CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human

Total Page:16

File Type:pdf, Size:1020Kb

CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses This information is current as of September 29, 2021. Tim J. A. Hutten, Soley Thordardottir, Hanny Fredrix, Lisanne Janssen, Rob Woestenenk, Jurjen Tel, Ben Joosten, Alessandra Cambi, Mirjam H. M. Heemskerk, Gerben M. Franssen, Otto C. Boerman, Lex B. H. Bakker, Joop H. Jansen, Nicolaas Schaap, Harry Dolstra and Willemijn Hobo Downloaded from J Immunol published online 26 August 2016 http://www.jimmunol.org/content/early/2016/08/26/jimmun ol.1600011 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2016/08/26/jimmunol.160001 Material 1.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 26, 2016, doi:10.4049/jimmunol.1600011 The Journal of Immunology CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses Tim J. A. Hutten,*,1 Soley Thordardottir,*,1 Hanny Fredrix,* Lisanne Janssen,* Rob Woestenenk,* Jurjen Tel,† Ben Joosten,† Alessandra Cambi,† Mirjam H. M. Heemskerk,‡ Gerben M. Franssen,x Otto C. Boerman,x Lex B. H. Bakker,{ Joop H. Jansen,* Nicolaas Schaap,‖ Harry Dolstra,*,1 and Willemijn Hobo*,1 Potent immunotherapies are urgently needed to boost antitumor immunity and control disease in cancer patients. As dendritic cells (DCs) are the most powerful APCs, they are an attractive means to reinvigorate T cell responses. An appealing strategy to use the Downloaded from effective Ag processing and presentation machinery, T cell stimulation and cross-talk capacity of natural DC subsets is in vivo tumor Ag delivery. In this context, endocytic C-type lectin receptors are attractive targeting molecules. In this study, we investigated whether CLEC12A efficiently delivers tumor Ags into human DC subsets, facilitating effective induction of CD4+ and CD8+ T cell responses. We confirmed that CLEC12A is selectively expressed by myeloid cells, including the myeloid DC subset (mDCs) and the plasmacytoid DC subset (pDCs). Moreover, we demonstrated that these DC subsets efficiently internalize CLEC12A, whereupon it quickly translocates to the early endosomes and subsequently routes to the lysosomes. Notably, CLEC12A Ab http://www.jimmunol.org/ targeting did not negatively affect DC maturation or function. Furthermore, CLEC12A-mediated delivery of keyhole limpet hemocyanin resulted in enhanced proliferation and cytokine secretion by keyhole limpet hemocyanin–experienced CD4+ T cells. Most importantly, CLEC12A-targeted delivery of HA-1 long peptide resulted in efficient Ag cross-presentation by mDCs and pDCs, leading to strong ex vivo activation of HA-1–specific CD8+ T cells of patients after allogeneic stem cell transplantation. Collectively, these data indicate that CLEC12A is an effective new candidate with great potential for in vivo Ag delivery into mDCs and pDCs, thereby using the specialized functions and cross-talk capacity of these DC subsets to boost tumor-reactive T cell immunity in cancer patients. The Journal of Immunology, 2016, 197: 000–000. he prominent role of dendritic cells (DCs) in orchestrating vaccination of patients treated with allogeneic stem cell trans- by guest on September 29, 2021 immune responses has provided the rationale for the de- plantation (alloSCT) (8–11). In this context, T cells could be di- T velopment of DC-based strategies to boost antitumor rected against tumor Ags or recipient-specific alloantigens immune responses in cancer patients (1). DCs are the most pow- restricted to hematological tumor cells, known as minor histo- erful APCs and efficiently initiate and reactivate CD4+ and CD8+ compatibility Ags (MiHAs) (12, 13). T cell responses (2). Importantly, they have the unique capacity to Nevertheless, we and others have observed that often the in- cross-present extracellular Ags, including tumor Ags, in MHC duction and/or reactivation of antitumor immune responses is class I molecules to CD8+ T cells (3, 4). Upon tumor Ag pre- inadequate, contributing to disease progression or relapse (14). sentation and costimulation by the DCs, tumor-reactive T cells This observation illustrates the urgency to develop alternative become activated, expand, and attack tumor cells. Moreover, DC-based strategies to more effectively boost antitumor immu- long-lasting memory against recurrent disease is formed. Impor- nity. One such strategy involves the exploitation of the powerful tantly, tumor regression has been observed following DC-based Ag presentation capacity of natural DC subsets by in vivo tumor vaccination in patients with hematological cancers (5–7). In ad- Ag delivery. Two key populations of human DCs are myeloid DCs dition, productive T cell responses could be boosted by DC (mDCs) and plasmacytoid DCs (pDCs) (15). mDCs are further *Department of Laboratory Medicine, Laboratory of Hematology, Radboud University T.J.A.H. and S.T. designed and performed experiments and wrote the paper; H.F., L.J., Medical Center, 6500 HB Nijmegen, the Netherlands; †Department of Tumor Immu- and R.W. performed experiments; J.T., B.J., A.C., M.H.M.H., G.M.F., O.C.B., and nology, Radboud University Medical Center, Radboud Institute for Molecular Life L.B.H.B. provided essential materials and advice; J.H.J. and N.S. provided advice Sciences, 6500 HB Nijmegen, the Netherlands; ‡Department of Hematology, Leiden and revised the paper; H.D. and W.H. designed research and wrote the paper. University Medical Center, 2300 RC Leiden, the Netherlands; xDepartment of Nuclear Address correspondence and reprint requests to Dr. Willemijn Hobo, Department of Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; { ‖ Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Cen- Merus N.V., 3584 CH Utrecht, the Netherlands; and Department of Hematology, ter, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands. E-mail Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands address: [email protected] 1T.J.A.H., S.T., H.D., and W.H. contributed equally to this work. The online version of this article contains supplemental material. ORCIDs: 0000-0002-5353-1740 (T.J.A.H.); 0000-0001-5097-7272 (L.J.); 0000-0002- Abbreviations used in this article: alloSCT, allogeneic stem cell transplantation; 7213-3422 (J.T.); 0000-0002-7192-4062 (B.J.); 0000-0001-6320-9133 (M.H.M.H.); CLEC12A, C-type lectin domain family 12 member A; CLR, C-type lectin receptor; 0000-0001-6832-101X (O.C.B.); 0000-0003-4343-3466 (L.B.H.B.); 0000-0001-7696- DC, dendritic cell; hIgG, human IgG; HS, human serum; KLH, keyhole limpet 4752 (N.S.); 0000-0002-8206-8185 (W.H.). hemocyanin; LUMC, Leiden University Medical Center; mDC, myeloid DC; mIgG2, Received for publication January 4, 2016. Accepted for publication July 31, 2016. mouse IgG2; MiHA, minor histocompatibility Ag; MoDC, monocyte-derived DC; pDC, plasmacytoid DC; Poly(I:C), polyinosinic-polycytidylic acid. This work was supported by a grant from the Dutch Cancer Society (Grant KUN 2012-5410). Copyright Ó 2016 by The American Association of Immunologists, Inc. 0022-1767/16/$30.00 www.jimmunol.org/cgi/doi/10.4049/jimmunol.1600011 2 CLEC12A-MEDIATED Ag CROSS-PRESENTATION BY DCs subdivided based on surface expression of BDCA1+ (CD1c) and after alloSCT (9, 10). Prevaccination leukapheresis material was used to + + BDCA3+ (CD141). Each DC subset has its specialized function in isolate BDCA1 mDCs, BDCA3 mDCs, pDCs, and culture MoDCs. All the induction and maintenance of immune responses (16). Nota- material of patients and healthy donors was obtained after written in- formed consent, according to institutional guidelines. bly, preclinical studies indicate that simultaneous engagement and cross-talk of multiple DC subsets is important for generating more DC isolation and culture potent and broader antitumor responses (17–19). To generate MoDCs, monocytes were isolated from PBMCs via plastic Attractive cell surface molecules for Ab-mediated in vivo tumor adherence in tissue culture flasks (Greiner Bio-One, Alphen a/d Rijn, the Ag delivery into DC subsets are the endocytic C-type lectin receptors Netherlands) and cultured in X-VIVO 15 medium (Lonza, Verviers, Belgium) (CLRs) (20–25). CLRs are pattern-recognition receptors that me- supplemented with 2% human serum (HS) (PAA laboratories, Pasching, Austria), 500 U/ml IL-4 and 800 U/ml GM-CSF (both from Immunotools, diate recognition and uptake of pathogens, as well as Ags exposed Friesoythe, Germany). At day 3, immature MoDCs were harvested and di- or released upon cell death. Furthermore, their ligation can induce rectly used in experiments or routinely matured for 48 h with 500 U/ml IL-4, intracellular signaling pathways regulating DC function. In this 800 U/ml GM-CSF, 5 ng/ml IL-1b, 15 ng/ml IL-6, 20 ng/ml TNF-a (all Immunotools), and 2.5 mg/ml PGE2 (conventional cytokines; Pfizer). study, we investigated the potential of a relatively unexplored CLR, + + C-type lectin domain family 12 member A (CLEC12A), as Ag PBMCs containing naturally occurring BDCA1 mDCs, BDCA3 mDCs, and pDCs were labeled with fluorophore-conjugated aCD11c, aBDCA1, delivery receptor. CLEC12A is also known as MICL (myeloid in- aBDCA2, aBDCA3, and aCD123 (all from BioLegend, San Diego, CA).
Recommended publications
  • Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug
    cancers Article Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia David G.J. Cucchi 1 , Costa Bachas 1 , Marry M. van den Heuvel-Eibrink 2,3, Susan T.C.J.M. Arentsen-Peters 3, Zinia J. Kwidama 1, Gerrit J. Schuurhuis 1, Yehuda G. Assaraf 4, Valérie de Haas 3 , Gertjan J.L. Kaspers 3,5 and Jacqueline Cloos 1,* 1 Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (D.G.J.C.); [email protected] (C.B.); [email protected] (Z.J.K.); [email protected] (G.J.S.) 2 Department of Pediatric Oncology/Hematology, Erasmus MC–Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands; [email protected] 3 Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; [email protected] (S.T.C.J.M.A.-P.); [email protected] (V.d.H.); [email protected] (G.J.L.K.) 4 The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; [email protected] 5 Emma’s Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1081 HV Amsterdam, The Netherlands * Correspondence: [email protected] Received: 21 April 2020; Accepted: 12 May 2020; Published: 15 May 2020 Abstract: Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • CLEC12A (NM 001207010) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RG233616 CLEC12A (NM_001207010) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: CLEC12A (NM_001207010) Human Tagged ORF Clone Tag: TurboGFP Symbol: CLEC12A Synonyms: CD371; CLL-1; CLL1; DCAL-2; MICL Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RG233616 representing NM_001207010 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGTGGATAGATTTCTTTACATATTCATCAATGTCTGAAGAAGTTACTTATGCAGATCTTCAATTCCAGA ACTCCAGTGAGATGGAAAAAATCCCAGAAATTGGCAAATTTGGGGAAAAAGCACCTCCAGCTCCCTCTCA TGTATGGCGTCCAGCAGCCTTGTTTCTGACTCTTCTGTGCCTTCTGTTGCTCATTGGATTGGGAGTCTTG GCAAGCATGTTTCACGTAACTTTGAAGATAGAAATGAAAAAAATGAACAAACTACAAAACATCAGTGAAG AGCTCCAGAGAAATATTTCTCTACAACTGATGAGTAACATGAATATCTCCAACAAGATCAGGAACCTCTC CACCACACTGCAAACAATAGCCACCAAATTATGTCGTGAGCTATATAGCAAAGAACAAGAGCACAAATGT AAGCCTTGTCCAAGGAGATGGATTTGGCATAAGGACAGCTGTTATTTCCTAAGTGATGATGTCCAAACAT GGCAGGAGAGTAAAATGGCCTGTGCTGCTCAGAATGCCAGCCTGTTGAAGATAAACAACAAAAATGCATT GGAATTTATAAAATCCCAGAGTAGATCATATGACTATTGGCTGGGATTATCTCCTGAAGAAGATTCCACT CGTGGTATGAGAGTGGATAATATAATCAACTCCTCTGCCTGGGTTATAAGAAACGCACCTGACTTAAATA ACATGTATTGTGGATATATAAATAGACTATATGTTCAATATTATCACTGCACTTATAAAAAAAGAATGAT ATGTGAGAAGATGGCCAATCCAGTGCAGCTTGGTTCTACATATTTTAGGGAGGCA
    [Show full text]
  • Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection
    fgene-11-00358 April 9, 2020 Time: 15:55 # 1 ORIGINAL RESEARCH published: 15 April 2020 doi: 10.3389/fgene.2020.00358 Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection Allen F. Ryan1*, Chanond A. Nasamran2, Kwang Pak1, Clara Draf1, Kathleen M. Fisch2, Nicholas Webster3 and Arwa Kurabi1 1 Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 2 Medicine/Center for Computational Biology & Bioinformatics, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 3 Medicine/Endocrinology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States Single-cell transcriptomics was used to profile cells of the normal murine middle ear. Clustering analysis of 6770 transcriptomes identified 17 cell clusters corresponding to distinct cell types: five epithelial, three stromal, three lymphocyte, two monocyte, Edited by: two endothelial, one pericyte and one melanocyte cluster. Within some clusters, Amélie Bonnefond, Institut National de la Santé et de la cell subtypes were identified. While many corresponded to those cell types known Recherche Médicale (INSERM), from prior studies, several novel types or subtypes were noted. The results indicate France unexpected cellular diversity within the resting middle ear mucosa. The resolution of Reviewed by: Fabien Delahaye, uncomplicated, acute, otitis media is too rapid for cognate immunity to play a major Institut Pasteur de Lille, France role. Thus innate immunity is likely responsible for normal recovery from middle ear Nelson L. S. Tang, infection. The need for rapid response to pathogens suggests that innate immune The Chinese University of Hong Kong, China genes may be constitutively expressed by middle ear cells.
    [Show full text]
  • WO 2018/071455 Al 19 April 2018 (19.04.2018) W ! P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/071455 Al 19 April 2018 (19.04.2018) W ! P O PCT (51) International Patent Classification: (US). GHONE, Sanjeevani; 14 Adams Court, Plainsboro, A61K 47/62 (2017.01) C07D 403/14 (2006.01) New Jersey NJ 08536 (US). A61K 47/64 (20 .01) (74) Agent: GARRETT- WACKO WSKI, Eugenia et al; Kil- (21) International Application Number: patrick Townsend & Stockton LLP, Mailstop: IP Docketing PCT/US2017/055994 - 22, 1100 Peachtree Street, Suite 2800, Atlanta, GA 30309 (US). (22) International Filing Date: 10 October 2017 (10.10.2017) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 10 October 2016 (10.10.2016) 62/406,077 KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 62/45 1,658 27 January 2017 (27.01.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (71) Applicant: CELLERANT THERAPEUTICS, INC. OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, [US/US]; 1561 Industrial Road, San Carlos, California SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, 94070 (US).
    [Show full text]
  • Chimeric Antigen Receptors for Adoptive T Cell Therapy in Acute
    Fan et al. Journal of Hematology & Oncology (2017) 10:151 DOI 10.1186/s13045-017-0519-7 REVIEW Open Access Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia Mingxue Fan1, Minghao Li1, Lipeng Gao1, Sicong Geng2, Jing Wang1, Yiting Wang1, Zhiqiang Yan1* and Lei Yu1* Abstract Currently, conventional therapies for acute myeloid leukemia (AML) have high failure and relapse rates. Thus, developing new strategies is crucial for improving the treatment of AML. With the clinical success of anti-CD19 chimeric antigen receptor (CAR) T cell therapies against B-lineage malignancies, many studies have attempted to translate the success of CAR T cell therapy to other malignancies, including AML. This review summarizes the current advances in CAR T cell therapy against AML, including preclinical studies and clinical trials, and discusses the potential AML-associated surface markers that could be used for further CAR technology. Finally, we describe strategies that might address the current issues of employing CAR T cell therapy in AML. Keywords: Chimeric antigen receptors, Acute myeloid leukemia, Immunotherapy Background intermediate- or high-risk factors associated with AML [6]. Acute myeloid leukemia (AML) is a cancer of the myeloid In addition, allogeneic hematopoietic stem cell transplant- line of blood cells that is characterized by the clonal ex- ation (allo-HSCT) has been the most successful immuno- pansion of abnormal myeloid progenitors in the bone therapy for AML over the past decade, especially with the marrow and peripheral blood, which interferes with the advances made in using alternative donors [7–9]. Unfortu- normal production of blood cells.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • Departments of 3Oncology and 4Pathology, St. Jude
    UNIVERSAL MONITORING OF MINIMAL RESIDUAL DISEASE IN ACUTE MYELOID LEUKEMIA Elaine Coustan-Smith,1 Guangchun Song,4 Sheila Shurtleff,4 Allen Eng-Juh Yeoh,1,2 Chng Wee Joo,2 Siew Peng Chen,1 Jeffrey E. Rubnitz,3,5 Ching-Hon Pui,3,4,5 James R. Downing,4,5 Dario Campana1,2 1Department of Pediatrics and 2National University Cancer Institute Singapore, National University of Singapore, Singapore; Departments of 3Oncology and 4Pathology, St. Jude Children's Research Hospital, Memphis, TN; and 5University of Tennessee Health Science Center, Memphis, TN Supplemental Material (Supplemental Tables S3-S6; Supplemental Figures S1-S6) 1 Table S3. Genes overexpressed in AML “stem cells” according to previous studies and their overexpression in AML according to the present analysis Gene overexpressed in AML Gene overexpressed in AML AML cases with stem cells according to Saito et stem cells according to Kikushige overexpression in this al.(1) et al.(2) study (%)a WT1 84.7 CD32 CD32 76.4 DOK2 70.1 CD96 66.9 HCK 65.6 CD86 CD86 64.3 CD44 64.3 CD93 56.7 ITGB2, CD18 ITGB2, CD18 52.9 CSF1R, CD115 51.0 IL2RA, CD25 IL2RA, CD25 47.8 LY86 43.3 IL7R, CD127 42.0 CD99 42.0 IL17R 39.5 CD97 CD97 37.6 CD33 CD33 36.9 CD9 36.9 CD1C 35.7 AK5 33.1 BIK 31.2 CD47 30.6 TNFRSF4, CD134 29.3 CD84 29.3 IL2RG, CD132 27.4 ITGB7 27.4 CEACAM6, CD66c 26.8 FLT3 25.5 CD180 <25 CTSC <25 PDE9A <25 CD24 <25 CD36 <25 CD123 <25 ITGAE <25 2 LRG1 Not on HG-U133A array SUCNR1 Not on HG-U133A array TNFSF13B, CD257 Not on HG-U133A array CD366, HAVCR2, TIM-3 Not on HG-U133A array CD371, CLEC12A, CLL-1 Not on HG-U133A array aGene expression was studied by HG-U133A oligonucleotide microarrays in157 AML samples and 7 samples of normal CD34+ myeloid progenitors.
    [Show full text]
  • Acute Myeloid Leukemia
    Kantarjian et al. Blood Cancer Journal (2021) 11:41 https://doi.org/10.1038/s41408-021-00425-3 Blood Cancer Journal REVIEW ARTICLE Open Access Acute myeloid leukemia: current progress and future directions Hagop Kantarjian 1, Tapan Kadia 1, Courtney DiNardo 1, Naval Daver 1, Gautam Borthakur 1, Elias Jabbour1, Guillermo Garcia-Manero 1, Marina Konopleva 1 and Farhad Ravandi1 Abstract Progress in the understanding of the biology and therapy of acute myeloid leukemia (AML) is occurring rapidly. Since 2017, nine agents have been approved for various indications in AML. These included several targeted therapies like venetoclax, FLT3 inhibitors, IDH inhibitors, and others. The management of AML is complicated, highlighting the need for expertise in order to deliver optimal therapy and achieve optimal outcomes. The multiple subentities in AML require very different therapies. In this review, we summarize the important pathophysiologies driving AML, review current therapies in standard practice, and address present and future research directions. Introduction regimens consisting of all trans-retinoic acid (ATRA) and Progress in understanding the pathophysiology and arsenic trioxide in acute promyelocytic leukemia (APL) – improving the therapy of acute myeloid leukemia (AML) resulted in cure rates of 90%8 12. In core-binding factor is now occurring at a rapid pace. The discovery of the (CBF) AML, adding gemtuzumab ozogamicin (CD33-tar- 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; activity of cytarabine (ara-C) and of anthracyclines in geted monoclonal antibody conjugated to the calicheamicin AML, and combining them in the 1970’s, into what is payload) to high-dose cytarabine-based chemotherapy – known as the “3 + 7 regimen” (3 days of daunorubicin + increased the long-term survival rate from 50% to 75+%13 17.
    [Show full text]
  • Epigenetic Changes in Human Model KMT2A Leukemias Highlight Early Events During Leukemogenesis
    Epigenetic changes in human model KMT2A leukemias highlight early events during leukemogenesis Thomas Milan1, Magalie Celton1, Karine Lagacé1, Élodie Roques1, Safia Safa-Tahar-Henni1, Eva Bresson2,3,4, Anne Bergeron2,3,4, Josée Hebert5,6, Soheil Meshinchi7, Sonia Cellot8, Frédéric Barabé2,3,4, 1,6 Brian T Wilhelm Author contributions: BTW and TM designed the study, analyzed data and drafted the manuscript. TM and KL performed ChIP-seq and ATAC-seq, analysed the data and generated figures. MC performed Methyl-seq experiments, analysed data, generated figures and drafted the manuscript. SS-T-H assisted with the ATAC-seq analysis and generation of figures. KL, ER, EB, and AB helped with molecular biology work, cloning and cell culture. EB, AB and FB generated the model on mice from CD34+ cells. SM provided expression and clinical data for patient samples and JH and SC collected, characterized, and banked the local patient samples used in this study. Affiliations: 1Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada 2Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec – Université Laval, Québec City, QC, Canada, 3CHU de Québec – Université Laval – Hôpital Enfant-Jésus; Québec City, QC, Canada; 4Department of Medicine, Université Laval, Quebec City, QC, Canada 5Division of Hematology-Oncology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada, 6Department of Medicine, Université de Montréal, Montréal, QC, Canada, 7Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA 8Department of pediatrics, division of Hematology, Ste-Justine Hospital, Montréal, QC, Canada Running head: Early epigenetic changes in KM3-AML *Correspondence to: Brian T Wilhelm Institute for Research in Immunology and Cancer Université de Montréal P.O.
    [Show full text]
  • Anti-CD19 CAR T Cells That Secrete a Biparatopic Anti-CLEC12A Bridging
    Author Manuscript Published OnlineFirst on July 12, 2021; DOI: 10.1158/1535-7163.MCT-20-1030 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Anti-CD19 CAR T cells that secrete a biparatopic anti-CLEC12A bridging protein have potent activity against highly aggressive acute myeloid leukemia in vitro and in vivo Paul D. Rennert, Fay J. Dufort, Lihe Su, Tom Sanford, Alyssa Birt, Lan Wu, Roy R. Lobb and Christine Ambrose. Aleta Biotherapeutics Inc. 27 Strathmore Rd, Natick MA 01760 USA. Running Title: anti-CD19 CAR T cells engineered to target AML Keywords: CAR T cell, CLEC12A, CD33, AML, biparatopic Corresponding Author: Paul D. Rennert, Aleta Biotherapeutics Inc. 27 Strathmore Rd, Natick MA 01760 USA. 1-508-282-6370. [email protected] Conflict of interest declaration: At the time the experimental work was performed all authors were employees and stockholders of Aleta Biotherapeutics, Inc. Rennert and Lobb are Aleta Biotherapeutics Board members and company Founders. Word count: 5489 Number of figures: 4 Number of tables: 2 1 Downloaded from mct.aacrjournals.org on October 5, 2021. © 2021 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 12, 2021; DOI: 10.1158/1535-7163.MCT-20-1030 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT Refractory Acute Myeloid Leukemia (AML) remains an incurable malignancy despite the clinical use of novel targeted therapies, new antibody-based therapies and cellular therapeutics. Here we describe the preclinical development of a novel cell therapy that targets the antigen CLEC12A with a biparatopic bridging protein.
    [Show full text]