Specific and Potent Cav3 Channel Blockers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The CB2 Receptor As a Novel Therapeutic Target for Epilepsy Treatment
International Journal of Molecular Sciences Review The CB2 Receptor as a Novel Therapeutic Target for Epilepsy Treatment Xiaoyu Ji 1, Yang Zeng 2 and Jie Wu 1,* 1 Brain Function and Disease Laboratory, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China; [email protected] 2 Medical Education Assessment and Research Center, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Epilepsy is characterized by repeated spontaneous bursts of neuronal hyperactivity and high synchronization in the central nervous system. It seriously affects the quality of life of epileptic patients, and nearly 30% of individuals are refractory to treatment of antiseizure drugs. Therefore, there is an urgent need to develop new drugs to manage and control refractory epilepsy. Cannabinoid ligands, including selective cannabinoid receptor subtype (CB1 or CB2 receptor) ligands and non- selective cannabinoid (synthetic and endogenous) ligands, may serve as novel candidates for this need. Cannabinoid appears to regulate seizure activity in the brain through the activation of CB1 and CB2 cannabinoid receptors (CB1R and CB2R). An abundant series of cannabinoid analogues have been tested in various animal models, including the rat pilocarpine model of acquired epilepsy, a pentylenetetrazol model of myoclonic seizures in mice, and a penicillin-induced model of epileptiform activity in the rats. The accumulating lines of evidence show that cannabinoid ligands exhibit significant benefits to control seizure activity in different epileptic models. In this review, we summarize the relationship between brain CB receptors and seizures and emphasize the potential 2 mechanisms of their therapeutic effects involving the influences of neurons, astrocytes, and microglia Citation: Ji, X.; Zeng, Y.; Wu, J. -
Interactions of Insecticidal Spider Peptide Neurotoxins with Insect Voltage- and Neurotransmitter-Gated Ion Channels
Interactions of insecticidal spider peptide neurotoxins with insect voltage- and neurotransmitter-gated ion channels (Molecular representation of - HXTX-Hv1c including key binding residues, adapted from Gunning et al, 2008) PhD Thesis Monique J. Windley UTS 2012 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Monique J. Windley 2012 ii ACKNOWLEDGEMENTS There are many people who I would like to thank for contributions made towards the completion of this thesis. Firstly, I would like to thank my supervisor Prof. Graham Nicholson for his guidance and persistence throughout this project. I would like to acknowledge his invaluable advice, encouragement and his neverending determination to find a solution to any problem. He has been a valuable mentor and has contributed immensely to the success of this project. Next I would like to thank everyone at UTS who assisted in the advancement of this research. Firstly, I would like to acknowledge Phil Laurance for his assistance in the repair and modification of laboratory equipment. To all the laboratory and technical staff, particulary Harry Simpson and Stan Yiu for the restoration and sourcing of equipment - thankyou. I would like to thank Dr Mike Johnson for his continual assistance, advice and cheerful disposition. -
Rhynchophylline Loaded-Mpeg-PLGA Nanoparticles Coated with Tween-80 for Preliminary Study in Alzheimer's Disease
International Journal of Nanomedicine Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Rhynchophylline Loaded-mPEG-PLGA Nanoparticles Coated with Tween-80 for Preliminary Study in Alzheimer’sDisease This article was published in the following Dove Press journal: International Journal of Nanomedicine Ruiling Xu1 Purpose: Alzheimer’s disease (AD) is a growing concern in the modern society. The current Junying Wang1 drugs approved by FDA are not very promising. Rhynchophylline (RIN) is a major active Juanjuan Xu1 tetracyclic oxindole alkaloid stem from traditional Chinese medicine uncaria species, which fi Xiangrong Song2 has potential activities bene cial for the treatment of AD. However, the application of Hai Huang 2 rhynchophylline for AD treatment is restricted by the low water solubility, low concentration in brain tissue and low bioavailability. And there is no study of brain-targeting therapy with Yue Feng 3 RIN. In this work, we prepared rhynchophylline loaded methoxy poly (ethylene glycol)–poly Chunmei Fu1 (dl-lactide-co-glycolic acid) (mPEG-PLGA) nanoparticles (NPS-RIN), which coupled with 1Key Laboratory of Drug-Targeting and Tween 80 (T80) further for brain targeting delivery (T80-NPS-RIN). Drug Delivery System of the Education Methods: Preparation and characterization of T80-NPS-RIN were followed by the detection Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced of transportation across the blood–brain barrier (BBB) model in vitro, biodistribution and Drug and Sichuan Research Center for neuroprotective effects of nanoparticles. Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan Results: The results indicated T80-NPS-RIN could usefully assist RIN to pass through the University, Chengdu 610041, People’s BBB to the brain. -
The Action of a BK Channel Opener
COMMENTARY The action of a BK channel opener Jianmin Cui Agonists and antagonists of an ion channel are important tools to studies of ischemia and reperfusion in isolated, perfused rat probe the functional role of the channel in specific cells and hearts, Bentzen et al. found that mitochondria BK channel ac- tissues. The effects of the agonist and antagonist on the cellular tivation by NS11021 perfusion reduced tissue damage, decreas- and tissue physiology and pathophysiology can be indications ing infarct size by more than 70% (Bentzen et al., 2009; 2010). A for the ion channel as a drug target for certain diseases. Agonists similar result was observed when studies were performed in and antagonists can also be effective tools for understanding mouse hearts (Soltysinska et al., 2014; Frankenreiter et al., molecular mechanisms for function of the channel. Obviously, to 2018), and NS11021 reduced infarction area in comparison know what a tool does will help a better use of the tool. NS11021 with the BK knockout (Slo1−/−) hearts. NS11021 also increased is a BK channel opener (Bentzen et al., 2007) that has been used survival of isolated ventricular myocytes subjected to metabolic asatooltoprobethefunctionalroleofBKchannelsinvarious inhibition followed by reenergization (Borchert et al., 2013). The tissues and the molecular mechanism of BK channel gating. In cardiac protection effects of NS11021 were suggested to derive this issue of the Journal of General Physiology, Rockman et al. from a beneficial effect on energetics due to enhanced K+ uptake present a comprehensive study of NS11021 modulation of BK via BK channels that resulted in mitochondrial swelling with channels. -
European Chemistry Congress June 16-18, 2016 Rome, Italy
conferenceseries.com conferenceseries.com 513th Conference European Chemistry Congress June 16-18, 2016 Rome, Italy Posters Page 98 Adriana A Lopes et al., Chem Sci J 2016, 7:2(Suppl) http://dx.doi.org/10.4172/2150-3494.C1.003 conferenceseries.com European Chemistry Congress June 16-18, 2016 Rome, Italy Unnatural fluoro-oxindole alkaloids produced by Uncaria guianensis plantlets Adriana A Lopes, Bruno Musquiari, Suzelei de C França and Ana Maria S Pereira Universidade de Ribeirão Preto, Brazil atural products and their analogues have been sources of numerous important therapeutic agents. The medicinal plant NU. guianensis (Rubiaceae) cultured in vitro produce four oxindole alkaloids that displays anti-tumoral activity. Natural products can be modified by several approaches, one of which is precursor-directed biosynthesis (PDB). Thus, the aim of this work was apply precursor-directed biosynthesis approach to obtain oxindole alkaloids analogues using in vitro Uncaria guianensis. Plantletes were cultivated into culture medium supplemented with 1mM of 6-fluoro-tryptamine, the indol precursor of alkaloids biosynthesis. U. guianensis explants were maintained at 25±2°C, 55-60% relative humidity under the same photoperiod and light intensity. After 30 days, a methanolic extract from U. guianensis was obtained and analysed by HPLC- DAD analytical procedure. The chromatogram showed four natural alkaloids (mitraphylline, isomitraphylline, rhynchophylline and isorhynchophylline and four additional peaks. Semi-preparative HPLC allowed isolation and purification of these four oxindole alkaloids analogues and the identity of the peaks was confirmed from high-resolution MS data (HRESIMS/MS in positive mode). All data confirmed that Uncaria guianensis produced fluoro-oxindole alkaloids analogues. -
Review Mechanisms of the Antinociceptive Action of Gabapentin
J Pharmacol Sci 100, 471 – 486 (2006) Journal of Pharmacological Sciences ©2006 The Japanese Pharmacological Society Review Mechanisms of the Antinociceptive Action of Gabapentin Jen-Kun Cheng1,2,3 and Lih-Chu Chiou1,4,* 1Institute and 4Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan 2Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan 3Department of Anesthesiology, Taipei Medical University, Taipei, Taiwan Received October 12, 2005 Abstract. Gabapentin, a γ-aminobutyric acid (GABA) analogue anticonvulsant, is also an effective analgesic agent in neuropathic and inflammatory, but not acute, pain systemically and intrathecally. Other clinical indications such as anxiety, bipolar disorder, and hot flashes have also been proposed. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABAB receptors consisting of GABAB1a and GABAB2 subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-α-amino acid transporter, activating ATP-sensitive K+ channels, activating hyperpolarization-activated cation channels, and modulating Ca2+ current by selectively binding 3 2+ to the specific binding site of [ H]gabapentin, the α2δ subunit of voltage-dependent Ca channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive 2+ action mechanisms of gabapentin and suggest that the α2δ subunit of spinal N-type Ca channels is very likely the analgesic action target of gabapentin. Keywords: gabapentin, GABAB receptor, NMDA receptor, KATP channel, 2+ α2δ subunit of Ca channels 1. -
Slow Inactivation in Voltage Gated Potassium Channels Is Insensitive to the Binding of Pore Occluding Peptide Toxins
Biophysical Journal Volume 89 August 2005 1009–1019 1009 Slow Inactivation in Voltage Gated Potassium Channels Is Insensitive to the Binding of Pore Occluding Peptide Toxins Carolina Oliva, Vivian Gonza´lez, and David Naranjo Centro de Neurociencias de Valparaı´so, Facultad de Ciencias, Universidad de Valparaı´so, Valparaı´so, Chile ABSTRACT Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important features: i), both are sensitive to the occupancy of the pore by permeant ions or tetraethylammonium, and ii), both are critically affected by point mutations in the external vestibule. Thus, mutual interference between these two processes is expected. To explore the extent of the conformational change involved in Shaker slow inactivation, we estimated the energetic impact of such interference. We used kÿconotoxin-PVIIA (kÿPVIIA) and charybdotoxin (CTX) peptides that occlude the pore of Shaker K-channels with a simple 1:1 stoichiometry and with kinetics 100-fold faster than that of slow inactivation. Because inactivation appears functionally different between outside-out patches and whole oocytes, we also compared the toxin effect on inactivation with these two techniques. Surprisingly, the rate of macroscopic inactivation and the rate of recovery, regardless of the technique used, were toxin insensitive. We also found that the fraction of inactivated channels at equilibrium remained unchanged at saturating kÿPVIIA. -
Research Article Antidepressant-Like Activity of the Ethanolic Extract from Uncaria Lanosa Wallich Var. Appendiculata Ridsd in T
Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2012, Article ID 497302, 12 pages doi:10.1155/2012/497302 Research Article Antidepressant-Like Activity of the Ethanolic Extract from Uncaria lanosa Wallich var. appendiculata Ridsd in the Forced Swimming Test and in the Tail Suspension Test in Mice Lieh-Ching Hsu,1 Yu-Jen Ko,1 Hao-Yuan Cheng,2 Ching-Wen Chang,1 Yu-Chin Lin,3 Ying-Hui Cheng,1 Ming-Tsuen Hsieh,1 and Wen Huang Peng1 1 School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung 404, Taiwan 2 Department of Nursing, Chung Jen College of Nursing, Health Sciences and Management, No. 1-10 Da-Hu, Hu-Bei Village, Da-Lin Township, Chia-Yi 62241, Taiwan 3 Department of Biotechnology, TransWorld University, No. 1221, Jen-Nang Road, Chia-Tong Li, Douliou, Yunlin 64063, Taiwan Correspondence should be addressed to Hao-Yuan Cheng, [email protected] and Wen Huang Peng, [email protected] Received 23 November 2011; Revised 30 January 2012; Accepted 30 January 2012 Academic Editor: Vincenzo De Feo Copyright © 2012 Lieh-Ching Hsu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This study investigated the antidepressant activity of ethanolic extract of U. lanosa Wallich var. appendiculata Ridsd (ULEtOH)for two-weeks administrations by using FST and TST on mice. In order to understand the probable mechanism of antidepressant-like activity of ULEtOH in FST and TST, the researchers measured the levels of monoamines and monoamine oxidase activities in mice brain, and combined the antidepressant drugs (fluoxetine, imipramine, maprotiline, clorgyline, bupropion and ketanserin). -
Ep 1553091 A1
Europäisches Patentamt *EP001553091A1* (19) European Patent Office Office européen des brevets (11) EP 1 553 091 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: C07D 263/32, C07D 417/14, 13.07.2005 Bulletin 2005/28 C07D 333/20, C07D 413/12, C07D 417/06 (21) Application number: 04726765.3 (86) International application number: (22) Date of filing: 09.04.2004 PCT/JP2004/005119 (87) International publication number: WO 2004/089918 (21.10.2004 Gazette 2004/43) (84) Designated Contracting States: • SAKAMOTO, Johei AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Takatsuki-shi, Osaka 569-1125 (JP) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • NAKANISHI, Hiroyuki Designated Extension States: Takatsuki-shi, Osaka 569-1125 (JP) AL HR LT LV MK • NAKAGAWA, Yuichi Takatsuki-shi, Osaka 569-1125 (JP) (30) Priority: 09.04.2003 JP 2003105267 • OHTA, Takeshi 03.06.2003 JP 2003157590 Takatsuki-shi, Osaka 569-1125 (JP) • SAKATA, Shohei (71) Applicant: Japan Tobacco Inc. Takatsuki-shi, Osaka 569-1125 (JP) Tokyo 105-8422 (JP) • MORINAGA, Hisayo Takatsuki-shi, Osaka 569-1125 (JP) (72) Inventors: • IKEMOTO, Tomoyuki (74) Representative: Takatsuki-shi, Osaka 569-1125 (JP) von Kreisler, Alek, Dipl.-Chem. et al • TANAKA, Masahiro Deichmannhaus am Dom, Takatsuki-shi, Osaka 569-1125 (JP) Postfach 10 22 41 • YUNO, Takeo 50462 Köln (DE) Takatsuki-shi, Osaka 569-1125 (JP) (54) HETEROAROMATIC PENTACYCLIC COMPOUND AND MEDICINAL USE THEREOF (57) A 5-membered heteroaromatic ring compound represented by the formula [I] 1 2 4 5 7 wherein V is CH or N; W is S or O; R and R are each H etc.; X is -N(R )-, -O-, -S-, -SO2-N(R )-, -CO-N(R )- etc.; L is EP 1 553 091 A1 Printed by Jouve, 75001 PARIS (FR) (Cont. -
Full-Text (PDF)
Review ARticle دوره هفتم، شماره سوم، تابستان 1398 دوره هفتم، شماره سوم، تابستان 1398 Review on the Third International Neuroinflammation Congress and Student Fes tival of Neuroscience in Mashhad University of Medical Sciences 1 2 1, 3* Sayed Mos tafa Modarres Mousavi , Sajad Sahab Negah , Ali Gorji 1Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran 2Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran 3 Epilepsy Research Center, Department of Neurology and Neurosurgery, Wes tfälische Wilhelms-Universität Müns ter, Müns ter, Germany Article Info: Received: 11 June 2019 Revised: 12 June 2019 Accepted: 13 June 2019 ABSTRACT Introduction: Neuroinflammation congress was the third in a series of annual events aimed to facilitate the inves tigative and analytical discussions on a range of neuroinflammatory diseases. The neuroinflammation congress focused on various neuroinflammatory disorders, including multiple sclerosis, brain tumors, epilepsy, and neurodegenerative diseases. The conference was held in June 11-13, 2019 and organized by Mashhad University of Medical Sciences and Muns ter University, which aimed to shed light on the causes of neuroinflammatory diseases and uncover new treatment pathways. Conclusion: Through a comprehensive scientific program with a broad basic and clinical aspects, we discussed the basic aspects of neuroinflammation and neurodegeneration up to the s tate-of-the-art treatments. In this congress, 334 scientific topics were presented and discussed. Key words: -
Conotoxins That Could Provide Analgesia Through Voltage Gated Sodium Channel Inhibition
Review Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition Nehan R. Munasinghe and MacDonald J. Christie * Received: 14 August 2015; Accepted: 19 November 2015; Published: 10 December 2015 Academic Editor: Luis Botana Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-2-9351-2946; Fax: +61-2-9351-3868 Abstract: Chronic pain creates a large socio-economic burden around the world. It is physically and mentally debilitating, and many suffers are unresponsive to current therapeutics. Many drugs that provide pain relief have adverse side effects and addiction liabilities. Therefore, a great need has risen for alternative treatment strategies. One rich source of potential analgesic compounds that has immerged over the past few decades are conotoxins. These toxins are extremely diverse and display selective activity at ion channels. Voltage gated sodium (NaV) channels are one such group of ion channels that play a significant role in multiple pain pathways. This review will explore the literature around conotoxins that bind NaV channels and determine their analgesic potential. Keywords: conotoxins; toxins; NaV; ion channels; pain; analgesia; inhibition 1. Introduction Chronic pain is a major problem in the world today. The total cost of chronic pain in the United States was estimated to be between $560 and $635 billion per annum [1]. This cost is greater than cancer and heart diseases combined [1]. The current therapeutics that are available for chronic pain often provide only limited pain relief and have many side effects. Therefore, there is a great need for alternative therapies that provide analgesia to chronic pain sufferers. -
NIH Public Access Author Manuscript Eur J Pharmacol
NIH Public Access Author Manuscript Eur J Pharmacol. Author manuscript; available in PMC 2012 November 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Eur J Pharmacol. 2011 November 1; 669(1-3): 71±75. doi:10.1016/j.ejphar.2011.08.001. Brain regions mediating α3β4 nicotinic antagonist effects of 18- MC on nicotine self-administration Stanley D. Glick, Elizabeth M. Sell, Sarah E McCallum, and Isabelle M. Maisonneuve Center for Neuropharmacology and Neuroscience, Albany Medical College (MC-136), 47 New Scotland Avenue, Albany, NY 12208, USA Abstract 18-methoxycoronaridine (18-MC), a putative anti-addictive agent, has been shown to decrease the self-administration of several drugs of abuse in rats. 18-MC is a potent antagonist at α3β4 nicotinic receptors. Consistent with high densities of α3β4 nicotinic receptors being located in the medial habenula and the interpeduncular nucleus, 18-MC has been shown to act in these regions to decrease both morphine and methamphetamine self-administration. The present study was conducted to determine if 18-MC’s effect on nicotine self-administration is mediated by acting in these same brain regions. Because moderate densities of α3β4 receptors occur in the dorsolateral tegmentum, ventral tegmental area, and basolateral amygdala, these brain areas were also examined as potential sites of action of 18-MC. Local administration of 18-MC into either the medial habenula, the basolateral amygdala or the dorsolateral tegmentum decreased nicotine self- administration. Surprisingly, local administration of 18-MC into the interpeduncular nucleus increased nicotine self-administration while local administration of 18-MC into the ventral tegmental area had no effect on nicotine self-administration.