Hadro-Quarkonium from Lattice QCD
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jul/Aug 2013
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www. -
Pos(RAD COR 2007)025 Ce
Automated calculation of QED corrections to lepton g − 2 PoS(RAD COR 2007)025 Tatsumi Aoyama∗ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) E-mail: [email protected] Masashi Hayakawa Department of Physics, Nagoya University Toichiro Kinoshita Laboratory for Elementary-Particle Physics, Cornell University Makiko Nio Theoretical Physics Laboratory, Nishina Center, RIKEN This article reports our project on the automated calculation of QED corrections to the anomalous magnetic moment of leptons. Our major concern is the tenth-order correction, which is urgently needed considering the recent improvementof electron g−2 measurements. We focus on a type of diagrams that have no internal lepton loops, and have devised the automated code-generating sys- tem for the UV-renormalized amplitude. We have newly developed and implemented an efficient algorithm to perform subtractions of IR divergences. This enables us to obtain finite amplitudes that are free from both UV and IR divergences. Currently the numerical evaluation of these dia- grams of tenth order is in progress. 8th International Symposium on Radiative Corrections October 1-5, 2007 Florence, Italy ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Automated calculation of QED corrections to lepton g − 2 TatsumiAoyama 1. Introduction The anomalous magnetic moment g−2 of the electron is one of the most precisely studied quantities in the particle physics, and it has provided the most stringent test of QED. Recently, a new measurement was carried out by a Harvard group using the Penning trap with cylindrical cavity. -
The Secret Hans2.Doc Italicized Paragraphs Not Presented September 19, 2005
091805 The Secret Hans2.doc Italicized paragraphs not presented September 19, 2005 The Secret Hans Richard L. Garwin at Celebrating an Exemplary Life September 19, 2005 Cornell University I recount1 some early interactions I had with Hans, beginning in 1951. Hans had led the Theoretical Division at Los Alamos from 1943 to 1945, and despite his antagonism to the hydrogen bomb, was willing to turn his talents to learning whether it could be done or not, which was his role when we interacted in the summer of 1951. In May of 1951 my wife and I and our infant son went to Los Alamos for the second summer, where I would continue to work mostly on nuclear weapons. I was at that time an Assistant Professor at the University of Chicago and had spent the summer of 1950 at the Los Alamos Laboratory, sharing an office with my colleague and mentor Enrico Fermi—Hans Bethe's mentor in Rome as well. When I returned in 1951, and asked Edward Teller, another University of Chicago colleague, what was new and what I could do, he asked me to devise an experiment to confirm the principle of "radiation implosion," then very secret, that he and Ulam had invented that February. In May 1951, the young physicists Marshall Rosenbluth and Conrad Longmire were trying to do actual calculations on this method for using the energy from an ordinary fission bomb to compress and heat fusion fuel-- that is, heavy hydrogen (deuterium). I decided that the most convincing experiment would be a full-scale hydrogen bomb, so I set about designing that. -
2005 Annual Report American Physical Society
1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists. -
Fine Structure Constant, Electron Anomalous Magnetic Moment, and Quantum Electrodynamics
Fine Structure Constant, Electron Anomalous Magnetic Moment, and Quantum Electrodynamics Toichiro Kinoshita Laboratory for Elementary-Particle Physics, Cornell University based on the work carried out in collaboration with M. Nio, T. Aoyama, M. Hayakawa, N. Watanabe, K. Asano. presented at Nishina Hall, RIKEN November 17, 2010 T. Kinoshita () 1 / 57 Introduction The fine structure constant e2 α = 2ǫ0hc is a dimensionless fundamental constant of physics: e = electric charge of electron, ǫ0 = dielectric constant of vacuum, h = Planck constant, c = velocity of light in vacuum. Since α is basically measure of magnitude of e, it can be measured by any physical system involving electron directly or indirectly. T. Kinoshita () 2 / 57 Some high precision measurements of α: Mohr,Taylor,Newell, RMP 80, 633 (2008) − α 1(ac Josephson)= 137.035 987 5 (43) [31 ppb] − α 1(quantum Hall)= 137.036 003 0 (25) [18 ppb] − α 1(neutron wavelength)= 137.036 007 7 (28) [21 ppb] − α 1(atom interferometry)= 137.036 000 0 (11) [7.7 ppb] − α 1(optical lattice)= 137.035 998 83 (91) [6.7 ppb] T. Kinoshita () 3 / 57 However, by far the most accurate α comes from the measurement of electron anomalous magnetic moment ae and the theoretical calculation in quantum electrodynamics (QED) and Standard Model (SM): −1 α (ae)= 137.035 999 085 (12)(37)(33) [0.37 ppb] where 12,37,33 are the uncertainties of 8th-order term, estimated 10th-order term, and measurement of ae. T. Kinoshita () 4 / 57 (α-1 - 137.036) × 107 Muonium H.F.S. ac Josephson Quantum Hall h/m(Cs) h/m(Rb) ae UW87 ae HV06 ae HV08 -200 -100 0 +100 +200 Figure: Comparison of various α−1 of high precision. -
Asked Steven Weinberg. but Quantum Electrodynamic
Bulgaria: QED In fact, at least three of them could be discerned at a workshop held in June in Sandansky, Bulgaria, entitled "Frontier tests of QED and physics of the vacuum". The first concerns such exotic atomic systems as metastable antiprotonic helium (a helium atom with an antiproton substituted QED: for one electron), singly-charged heavy ions such as uranium-91+, muonium (a bound state of a muon and an electron), and anti- hydrogen (an antiproton with an orbital positron). Beyond a certain level of experimental precision, each of these hydrogen- and helium like systems is a testbench atom for one QED aspect or another. The second frontier is the study of macroscopic consequences of surviving QED, with effects like vacuum polarization (spontaneous transient particles) and zero-point energy (the "dressing" surrounding a bare particle); hence the weak birefringence acquired by a vacuum under a magnetic field (a consequence of vacuum polarization) and the Casimir force between objects in the vacuum, this being related to the change of zero-point energy when the vacuum's domain of quan tization is restricted by boundaries. (The Casimir force between two the bad parallel plates is proportional to the inverse fourth power of their separation and has magnitude of about 0.2xl0-5 newtons for 1 cm2 plates separated by 0.5 microns - equivalent to a mosquito stand ing on one of the plates.) Finally there is what might be called the Popperian frontier - the line beyond which QED might yet be found lacking.The holy grail of press researchers in this latter domain is to discover some effect that does not agree with the predictions of Feynman's hocus-pocus. -
Particle Physics Detector in Space
Particle physics detector in space QED IN BULGARIA STARING AT THE SUN HADRON THERAPY Researchers are still pushing at How will Gran Sasso's Borexino The Proton-Ion Medical Machine the frontiers of QED, as a workshop experiment work and what will it tell Study is exploring how particle physics in Bulgaria revealed us about the nature of neutrinos? can benefit medical treatment All the F.W. Bel I (s) and Whistles. RS -232I/O Port Built-in Rechargeable Battery Min/Maxl Peak Hold 0.25% DC Accuracy Frequency Range DC-20 kHz The New6000Series Gauss/Teslameter Delivers Laboratory Accuracy in a Portable Package You spoke and we listened! The New Model 6010 is the As with all F.W. Bell products, you can expect a superior latest development in the measurement of magnetic flux level of performance, satisfaction and support that can come density using F.W. Bell's state-of-the-art Hall-effect only from a world leader. Look to F.W. Bell when quality and technology. performance matter most. The Model 6010 performs Magnetic field measurements Act Now! from zero to 300 kG (30 T) over 6 ranges with a resolution Special Introductory Free Probe Offer! of 1 mG (0.1 JJT). The Model 6010 measures both DC & Call Today at (407) 678-6900 USA or True RMS AC magnetic fields, at frequencies up to 20 kHz, Go to the Web! www.fwbell.com/html/cerncourier.html with a basic DC accuracy of 0.25%. The Model 6010 provides readings in Gauss, Tesla & Ampere/Meters. The new 6000 Series Hall-effect probe features F.W. -
American Association of Physics Teachers 2008 Annual Report
American Association of Physics Teachers 2008 report annual Executive Board President Vice Chair of Section Lila M. Adair Representatives Piedmont College Mary Mogge Monroe, GA California State Polytechnic University President-Elect Pomona, CA Alexander Dickison Seminole Community At-Large Board Members College Gordon Ramsey Sanford, FL Loyola University Chicago Frankfurt, IL Vice-President David M. Cook Dwain Desbian Lawrence University Estrella Mountain Community Appleton, WI College Buckeye, AZ Secretary Steven Iona Elizabeth B. Chesick University of Denver Baldwin School Denver, CO Haverford, PA Treasurer Ex-Officio Member Editor Paul W. Zitzewitz American Journal University of of Physics Michigan - Dearborn Jan Tobochnik Dearborn, MI Kalamazoo College Kalamazoo, MI Past President Harvey Leff Ex-Officio Member Editor California State The Physics Teacher Polytechnic University Karl C. Mamola Pomona, CA Appalachian State University Boone, NC Chair of Section Representatives Ex-Officio Member Alan Gibson Executive Officer Connect2Science Warren W. Hein Rochester Hills, MI 2008 2008 report annual 2008 in Summary Presidential Statement 2 Executive Officer Statement 3 Leadership and Service 4 Publications 5 Membership 7 Major Events 8 Programs 9 Collaborative Projects 10 High School Physics Photo Contest 13 Awards and Grants 14 Fundraising 16 Committee Contributions 18 AAPT Sections 20 Financials 22 Presidential Statement AAPT is a truly unique began for a Two-Year College New Faculty Workshop. The organization. For over thirty PTRA program began to wind down in the final stage of the NSF years, it has been my personal grants that began in 1985, and looked at ways of reconfiguring inspiration, a place to meet itself through other successful programs and began offering and share with other physics special workshops for AAPT sections. -
Table of Contents (Print)
PHYSICAL REVIEW D PERIODICALS For editorial and subscription correspondence, Postmaster send address changes to: please see inside front cover (ISSN: 1550-7998) APS Subscription Services P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 96, NUMBER 1 CONTENTS D1 JULY 2017 The Table of Contents is a total listing of Parts A and B. Part A consists of articles 011101–014509, and Part B articles 014510–019903(E) PART A RAPID COMMUNICATIONS Observation of the Bþ → DÃ−Kþπþ decay (10 pages) ................................................................................. 011101(R) R. Aaij et al. (LHCb Collaboration) Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 × 1021 protons on target (9 pages) ....................................................................................................................... 011102(R) K. Abe et al. (The T2K Collaboration) One more hard three-loop correction to parapositronium energy levels (5 pages) ................................................. 011301(R) Michael I. Eides and Valery A. Shelyuto Decay of the dimuonium into a photon and a neutral pion (4 pages) ............................................................... 011302(R) Andrzej Czarnecki and Savely G. Karshenboim Resolving the atmospheric octant by an improved measurement of the reactor angle (6 pages) ................................ 011303(R) Sabya Sachi Chatterjee, Pedro Pasquini, and J. W. F. Valle Probing the top-quark width using the charge identification of b jets (6 pages) ................................................... 011901(R) Pier Paolo Giardino and Cen Zhang ARTICLES þ − Observation of e e → ηhc at center-of-mass energies from 4.085 to 4.600 GeV (13 pages) .................................. 012001 M. Ablikim et al. (BESIII Collaboration) þ ¯ 0 þ þ 0 þ Analysis of D → K e νe and D → π e νe semileptonic decays (15 pages) ................................................... 012002 M. Ablikim et al. -
Towards Excited Radiative Transitions in Charmonium
Doctoral Thesis Towards Excited Radiative Transitions in Charmonium Author: Supervisor: Cian O'Hara Prof. Sin´eadRyan A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Mathematics March 2019 Declaration of Authorship I declare that this thesis has not been submitted as an excercise for a degree at this or any other university and is entirely my own work. I agree to deposit this thesis in the University's open acess institutional repository or allow the Library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement. Signed: Date: ii Abstract Towards Excited Radiative Transitions in Charmonium by Cian O'Hara In this thesis lattice QCD is utilised to investigate the spectrum of charmonium and charmed mesons with the aim of working towards investigating radiative tran- sitions between excited states in the charmonium spectrum. Results are presented from a dynamical Nf = 2 + 1 lattice QCD study of the excited spectrum of Ds and D mesons at a single lattice spacing with pion mass Mπ = 236 MeV, which has been published in reference [1]. A robust determination of the highly excited spectrum of states, up to spin J = 4, was achieved with the use of distillation and the variational method. A comparison with earlier studies of the spectra on lattices with heavier light quarks was performed and the spectrum was found to have little dependence on the light quark mass. Results from an investigation into radiative transitions in the charmonium spectrum are also presented. -
Numerical Evaluation of QED Contribution to Lepton G−2
Numerical evaluation of QED contribution to lepton g−2 T. Aoyama KMI, Nagoya University The 33rd International Symposium on Lattice Field Theory (LATTICE 2015) July 14–18, 2015, Kobe Anomalous magnetic moment of lepton ◮ Electrons and Muons have magnetic moment along their spins, given by e~ ~µ = g ~s 2m It is known that g-factor deviates from Dirac’s value (g = 2), and it is called Anomalous magnetic moment aℓ (g 2)/2 ≡ − It is much precisely measured for electron and muon. ◮ Electron g 2 is explained almost entirely by QED interaction between electron and− photons. It has provided the most stringent test of QED. ◮ Muon g 2 is more sensitive to high energy physics, and thus a window to new physics− beyond the standard model. 1/55 10th-order project ◮ Numerical evaluation of the entire 10th order QED contribution to lepton g 2 has been conducted by the collaboration with: − Toichiro Kinoshita (Cornell, and UMass Amherst) Makiko Nio (RIKEN) Masashi Hayakawa (Nagoya University) Noriaki Watanabe (Nagoya University) Katsuyuki Asano (Nagoya University) 2/55 Electron g−2 figure from the slide by S. Fogwell Hoogerheide at Lepton moments 2014 Anomalous magnetic moment of electron ◮ Latest measurement by Harvard group by the resonance of cyclotron and spin levels for a single electron in a cylindrical Penning trap: ae(HV06) = 0.001 159 652 180 85 (76) [0.66ppb] Odom, Hanneke, D’Urso, Gabrielse, PRL97, 030801 (2006) ae(HV08) = 0.001 159 652 180 73 (28) [0.24ppb] Hanneke, Fogwell, Gabrielse, PRL100, 120801 (2008) Hanneke, Fogwell Hoogerheide, Gabrielse, PRA83, 052122 (2011) trap cavity electron top endcap electrode quartz spacer compensation electrode nickel rings ring electrode 0.5 cm compensation bottom endcap electrode electrode field emission microwave inlet point FIG. -
Mozart and Quantum Mechanics: an Appreciation of Victor Weisskopf
Physics Today Volume 56, No. 2, 43-47 (February 2003) Mozart and Quantum Mechanics: An Appreciation of Victor Weisskopf Weisskopf had a rare and harmonious blend of sentiment and intellectual rigor. He liked to say that his favorite occupations were Mozart and quantum mechanics. Kurt Gottfried and J. David Jackson Figure 1: Victor Weisskopf at about age 20 (photo courtesy of Duscha Scott Weisskopf) Victor Frederick Weisskopf, who died on 21 April 2002, was a leading figure in the second generation of theoretical physicists who expanded the reach of quantum mechanics following its discovery in 1925-26. That discovery proved to be the most profound and swift turning point in the history of physics since the time of Isaac Newton. Born in Vienna on 19 September 1908, Viki, as he was called by all who knew him, was too young to do original research in those first watershed years. But, like other outstanding members of his remarkable cohort, Viki was a fast study. He published his first landmark paper1 at the age of 22. Viki was eventually to become a major actor in a wide variety of settings, but all these roles were consequences of his achievements as a creative scientist. Therefore we devote here considerable attention to his contributions to fundamental theoretical physics. As a teenager, Viki became fascinated with astronomy and proudly listed a paper on the Perseid showers, based on a night's observation when he was not yet 15, as his first publication.2 The rich artistic and intellectual ambiance of pre-Nazi Vienna was to deeply influence his interests and attitudes throughout his life.3 Among his passions was music.