Characterisation of a Novel A-Superfamily Conotoxin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interactions of Insecticidal Spider Peptide Neurotoxins with Insect Voltage- and Neurotransmitter-Gated Ion Channels
Interactions of insecticidal spider peptide neurotoxins with insect voltage- and neurotransmitter-gated ion channels (Molecular representation of - HXTX-Hv1c including key binding residues, adapted from Gunning et al, 2008) PhD Thesis Monique J. Windley UTS 2012 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Monique J. Windley 2012 ii ACKNOWLEDGEMENTS There are many people who I would like to thank for contributions made towards the completion of this thesis. Firstly, I would like to thank my supervisor Prof. Graham Nicholson for his guidance and persistence throughout this project. I would like to acknowledge his invaluable advice, encouragement and his neverending determination to find a solution to any problem. He has been a valuable mentor and has contributed immensely to the success of this project. Next I would like to thank everyone at UTS who assisted in the advancement of this research. Firstly, I would like to acknowledge Phil Laurance for his assistance in the repair and modification of laboratory equipment. To all the laboratory and technical staff, particulary Harry Simpson and Stan Yiu for the restoration and sourcing of equipment - thankyou. I would like to thank Dr Mike Johnson for his continual assistance, advice and cheerful disposition. -
Pharmacological Modulation of Processes Contributing to Spinal Hyperexcitability: Electrophysiological Studies in the Rat
Pharmacological modulation of processes contributing to spinal hyperexcitability: electrophysiological studies in the rat. By Katherine J Carpenter A thesis submitted to the University of London for the degree of Doctor of Philosophy Department of Pharmacology University College London Gower Street London WC1E6BT ProQuest Number: U642184 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642184 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Two of the most effective analgesic strategies in man are (i) blockade of the NMDA receptor for glutamate, which plays a major role in nociceptive transmission and (ii) augmentation of inhibitory systems, exemplified by the use of ketamine and the opioids respectively. Both are, however, are associated with side effects. Potential novel analgesic targets are investigated here using in vivo electrophysiology in the anaesthetised rat with pharmacological manipulation of spinal neuronal transmission. Three different approaches were used to target NMDA receptors: (i) glycine site antagonists (Mrz 2/571 and Mrz 2/579), (ii) antagonists selective for receptors containing the NR2B subunit (ifenprodil and ACEA-1244), (iii) elevating the levels of N-acetyl-aspartyl- glutamate (NAAG), an endogenous peptide, by inhibition of its degradative enzyme. -
Slow Inactivation in Voltage Gated Potassium Channels Is Insensitive to the Binding of Pore Occluding Peptide Toxins
Biophysical Journal Volume 89 August 2005 1009–1019 1009 Slow Inactivation in Voltage Gated Potassium Channels Is Insensitive to the Binding of Pore Occluding Peptide Toxins Carolina Oliva, Vivian Gonza´lez, and David Naranjo Centro de Neurociencias de Valparaı´so, Facultad de Ciencias, Universidad de Valparaı´so, Valparaı´so, Chile ABSTRACT Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important features: i), both are sensitive to the occupancy of the pore by permeant ions or tetraethylammonium, and ii), both are critically affected by point mutations in the external vestibule. Thus, mutual interference between these two processes is expected. To explore the extent of the conformational change involved in Shaker slow inactivation, we estimated the energetic impact of such interference. We used kÿconotoxin-PVIIA (kÿPVIIA) and charybdotoxin (CTX) peptides that occlude the pore of Shaker K-channels with a simple 1:1 stoichiometry and with kinetics 100-fold faster than that of slow inactivation. Because inactivation appears functionally different between outside-out patches and whole oocytes, we also compared the toxin effect on inactivation with these two techniques. Surprisingly, the rate of macroscopic inactivation and the rate of recovery, regardless of the technique used, were toxin insensitive. We also found that the fraction of inactivated channels at equilibrium remained unchanged at saturating kÿPVIIA. -
Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases
Mar. Drugs 2014, 12, 2539-2589; doi:10.3390/md12052539 OPEN ACCESS marine drugs ISSN 1660–3397 www.mdpi.com/journal/marinedrugs Review Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases Clara Grosso 1, Patrícia Valentão 1, Federico Ferreres 2 and Paula B. Andrade 1,* 1 REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal; E-Mails: [email protected] (C.G.); [email protected] (P.V.) 2 Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, Campus University Espinardo, Murcia 30100, Spain; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +351-22042-8654; Fax: +351-22609-3390. Received: 30 January 2014; in revised form: 10 April 2014 / Accepted: 16 April 2014 / Published: 2 May 2014 Abstract: Marine invertebrates produce a plethora of bioactive compounds, which serve as inspiration for marine biotechnology, particularly in drug discovery programs and biomaterials development. This review aims to summarize the potential of drugs derived from marine invertebrates in the field of neuroscience. Therefore, some examples of neuroprotective drugs and neurotoxins will be discussed. Their role in neuroscience research and development of new therapies targeting the central nervous system will be addressed, with particular focus on neuroinflammation and neurodegeneration. In addition, the neuronal growth promoted by marine drugs, as well as the recent advances in neural tissue engineering, will be highlighted. Keywords: aragonite; conotoxins; neurodegeneration; neuroinflammation; Aβ peptide; tau hyperphosphorylation; protein kinases; receptors; voltage-dependent ion channels; cyclooxygenases Mar. -
Ion Channels
UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. -
(12) Patent Application Publication (10) Pub
US 2003O181495A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0181495 A1 Lai et al. (43) Pub. Date: Sep. 25, 2003 (54) THERAPEUTIC METHODS EMPLOYING Division of application No. 09/565,665, filed on May DSULFIDE DERVATIVES OF 5, 2000, now Pat. No. 6,589,991. DTHIOCARBAMATES AND Division of application No. 09/103,639, filed on Jun. COMPOSITIONS USEFUL THEREFOR 23, 1998, now Pat. No. 6,093,743. (75) Inventors: Ching-San Lai, Carlsbad, CA (US); Publication Classification Vassil P. Vassilev, San Diego, CA (US) (51) Int. Cl." ..................... A61K 31/426; A61K 31/325; Correspondence Address: A61K 31/55; A61K 31/4545; FOLEY & LARDNER A61K 31/4025 P.O. BOX 80278 (52) U.S. Cl. .................... 514/369; 514/476; 514/217.03; SAN DIEGO, CA 92138-0278 (US) 514/316; 514/422 (57) ABSTRACT Assignee: Medinox, Inc. (73) The present invention provides novel combinations of (21) Appl. No.: 10/394,794 dithiocarbamate disulfide dimers with other active agents. In one method, the disulfide derivative of a dithiocarbamate is (22) Filed: Mar. 21, 2003 coadministered with a thiazolidinedione for the treatment of diabetes. In another embodiment, In another embodiment, invention combinations further comprise additional active Related U.S. Application Data agents Such as, for example, metformin, insulin, Sulfony lureas, and the like. In another embodiment, the present (60) Continuation-in-part of application No. 10/044,096, invention relates to compositions and formulations useful in filed on Jan. 11, 2002, now Pat. No. 6,596,770. Such therapeutic methods. Patent Application Publication Sep. 25, 2003 Sheet 1 of 6 US 2003/0181495 A1 90 Wavelength 340 - Fig. -
Conotoxins That Could Provide Analgesia Through Voltage Gated Sodium Channel Inhibition
Review Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition Nehan R. Munasinghe and MacDonald J. Christie * Received: 14 August 2015; Accepted: 19 November 2015; Published: 10 December 2015 Academic Editor: Luis Botana Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-2-9351-2946; Fax: +61-2-9351-3868 Abstract: Chronic pain creates a large socio-economic burden around the world. It is physically and mentally debilitating, and many suffers are unresponsive to current therapeutics. Many drugs that provide pain relief have adverse side effects and addiction liabilities. Therefore, a great need has risen for alternative treatment strategies. One rich source of potential analgesic compounds that has immerged over the past few decades are conotoxins. These toxins are extremely diverse and display selective activity at ion channels. Voltage gated sodium (NaV) channels are one such group of ion channels that play a significant role in multiple pain pathways. This review will explore the literature around conotoxins that bind NaV channels and determine their analgesic potential. Keywords: conotoxins; toxins; NaV; ion channels; pain; analgesia; inhibition 1. Introduction Chronic pain is a major problem in the world today. The total cost of chronic pain in the United States was estimated to be between $560 and $635 billion per annum [1]. This cost is greater than cancer and heart diseases combined [1]. The current therapeutics that are available for chronic pain often provide only limited pain relief and have many side effects. Therefore, there is a great need for alternative therapies that provide analgesia to chronic pain sufferers. -
Proteins, Peptides, and Amino Acids
Proteins, Peptides, and Amino Acids Chandra Mohan, Ph.D. Calbiochem-Novabiochem Corp., San Diego, CA The Chemical Nature of Amino Acids Peptides and polypeptides are polymers of α-amino acids. There are 20 α-amino acids that make-up all proteins of biological interest. The α-amino acids in peptides and proteins α consist of a carboxylic acid (-COOH) and an amino (-NH2) functional group attached to the same tetrahedral carbon atom. This carbon is known as the -carbon. The type of R- group attached to this carbon distinguishes one amino acid from another. Several other amino acids, also found in the body, may not be associated with peptides or proteins. These non-protein-associated amino acids perform specialized functions. Some of the α-amino acids found in proteins are also involved in other functions in the body. For example, tyrosine is involved in the formation of thyroid hormones, and glutamate and aspartate act as neurotransmitters at fast junctions. R Amino acids exist in either D- or L- enantiomorphs or stereoisomers. The D- and L-refer to the absolute confirmation of optically active compounds. With the exception of glycine, all other amino acids are mirror images that can not be superimposed. Most of the amino acids found in nature are of the L-type. Hence, eukaryotic proteins are always composed of L-amino acids although D-amino acids are found in bacterial cell walls and in some peptide antibiotics. All biological reactions occur in an aqueous phase. Hence, it is important to know how the R-group of any given amino acid dictates the structure-function relationships of peptides and proteins in solution. -
NIH Public Access Author Manuscript Eur J Pharmacol
NIH Public Access Author Manuscript Eur J Pharmacol. Author manuscript; available in PMC 2012 November 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Eur J Pharmacol. 2011 November 1; 669(1-3): 71±75. doi:10.1016/j.ejphar.2011.08.001. Brain regions mediating α3β4 nicotinic antagonist effects of 18- MC on nicotine self-administration Stanley D. Glick, Elizabeth M. Sell, Sarah E McCallum, and Isabelle M. Maisonneuve Center for Neuropharmacology and Neuroscience, Albany Medical College (MC-136), 47 New Scotland Avenue, Albany, NY 12208, USA Abstract 18-methoxycoronaridine (18-MC), a putative anti-addictive agent, has been shown to decrease the self-administration of several drugs of abuse in rats. 18-MC is a potent antagonist at α3β4 nicotinic receptors. Consistent with high densities of α3β4 nicotinic receptors being located in the medial habenula and the interpeduncular nucleus, 18-MC has been shown to act in these regions to decrease both morphine and methamphetamine self-administration. The present study was conducted to determine if 18-MC’s effect on nicotine self-administration is mediated by acting in these same brain regions. Because moderate densities of α3β4 receptors occur in the dorsolateral tegmentum, ventral tegmental area, and basolateral amygdala, these brain areas were also examined as potential sites of action of 18-MC. Local administration of 18-MC into either the medial habenula, the basolateral amygdala or the dorsolateral tegmentum decreased nicotine self- administration. Surprisingly, local administration of 18-MC into the interpeduncular nucleus increased nicotine self-administration while local administration of 18-MC into the ventral tegmental area had no effect on nicotine self-administration. -
Drug and Medication Classification Schedule
KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine -
Ep 2932971 A1
(19) TZZ ¥ __T (11) EP 2 932 971 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 21.10.2015 Bulletin 2015/43 A61K 31/54 (2006.01) A61K 31/445 (2006.01) A61K 9/08 (2006.01) A61K 9/51 (2006.01) (2006.01) (21) Application number: 15000954.6 A61L 31/00 (22) Date of filing: 06.03.2006 (84) Designated Contracting States: • MCCORMACK, Stephen, Joseph AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Claremont, CA 91711 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • SCHLOSS, John, Vinton SK TR Valencia, CA 91350 (US) • NAGY, Anna Imola (30) Priority: 04.03.2005 US 658207 P Saugus, CA 91350 (US) • PANANEN, Jacob, E. (62) Document number(s) of the earlier application(s) in 306 Los Angeles, CA 90042 (US) accordance with Art. 76 EPC: 06736872.0 / 1 861 104 (74) Representative: Ali, Suleman et al Avidity IP Limited (71) Applicant: Otonomy, Inc. Broers Building, Hauser Forum San Diego, CA 92121 (US) 21 JJ Thomson Avenue Cambridge CB3 0FA (GB) (72) Inventors: • LOBL, Thomas, Jay Remarks: Valencia, This application was filed on 09-04-2015 as a CA 91355-1995 (US) divisional application to the application mentioned under INID code 62. (54) KETAMINE FORMULATIONS (57) Formulations of ketamine for administration to the inner or middle ear. EP 2 932 971 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 932 971 A1 Description [0001] This application claims the benefit of Serial No. 60/658,207 filed March 4, 2005. -
Pharmacology of a Novel Biased Allosteric Modulator for NMDA Receptors
Pharmacology of a Novel Biased Allosteric Modulator for NMDA Receptors Lina Kwapisz Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Biomedical and Veterinary Sciences B. Costa, Co-Chair B. Klein M. Theus C. Reilly April 28th of 2021 Blacksburg, VA Keywords: NMDAR, allosteric modulation, CNS4, glutamate Pharmacology of a Novel Biased Allosteric Modulator for NMDA Receptors Lina Kwapisz ABSTRACT NMDA glutamate receptor is a ligand-gated ion channel that mediates a major component of excitatory neurotransmission in the central nervous system (CNS). NMDA receptors are activated by simultaneous binding of two different agonists, glutamate and glycine/ D- serine1. With aging, glutamate concentration gets altered, giving rise to glutamate toxicity that contributes to age-related pathologies like Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and dementia88,95. Some treatments for these conditions include NMDA receptor blockers like memantine130. However, when completely blocking the receptors, there is a restriction of the receptor’s normal physiological function59. A different approach to regulate NMDAR receptors is thorough allosteric modulators that could allow cell type or circuit-specific modulation, due to widely distributed GluN2 expression, without global NMDAR overactivation59,65,122. In one study, we hypothesized that the compound CNS4 selectively modulates NMDA diheteromeric receptors (GluN2A, GluN2B, GuN2C, and GluN2C) based on (three) different glutamate concentrations. Electrophysiological recordings carried out on recombinant NMDA receptors expressed in xenopus oocytes revealed that 30μM and 100μM of CNS4 potentiated ionic currents for the GluN2C and GluN2D subunits with 0.3μM Glu/100μM Gly.