Planetary Transit Timing Variations Induced by Stellar Binarity. the Light
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stability of Planets in Binary Star Systems
StabilityStability ofof PlanetsPlanets inin BinaryBinary StarStar SystemsSystems Ákos Bazsó in collaboration with: E. Pilat-Lohinger, D. Bancelin, B. Funk ADG Group Outline Exoplanets in multiple star systems Secular perturbation theory Application: tight binary systems Summary + Outlook About NFN sub-project SP8 “Binary Star Systems and Habitability” Stand-alone project “Exoplanets: Architecture, Evolution and Habitability” Basic dynamical types S-type motion (“satellite”) around one star P-type motion (“planetary”) around both stars Image: R. Schwarz Exoplanets in multiple star systems Observations: (Schwarz 2014, Binary Catalogue) ● 55 binary star systems with 81 planets ● 43 S-type + 12 P-type systems ● 10 multiple star systems with 10 planets Example: γ Cep (Hatzes et al. 2003) ● RV measurements since 1981 ● Indication for a “planet” (Campbell et al. 1988) ● Binary period ~57 yrs, planet period ~2.5 yrs Multiplicity of stars ~45% of solar like stars (F6 – K3) with d < 25 pc in multiple star systems (Raghavan et al. 2010) Known exoplanet host stars: single double triple+ source 77% 20% 3% Raghavan et al. (2006) 83% 15% 2% Mugrauer & Neuhäuser (2009) 88% 10% 2% Roell et al. (2012) Exoplanet catalogues The Extrasolar Planets Encyclopaedia http://exoplanet.eu Exoplanet Orbit Database http://exoplanets.org Open Exoplanet Catalogue http://www.openexoplanetcatalogue.com The Planetary Habitability Laboratory http://phl.upr.edu/home NASA Exoplanet Archive http://exoplanetarchive.ipac.caltech.edu Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Habitable Zone Gallery http://www.hzgallery.org Binary Catalogue Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Dynamical stability Stability limit for S-type planets Rabl & Dvorak (1988), Holman & Wiegert (1999), Pilat-Lohinger & Dvorak (2002) Parameters (a , e , μ) bin bin Outer limit at roughly max. -
Can There Be Additional Rocky Planets in the Habitable Zone of Tight Binary
Mon. Not. R. Astron. Soc. 000, 1–10 () Printed 24 September 2018 (MN LATEX style file v2.2) Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant? B. Funk1⋆, E. Pilat-Lohinger1 and S. Eggl2 1Institute for Astronomy, University of Vienna, Vienna, Austria 2IMCCE, Observatoire de Paris, Paris, France ABSTRACT Locating planets in Habitable Zones (HZs) around other stars is a growing field in contem- porary astronomy. Since a large percentage of all G-M stars in the solar neighborhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional hab- itable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host ad- ditional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885A. HD 196885 B can be considered a slightly more promising tar- get in the search forEarth-twins.Gliese 86 A turned out to be a very good candidate, assuming that the system’s history has not been excessively violent. For HD 41004 we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system. -
Extra-Solar Planets 2
REVIEW ARTICLE Extra-solar planets M A C Perryman Astrophysics Division, European Space Agency, ESTEC, Noordwijk 2200AG, The Netherlands; and Leiden Observatory, University of Leiden, The Netherlands Abstract. The discovery of the first extra-solar planet surrounding a main-sequence star was announced in 1995, based on very precise radial velocity (Doppler) measurements. A total of 34 such planets were known by the end of March 2000, and their numbers are growing steadily. The newly-discovered systems confirm some of the features predicted by standard theories of star and planet formation, but systems with massive planets having very small orbital radii and large eccentricities are common and were generally unexpected. Other techniques being used to search for planetary signatures include accurate measurement of positional (astrometric) displacements, gravitational microlensing, and pulsar timing, the latter resulting in the detection of the first planetary mass bodies beyond our Solar System in 1992. The transit of a planet across the face of the host star provides significant physical diagnostics, and the first such detection was announced in 1999. Protoplanetary disks, which represent an important evolutionary stage for understanding planet formation, are being imaged from space. In contrast, direct imaging of extra-solar planets represents an enormous challenge. Long-term efforts are directed towards infrared space interferometry, the detection of Earth-mass planets, and measurement of their spectral characteristics. Theoretical atmospheric models provide predictions of planetary temperatures, radii, albedos, chemical condensates, and spectral features as a function of mass, composition and distance from the host star. Efforts to characterise planets occupying the ‘habitable zone’, in which liquid water may be present, and indicators of the arXiv:astro-ph/0005602v1 31 May 2000 presence of life, are advancing quantitatively. -
INTEGRATED SPACE PLAN (Preliminary)
CRITICAL PATH AMERICAN SPACE SHUTTLE PROGRAM INTEGRATED SPACE PLAN Space Transportation (NSTS) Systems Division FIRST INTERNATIONAL RMS GENERATION EXPENDABLE LAUNCH (INTERNATIONAL) OF VEHICLE FLEET (Preliminary) IUS UNITED STATES LAUNCH VEHICLE CAPABILITES REUSABLE SPACECRAFT PRIVATE LAUNCH VERSION 1.1 FEBRUARY, 1989 VEHICLE # TO LEO # TO GEO GEO-CIRCULAR FIRST FLIGHT VEHICLES ALS 200,000 1998 * THE AMERICAN SPACE SHUTTLE (ELV’S) EMU SHUTTLE C 150,000 20,000 (CENTAUR) 1994 1983 PRODUCED BY RONALD M. JONES D/385-210 SPACE 55,000 5,500 (IUS) 1981 1983 * CHALLENGER OV-099 SHUTTLE 6,500 (TOS) * COLUMBIA OV-102 ABOUT THIS DIAGRAM: TITAN 4 40,000 12,500 10,000 (CENTAUR) 1989 OV-103 * DISCOVERY GOVERNMENT - The Rockwell Integrated Space Plan (ISP) is a very long range systematic perspective of America’s and the TITAN 3 33,000 8,600 4,200 (IUS) 1965 MMU * ATLANTIS OV-104 COMMERCIAL SATELLITE Western World’s space program. Its 100-plus-year vision was created from the integration of numerous NASA ATLAS 2 14,400 5,200 2,500 1991 EARTH-TO-ORBIT * TBD OV-105 DEPLOYMENT long-range studies including the project Pathfinder case studies, recommendations from the National ATLAS 1 12,300 1959 AND IN-SPACE Commission on Space’s report to the President, the Ride report to the NASA Administrator, and the new DELTA 2 11,100 3,190 1,350 (PAM-D) 1988 SATELLITE RETRIEVAL * THE SOVIET SPACE SHUTTLE TRANSPORTATION SYSTEMS National Space Policy Directive. Special initiatives such as the four Pathfinder scenarios or those described in DELTA 7,800 1960 AND SERVICING * BURAN the Ride Report (i.e., Mission To Planet Earth, Exploration of the Solar System, Outpost on the Moon, and TITAN 2 5,500 1965 DEFENSE SATELLITES Humans to Mars) are integral parts of the ISP. -
Master Astronomer Program
MASTER ASTRONOMER PROGRAM 2019 Program Handbook by Zach Schierl and Leesa Ricci Cedar Breaks National Monument National Park Service i Table of Contents Section 1: About the Master Astronomer Program Section 2: Astronomy & the Night Sky 2.1 Light 2.2 Celestial Motions 2.3 History of Astronomy 2.4 Telescopes & Observatories 2.5 The Cosmic Cast of Characters 2.6 Our Solar System 2.7 Stars 2.8 Constellations 2.9 Extrasolar Planets Section 3: Protecting the Night Sky 3.1 Introduction to Light Pollution 3.2 Why Protect the Night Sky? 3.3 Measuring and Monitoring Light at Night 3.4 Dark-Sky Friendly Lighting Section 4: Sharing the Night Sky 4.1 Using a Telescope 4.2 Communicating Astronomy & the Importance of Dark Skies to the Public Appendices: A. Glossary of Terms B. General Astronomy Resources C. Acknowledgements D. Endnotes & Works Cited 1 SECTION 1: ABOUT THE MASTER ASTRONOMER PROGRAM 3 Section 1: About the Master Astronomer Program WELCOME TO THE MASTER ASTRONOMER PROGRAM All of us at Cedar Breaks National Monument are glad that you are excited to learn more about astronomy, the night sky, and dark sky stewardship. In addition to learning about these topics, we also hope to empower you to share your newfound knowledge with your friends, family, and neighbors, so that all residents of Southern Utah can enjoy our beautiful dark night skies. The Master Astronomer Program is an interactive, hands-on, 40-hour workshop developed by Cedar Breaks National Monument that weaves together themes of astronomy, telescopes, dark sky stewardship, and science communication. -
Post-Main-Sequence Planetary System Evolution Rsos.Royalsocietypublishing.Org Dimitri Veras
Post-main-sequence planetary system evolution rsos.royalsocietypublishing.org Dimitri Veras Department of Physics, University of Warwick, Coventry CV4 7AL, UK Review The fates of planetary systems provide unassailable insights Cite this article: Veras D. 2016 into their formation and represent rich cross-disciplinary Post-main-sequence planetary system dynamical laboratories. Mounting observations of post-main- evolution. R. Soc. open sci. 3: 150571. sequence planetary systems necessitate a complementary level http://dx.doi.org/10.1098/rsos.150571 of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the Received: 23 October 2015 interpretation and modelling of currently known systems and Accepted: 20 January 2016 upcoming discoveries. 1. Introduction Subject Category: Decades of unsuccessful attempts to find planets around other Astronomy Sun-like stars preceded the unexpected 1992 discovery of planetary bodies orbiting a pulsar [1,2]. The three planets around Subject Areas: the millisecond pulsar PSR B1257+12 were the first confidently extrasolar planets/astrophysics/solar system reported extrasolar planets to withstand enduring scrutiny due to their well-constrained masses and orbits. However, a retrospective Keywords: historical analysis reveals even more surprises. We now know that dynamics, white dwarfs, giant branch stars, the eponymous celestial body that Adriaan van Maanen observed pulsars, asteroids, formation in the late 1910s [3,4]isanisolatedwhitedwarf(WD)witha metal-enriched atmosphere: direct evidence for the accretion of planetary remnants. These pioneering discoveries of planetary material around Author for correspondence: or in post-main-sequence (post-MS) stars, although exciting, Dimitri Veras represented a poor harbinger for how the field of exoplanetary e-mail: [email protected] science has since matured. -
Search for Possible Exomoons with the FAST Telescope
RAA 2017 Vol. 17 No. 12, 121 (4pp) doi: 10.1088/1674–4527/17/12/121 R c 2017 National Astronomical Observatories, CAS and IOP Publishing Ltd. esearch in Astronomy and http://www.raa-journal.org http://iopscience.iop.org/raa Astrophysics Search for possible exomoons with the FAST telescope Dragan V. Luki´c Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade, Serbia; [email protected] Received 2017 July 31; accepted 2017 September 10 Abstract Our knowledge of the solar system encourages us to believe that we might expect exomoons to be present around some known exoplanets. With present hardware and existing optical astronomy methods, we do not expect to be able to find exomoons for at least 10 years, and even then, it will be a hard task to detect them. Using data from the Exoplanet Orbit Database (EOD) we find stars with Jovian exoplanets within 50 light years. Most of them will be fully accessible by the new radio telescope, the Five-hundred-meter Aperture Spherical radio Telescope (FAST), under construction which is now in the test phase. We suggest radio astronomy based methods to search for possible exomoons around two exoplanets. Key words: exoplanets: general — exoplanets: radioastronomy — exomoons 1 INTRODUCTION Estrada 2003). This model only qualitatively describes the expected mass ratios. Since this model does not give The discovery of 51 Pegasi b (Mayor & Queloz 1995), us the masses of satellites, we will only use the first an exoplanet orbiting a Sun-like main sequence star, was model for our analysis of possible exomoons. -