CM < 00 CM CO 0> CO CO Q. Lil Aerox oopy uemre EP 0 369 328 A2 HIGH-SOLIDS ALKYL KETENE DIMER DIEPERSION The present invention relates to stabilized dispersions of high-solids alkyl ketene dimer paper sizing agents.
    [Show full text]
  • Colloidal Stability of Alkyl Ketene Dimer (AKD) Dispersions
    Preferred citation: R. Mattson, J. Sterte and L. Ödberg. Colloidal Stability of Alkyl Ketene Dimer (AKD) Dispersions. Infl uence of Shear, Electrolyte Concentration, Poly-electrolytes and Surfactants. In The science of papermaking, Trans. of the XIIth Fund. Res. Symp. Oxford, 2001, (C.F. Baker, ed.), pp 393–413, FRC, Manchester, 2018. DOI: 10.15376/frc.2001.1.393. COLLOIDAL STABILITY OF ALKYL KETENE DIMER (AKD) DISPERSIONS. INFLUENCE OF SHEAR, ELECTROLYTE CONCENTRATION, POLYELECTROLYTES AND SURFACTANTS Rosa Mattsson,1,2 Johan Sterte1 and Lars Ödberg1,3 1Department of Chemical Technology, Luleå University of Technology, SE-971 87 Luleå, Sweden. 2Development Department, AssiDomän Kraftliner, SE-941 86 Piteå, Sweden. 3AssiDomän Corporate R&D, SE-105 22 Stockholm, Sweden. ABSTRACT The influence of shear, electrolytes, polyelectrolytes (anionic trash), and surfactants on the colloidal stability of differently formulated AKD dispersions was investigated. The stability was tested under shear in a Britt Dynamic Drainage Jar by measuring particle size distributions and microelectrophoretic mobilities. Three cationic dispersions were used, stabilised with (1) starch with low charge density, (2) starch with medium charge density and a polyaluminum salt, (3) synthetic polymer with high charge density. All dispersions showed good to excellent stability to high levels of shear and electrolytes. All tested dispersions were influenced by carboxymethylcel- 12th Fundamental Research Symposium, Oxford, September 2001 393 R. Mattsson, J. Sterte and L. Ödberg lulose, CMC, and flocculation was induced at a CMC addition giving a z-potential around zero. Dispersions with a higher charge density formed larger flocs and the floc size was a function of the ratio dispersion/CMC.
    [Show full text]
  • Process for the Manufacture of Alkyl Ketene Dimers by Dimerization With
    Office europeen des brevets (fi) Publication number: 0 619 289 A1 @ EUROPEAN PATENT APPLICATION @ Application number : 94302165.9 @ Int. CI.5 : C07C 45/89, C07C 49/88 (22) Date of filing : 25.03.94 (30) Priority : 26.03.93 US 37203 @ Inventor : Zhang, Jian Jian (NMN) 10.05.93 GB 9309603 508 Waterford Drive, Gateway Farms Hockessin, Delaware 19707 (US) @ Date of publication of application : 12.10.94 Bulletin 94/41 (74) Representative : De Minvielle-Devaux, Ian Benedict Peter et al @ Designated Contracting States : CARPMAELS & RANSFORD AT BE DE ES FR GB IT NL PT SE 43, Bloomsbury Square London WC1A 2RA (GB) @ Applicant : HERCULES INCORPORATED 1313 N. Market Street, Hercules Plaza Wilmington, Delaware 19894-0001 (US) (54) Process for the manufacture of alky I ketene dimers by dimerization with tertiary amines. (57) A process is disclosed for the synthesis of alkyl ketene dimers by the dehydrohalogenation of a Cg - C22 saturated or unsaturated linear fatty acid halide, comprising reacting the fatty acid chloride with a cyclic tertiary amine in an inert solvent at a temperature of up to 75°, separating tertiary amine hydrochloride salts from alkyl ketene dimer dissolved in the solvent, and re- covering the alkyl ketene dimer from the sol- vent. < 00 CM o> S o Q_ LU Jouve, 18, rue Saint-Denis, 75001 PARIS 1 EP 0 619 289 A1 2 This invention relates to a process for the synthe- German OLS 29 27 118 discloses a process to sis of alkyl ketene dimers by thedehydrohalogenation make diketenes using of a mixture of amines, which of Cs - C22 saturated or unsaturated linear fatty acid includes trimethylamine and at least one other terti- chlorides with tertiary amines in an inert solvent.
    [Show full text]
  • The Influence of Fines on an Alkyl Ketene Dimer Synthetic Sizing Agent
    Western Michigan University ScholarWorks at WMU Paper Engineering Senior Theses Chemical and Paper Engineering 4-1981 The Influence of Fines on an Alkyl eteneK Dimer Synthetic Sizing Agent Andrea S. Coyle Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/engineer-senior-theses Part of the Wood Science and Pulp, Paper Technology Commons Recommended Citation Coyle, Andrea S., "The Influence of Fines on an Alkyl eteneK Dimer Synthetic Sizing Agent" (1981). Paper Engineering Senior Theses. 38. https://scholarworks.wmich.edu/engineer-senior-theses/38 This Dissertation/Thesis is brought to you for free and open access by the Chemical and Paper Engineering at ScholarWorks at WMU. It has been accepted for inclusion in Paper Engineering Senior Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu- [email protected]. THE J:NFLUENCE OF FINES ON AN ALKYL KETENE DIMER SYNTHETIC SIZING AGENT by Andrea s. Coyle A Thesis submitted in partial fulfillment of the course requirements for The Bachelor of Science Degree. Western Michigan University Kalamazoo, Michigan April, 198'.l ABSTRACT It is the purpose of this thesis to attempt to eval­ uate the influence of fines on an alkyl ketene dimer (AKO) synthetic sizing agent and to study the role of fines on sizing. It was found that the addition of fines lowered the degree of sizing in the sheet. Since there was more surface area available when fines were increased, more sizing agent was necessary in order to obtain the same level of sizing with a Hercules or Cobb Size Test.
    [Show full text]
  • Vulcanized Rubber Composition, Pneumatic Tire
    (19) & (11) EP 2 072 574 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08L 7/00 (2006.01) B60C 1/00 (2006.01) 25.04.2012 Bulletin 2012/17 C08L 1/10 (2006.01) C08L 9/00 (2006.01) B60C 15/04 (2006.01) (21) Application number: 08830800.2 (86) International application number: (22) Date of filing: 04.09.2008 PCT/JP2008/065931 (87) International publication number: WO 2009/034902 (19.03.2009 Gazette 2009/12) (54) VULCANIZED RUBBER COMPOSITION, PNEUMATIC TIRE, AND THEIR PRODUCTION METHODS VULKANISIERTE KAUTSCHUKZUSAMMENSETZUNG, LUFTREIFEN UND HERSTELLUNGSVERFAHREN DAFÜR COMPOSITION DE CAOUTCHOUC VULCANISÉ, PNEU ET LEURS PROCÉDÉS DE FABRICATION (84) Designated Contracting States: • ICHIKAWA, Naoya DE Kobe-shi Hyogo 651-0072 (JP) (30) Priority: 10.09.2007 JP 2007234080 • HATTORI, Takayuki 02.09.2008 JP 2008224908 Kobe-shi Hyogo 651-0072 (JP) (43) Date of publication of application: 24.06.2009 Bulletin 2009/26 (74) Representative: Manitz, Finsterwald & Partner GbR (73) Proprietor: Sumitomo Rubber Industries, Ltd. Martin-Greif-Strasse 1 Kobe-shi, Hyogo 651-0072 (JP) 80336 München (DE) (72) Inventors: (56) References cited: • YANO, Hiroyuki EP-A1- 1 650 253 WO-A1-2005/092971 Uji-shi CS-B1- 237 729 JP-A- 11 078 437 Kyoto 611-0011 (JP) JP-A- 2002 524 618 JP-A- 2003 064 221 • ISOBE, Yukio JP-A- 2006 206 837 JP-A- 2006 206 864 Kobe-shi US-A- 2 486 720 US-A- 2 650 891 Hyogo 651-0072 (JP) US-A- 4 508 860 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • School of Chemical Technology Degree Programme of Forest
    School of Chemical Technology Degree Programme of Forest Products Technology Risto Koivunen INKJET-PRINTED HYDROPHOBIC PATTERNING OF POROUS SUBSTRATES FOR MICROFLUIDIC APPLICATIONS Master’s thesis for the degree of Master of Science in Technology submitted for inspection, Espoo, 16 April, 2014. Supervisor Professor Patrick Gane Instructor M.Sc. Eveliina Jutila Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of master's thesis Author Risto Koivunen Title of thesis Inkjet-printed Hydrophobic Patterning of Porous Substrates for Microfluidic Applications Department Department of Forest Products Technology Professorship Paper and Printing Technology Code of professorship Puu-21 Thesis supervisor Prof. Patrick Gane Thesis advisor M.Sc. Eveliina Jutila Date 16.4.2014 Number of pages Language English 184+17 Abstract Paperfluidic devices are microfluidic devices patterned out of paper or other highly porous material. Liq- uid transport in paperfluidic devices is propelled either by surface wetting or interior capillary wicking. The direction of aqueous liquid flow on such devices is controlled by selective patterning of hydrophobic barriers on an otherwise hydrophilic base substrate. A variety of hydrophobic materials and printing methods have been lately demonstrated as feasible for producing such patterns. Unlike conventional graphic printing, hydrophobising ink has to penetrate the whole depth of the wicking substrate, in order to produce properly functioning leak-free barriers. One major expected application area for paperfluidics in the future is in the field of lab-on-a-chip devices, intended to provide simple, transportable, disposable and self-sufficient analysis tools for medical diag- nostics and environmental monitoring. On such devices, fluid samples flow along hydrophilic channels through assay zones, where they chemically interact with pre-applied reagents.
    [Show full text]
  • Dialkylketones in Paperboard Food Contact Materials—Method of Analysis in Fatty Foods and Comparative Migration Into Liquid Simulants Versus Foodstuffs
    molecules Article Dialkylketones in Paperboard Food Contact Materials—Method of Analysis in Fatty Foods and Comparative Migration into Liquid Simulants Versus Foodstuffs Antía Lestido-Cardama 1,* , Ángela Störmer 2 and Roland Franz 2 1 Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain 2 Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauser Straβe 35, 85354 Freising, Germany; [email protected] (Á.S.); [email protected] (R.F.) * Correspondence: [email protected] Academic Editor: Mihai Brebu Received: 31 January 2020; Accepted: 15 February 2020; Published: 18 February 2020 Abstract: Dialkyl diketene dimers are used as sizing agents in the manufacture of paper and board for food contact applications to increase wetting stability. Unbound residues can hydrolyze and decarboxylate into dialkylketones. These non-intentionally added substances (NIAS) have potential to migrate to fatty foods in contact with those packaging materials. In Germany, the Federal Institute for Risk Assessment (BfR) established a specific migration limit (SML) of 5 mg/kg for the transfer of these dialkylketones into foodstuffs. In order to investigate the differences between simulants and real foods, an analytical method was optimized for extraction and quantification of dialkylketones in edible oils and fatty foods by gas chromatography coupled with flame ionization detection (GC-FID), and additionally by gas chromatography with mass spectrometry (GC-MS), to confirm their identification and to quantify them in case of interferences. Dialkylketones are separated from the extracted fat by alkaline saponification of the triglycerides. Dialkylketones migration from paper-based food contact articles into organic solvents isooctane and dichloromethane, in olive and sunflower oils, and in fatty foods (croissants, Gouda, cheddar cheese, and salami was studied).
    [Show full text]