Hierarchical Microstructure Strengthening in a Single Crystal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Microsctucture on Mechanical Properties of Co-Cr-W-Ni Superalloy
Effect of Microsctucture on Mechanical Properties of Co-Cr-W-Ni Superalloy R. K. Gupta3 ', Μ. K. Karthikeyan3, D. N. Bhatiab, B. R. Ghosh3, P. P. Sinha3 3Mechanical Engineering Entity, Vikram Sarabhai Space Centre, Trivandrum, India bMishra Dhatu Nigam Ltd., Kanchanbagh P.O., Hyderabad, India (Received September 9, 2008; final form September 19, 2008) ABSTRACT nature due to its chemical composition, exhibits very good cold formability and weldability. However, due to Cobalt based Superalloy containing Tungsten, complex chemistry, it is difficult to achieve the desired Nickel and Chromium as alloying elements, is combination of UTS, 0.2% YS, % Ε and grain size, each extensively used in fabrication of high temperature of which is very important for fabrication and components of launch vehicle systems. Microstructural performance of the components made out of this alloy. variation with respect to grain size has an important role After a careful correlation between the degree of to play in mechanical properties of this alloy. mechanical working and response to annealing Microstructural changes were incorporated by varying parameters, the annealing cycle could be optimized. the heat treatment temperature and effect of such The nature and morphology of phases within the changes on the mechanical properties at room alloy structure determine the mechanical properties and temperature as well as at high temperature is microstructural stability. These are governed mainly by investigated. Increase in grain size and decrease in grain size, and other metallographic features, like the strength and ductility is observed for the alloy heat presence of carbides and its distribution. But distinct treated at relatively higher temperature. -
Superalloy Metallurgy a Gleeble Study Of
SUPERALLOY METALLURGY A GLEEBLE STUDY OF ENVIRONMENTAL FRACTURE IN INCONEL 601 A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Materials Engineering by Alan C Demmons June 2016 © 2016 Alan C Demmons ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Superalloy Metallurgy A Gleeble Study Of Environmental Fracture In Inconel 601 AUTHOR: Alan C Demmons DATE SUBMITTED: June 2016 COMMITTEE CHAIR: Dan Walsh, Ph.D. Professor of Materials Engineering COMMITTEE MEMBER: Robert Crockett, Ph.D. Professor of Biomedical Engineering COMMITTEE MEMBER: Lanny Griffin, Ph.D. Professor of Biomedical Engineering iii ABSTRACT Superalloy Metallurgy a Gleeble Study of Environmental Fracture in Inconel 601 Alan Demmons At temperatures above 0.5 Tm and in aggressive atmospheres predicting alloy performance is particularly challenging. Nickel alloys used in regimes where microstructure and properties are altered dynamically present unique requirements. Exposure may alter properties with unexpected early failure. The Gleeble is a valuable tool for investigation and simulation of thermo-mechanical properties of an alloy in various regimes up to the threshold of melting. In this study, four regimes of temperature and strain rate were simulated in an argon atmosphere to both investigate and document normal and abnormal failure modes. Commercial Inconel 601 was tested in selected regimes and in two treatments (as received and strain aged). Next two exposed conditions (TEOS and Hydride) were tested. Slow strain-rate and high temperature produced brittle intergranular fracture. Exposure at elevated temperature to process gases reduced both strength and ductility in both TEOS and Hydride. -
Effects of Aluminum Addition on the High Temperature Oxidation Behavior of CM-247LC Ni-Based Superalloy
Int. J. Electrochem. Sci., 10 (2015) 5981 - 5993 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Effects of Aluminum Addition on the High Temperature Oxidation Behavior of CM-247LC Ni-based Superalloy Mau-Sheng Chiou1, Sheng-Rui Jian1,*, An-Chou Yeh2, Chen-Ming Kuo3 1 Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan 2 Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan 3 Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 840, Taiwan *E-mail: [email protected] Received: 13 April 2015 / Accepted: 15 May 2015 / Published: 27 May 2015 The effects of adding 1 wt.% Al element on the oxidation behavior of CM-247LC Ni-based superalloy are studied under high temperature conditions, namely, 1000°C and 1150°C dry air isothermal oxidation test. The microstructure of oxides, matrix and precipitate are observed and analyzed by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Furthermore, the impacts of high temperature oxidation behavior and phase stability are realized. The results indicated that adding 1 wt.% Al could promote phase precipitate, which directly increases the volume fraction of phase in the substrate microstructure. Consequently, by adding 1 wt.% Al in CM-247LC Ni-based superalloys, the enhancement of Al activity and the formation of continuous Al2O3 protection layer to improve oxidation resistance are significantly promoted. Keywords: Ni-based superalloys; Al; High-temperature oxidation; Microhardness. 1. INTRODUCTION Ni-based superalloys, which have been developed and used in turbine engines since 1940’s, show excellent high temperature strength and high temperature oxidation resistance [1-14]. -
TCS High Entropy Alloys Database (TCHEA) Examples Collection
TCS High Entropy Alloys Database (TCHEA) Examples Collection Document created 6/3/2021 ǀ 2 of 49 Contents TCS High Entropy Alloys Database (TCHEA) 1 About the Database Examples 3 About the TCHEA Examples 4 TCS High Entropy Alloys Database (TCHEA) Resources 5 TCHEA Calculation Examples 6 TCHEA Binary System Examples 7 TCHEA Ternary System Examples 10 Viscosity: Al-Cu, Al-Ni, and Cu-Ni-Al 15 TCHEA Validation Examples 18 FCC Medium (MEA) and High Entropy (HEA) Alloys 19 BCC Medium (MEA) and High Entropy (HEA) Alloys 22 HCP Medium (MEA) and High Entropy (HEA) Alloys 25 FCC+BCC High Entropy Alloys (HEAs) 27 Molar Volume and Density 31 Thermal Conductivity 34 Electrical Resistivity 36 Viscosity of Cu-Ni-Al-Co-Fe Alloy 38 Surface Tension of Cu-Fe-Ni 39 Yield Strength 40 Solidification Simulation (Equilibrium vs Scheil) 41 Diffusion Simulation (DICTRA) 47 Precipitation Simulation (TC-PRISMA) 48 www.thermocalc.com About the Database Examples ǀ 3 of 49 About the Database Examples There are examples available to demonstrate both the validity of the database itself as well as to demonstrate some of its calculation capabilities when combined with Thermo-Calc software and its Add-on Modules and features. For each database, the type and number of available examples varies. In some cases an example can belong to both a validation and calculation type. l Validation examples generally include experimental data in the plot or diagram to show how close to the predicted data sets the Thermo-Calc calculations are. It uses the most recent version of the software and relevant database(s) unless otherwise specified. -
Striking a Balance with High-Entropy Alloys New Metal Mixes Create More Efficient Catalysts and Better Jet Engines
Materials science index Striking a balance with high-entropy alloys New metal mixes create more efficient catalysts and better jet engines. By Neil Savage ircraft engines work better at higher TIGHT PAIRS be the most important factor, Ritchie says. And temperatures. As they get hotter, After the United States–China partnership, these are they don’t even have to contain exactly five they burn fuel more efficiently, the most prolific country collaborations in elements. The materials might be better called materials-science articles in the index (2015–20). The which means they can fly farther on US–China pairing outperforms this group, with a multicomponent alloys, or multi-principal- the same volume of propellant. But Bilateral Collaboration Score of 1,185.47 in 2020. element alloys, but the high-entropy name Athey can’t get too hot — above 1,150 °C, the China–Singapore China–Germany has stuck. nickel super alloy in their turbines starts to United States–South Korea China–Australia Perhaps 50 metals in the periodic table soften and bend, which could quickly lead United States–Germany could provide useful properties, leading to to engine failure. A solution to this problem 300 more than 2 million possible combinations might come from a burgeoning field of met- of 5 elements in equal shares, a vast number allurgy: high-entropy alloys. of potential new materials. But because an Unlike conventional alloys, which usually alloy can have more or fewer elements, and feature one main metal mixed with small quan- 200 the concentrations can vary, the number of tities of others, high-entropy alloys typically possibilities becomes practically infinite. -
MP35N: a Superalloy for Critical Oil and Gas Applications AUTHOR: THOMAS C
WHITE PAPER MP35N: A Superalloy for Critical Oil and Gas Applications AUTHOR: THOMAS C. WILLIAMS, P.E. APPLICATIONS DEVELOPMENT ENGINEER – ENERGY, CARPENTER TECHNOLOGY CORPORATION INTRODUCTION The attractive properties of MP35N® have led to its adoption into critical equipment in industries including aerospace, medicine, mining, offshore equipment, and oil and gas production. Typical applications include fasteners, springs, wire, cables, medical prostheses, pump shafts, valve stems, pressure housings, and cold-worked tubing. Even at yield strengths exceeding 200 ksi (1380 MPa), MP35N possesses excellent corrosion resistance in harsh oil and gas environments including seawater, chloride brines, sweet gas, and sour gas. It is the highest strength alloy approved in NACE MR0175 [1] for use in unrestricted sour service, offering an unmatched combination of strength and corrosion resistance. The unique capabilities of MP35N are derived from the alloy’s chemistry, premium melting technology, cold-working, and heat treatment. MP35N (UNS R30035) is a vacuum induction melted (VIM), vacuum arc re-melted (VAR) superalloy with cobalt, nickel, chromium, and molybdenum as its primary alloying elements. Its nominal chemical composition by weight is 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. The VIM VAR melt practice provides superior cleanliness and reduces the presence of non-metallic inclusions and residual elements, like carbon, that have deleterious effects on mechanical properties and corrosion resistance. MP35N is unique in its ability to be simultaneously strong, tough, and ductile with superior corrosion resistance. It can be strengthened beyond the capabilities of stainless steels and nickel-based alloys like 718 with equal or better corrosion resistance in many environments. -
High-Entropy Alloy: Challenges and Prospects
Materials Today Volume 19, Number 6 July/August 2016 RESEARCH Review High-entropy alloy: challenges and prospects RESEARCH: Y.F. Ye, Q. Wang, J. Lu, C.T. Liu and Y. Yang* Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong High-entropy alloys (HEAs) are presently of great research interest in materials science and engineering. Unlike conventional alloys, which contain one and rarely two base elements, HEAs comprise multiple principal elements, with the possible number of HEA compositions extending considerably more than conventional alloys. With the advent of HEAs, fundamental issues that challenge the proposed theories, models, and methods for conventional alloys also emerge. Here, we provide a critical review of the recent studies aiming to address the fundamental issues related to phase formation in HEAs. In addition, novel properties of HEAs are also discussed, such as their excellent specific strength, superior mechanical performance at high temperatures, exceptional ductility and fracture toughness at cryogenic temperatures, superparamagnetism, and superconductivity. Due to their considerable structural and functional potential as well as richness of design, HEAs are promising candidates for new applications, which warrants further studies. Introduction When designing alloys, researchers previously focused on the From ancient times, human civilization has striven to develop new corners of a phase diagram to develop a conventional alloy, which materials [1], discovering new metals and inventing new alloys occupy only a small portion of the design space, as illustrated by that have played a pivotal role for more than thousands of years. -
Open Phd Thesis - Final Draft.Pdf
The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences DEPOSITION, CHARACTERIZATION, AND THERMOMECHANICAL FATIGUE OF NICKEL ALUMINIDE AND RUTHENIUM ALUMINIDE THIN FILMS A Dissertation in Materials Science and Engineering by Jane A. Howell © 2010 Jane A. Howell Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2010 The dissertation of Jane A. Howell was reviewed and approved* by the following: Suzanne E. Mohney Professor of Materials Science and Engineering Dissertation Co-Advisor Co-Chair of Committee Christopher L. Muhlstein Associate Professor of Materials Science and Engineering Dissertation Co-Advisor Co-Chair of Committee Joseph R. Flemish Senior Scientist and Professor of Materials Science and Engineering Clifford J. Lissenden Professor of Engineering Science and Mechanics Joan M. Redwing Professor of Materials Science and Engineering Chair, Intercollege Graduate Degree Program in Materials Science and Engineering *Signatures are on file in the Graduate School ii ABSTRACT Intermetallic thin films have properties that make them attractive for applications such as metallizations, high temperature coatings, microelectromechanical systems, and diffusion barrier layers. In this study B2 aluminide films (NiAl and RuAl) have been deposited and characterized. Both intermetallics could be deposited at temperatures near room temperature using co- sputtering with an as-deposited resistivity of 45.5 ± 1.5 μΩcm for NiAl and 157 ± 4 μΩcm for RuAl. Ni/Al multilayers with a wavelength of 30 nm and below were fully reacted to form NiAl after annealing for 2 h at 400°C. These films had a resistivity of 15.5-26.7 μΩcm (wavelengths from 15.4-30 nm) after a 4 h anneal at 400°C, and the lower values of resistivity correspond to films with larger wavelengths. -
Structure and Properties of Cast Ti-Al-Si Alloys
materials Article Structure and Properties of Cast Ti-Al-Si Alloys Anna Knaislová 1 , Pavel Novák 1,* , Jiˇrí Linhart 1, Ivo Szurman 2, KateˇrinaSkotnicová 2 , Jan Juˇrica 2 and Tomáš Ceganˇ 2 1 Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; [email protected] (A.K.); [email protected] (J.L.) 2 Department of Non-Ferrous Metals, Refining and Recycling, Faculty of Materials Science and Technology, VSB—Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic; [email protected] (I.S.); [email protected] (K.S.); [email protected] (J.J.); [email protected] (T.C.)ˇ * Correspondence: [email protected] Abstract: Intermetallic compounds based on Ti-Al- (Si) are attractive materials with good thermal stability and low density. However, the production of these materials is quite complicated. Partially modified conventional methods of melting metallurgy are most often used due to availability, possible high productivity, and relatively low production costs. Therefore, some technologies for the production of intermetallics based on Ti-Al are currently available, but with certain disadvantages, which are caused by poor casting properties or extreme reactivity of the melt with crucibles. Some shortcomings can be eliminated by modifying the melting technology, which contributes to increasing the cost of the process. The work deals with the preparation of Ti-Al-Si intermetallic compounds with different contents of aluminum and silicon, which were produced by centrifugal casting in an induction vacuum furnace Linn Supercast-Titan. This process could contribute to the commercial use of these alloys in the future. -
Corrosion of Al(Co)Crfeni High-Entropy Alloys
ORIGINAL RESEARCH published: 22 October 2020 doi: 10.3389/fmats.2020.566336 Corrosion of Al(Co)CrFeNi High-Entropy Alloys Elzbieta˙ M. Godlewska 1*, Marzena Mitoraj-Królikowska 1, Jakub Czerski 1, Monika Jawanska ´ 1, Sergej Gein 2 and Ulrike Hecht 2 1AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland, 2Access V., Aachen, Germany High-entropy alloys, AlCrFe2Ni2Mox (x 0.00, 0.05, 0.10, and 0.15), AlCoCrFeNi, and two quinary alloys with compositions close to its face-centered cubic and body-centered cubic component phases, are tested for corrosion resistance in 3.5 wt% NaCl. The materials with different microstructure produced by arc melting or ingot metallurgy are evaluated by several electrochemical techniques: measurements of open circuit voltage, cyclic potentiodynamic polarization, and electrochemical impedance spectroscopy. Microstructure, surface topography, and composition are systematically characterized by scanning electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that minor additions of Mo positively affect corrosion resistance of the AlCrFe2Ni2 alloy by hampering pit formation. The face-centered cubic phase in the equimolar alloy, AlCoCrFeNi, is proved to exhibit more noble corrosion potential and pitting potential, lower Edited by: corrosion current density and corrosion rate than the body-centered cubic phase. Overall Antonio Caggiano, Darmstadt University of Technology, behavior of the investigated alloys is influenced by the manufacturing conditions, exact Germany chemical composition, distribution of phases, and occurrence of physical defects on the Reviewed by: surface. Wislei Riuper Osório, Campinas State University, Brazil Keywords: high-entropy alloys, microstructure, corrosion resistance, sodium chloride, electrochemical Solomon M. -
Prediction of Strength and Ductility in Partially Recrystallized Cocrfeniti0.2 High-Entropy Alloy
entropy Article Prediction of Strength and Ductility in Partially Recrystallized CoCrFeNiTi0.2 High-Entropy Alloy Hanwen Zhang 1, Peizhi Liu 2, Jinxiong Hou 1, Junwei Qiao 1,2,* and Yucheng Wu 2,* 1 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; [email protected] (H.Z.); [email protected] (J.H.) 2 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China; [email protected] * Correspondence: [email protected] (J.Q.); [email protected] (Y.W.) Received: 24 February 2019; Accepted: 28 March 2019; Published: 11 April 2019 Abstract: The mechanical behavior of a partially recrystallized fcc-CoCrFeNiTi0.2 high entropy alloys (HEA) is investigated. Temporal evolutions of the morphology, size, and volume fraction of ◦ the nanoscaled L12-(Ni,Co)3Ti precipitates at 800 C with various aging time were quantitatively evaluated. The ultimate tensile strength can be greatly improved to ~1200 MPa, accompanied with a tensile elongation of ~20% after precipitation. The temporal exponents for the average size and number density of precipitates reasonably conform the predictions by the PV model. A composite model was proposed to describe the plastic strain of the current HEA. As a consequence, the tensile strength and tensile elongation are well predicted, which is in accord with the experimental results. The present experiment provides a theoretical reference for the strengthening of partially recrystallized single-phase HEAs in the future. Keywords: high entropy alloys; precipitation kinetics; strengthening mechanisms; elongation prediction 1. Introduction High entropy alloys (HEAs), a new class of structural materials, have attracted a great deal of attention in recent years on account of their special intrinsic characteristics [1–9], such as high configuration entropy [10], sluggish atomic diffusion [11], and large lattice distortion [12]. -
Effect of Si on Fe-Rich Intermetallic Formation and Mechanical Properties of Heat- Treated Al-Cu-Mn-Fe Alloys Yuliang Zhao1, 2
Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat- treated Al-Cu-Mn-Fe alloys Yuliang Zhao1, 2, Weiwen Zhang1*, Chao Yang1, Datong Zhang1, Zhi Wang1 1National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou, 510641, China 2School of Engineering & Computer Science, University of Hull, East Yorkshire, HU6 7RX, UK *Corresponding author. Tel: +86-20-87112022, Fax: +86-20-87112111. E-mail: [email protected] Abstract: The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (α-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful α-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%. Key Words: Al; casting; microstructure 1 I. Introduction Al-Cu alloys have been widely used in automobile manufacturing, space technology and aerospace industry owing to their high specific strength, good heat resistance and excellent fatigue properties [1-3].