(12) Patent Application Publication (10) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub US 2003O181495A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0181495 A1 Lai et al. (43) Pub. Date: Sep. 25, 2003 (54) THERAPEUTIC METHODS EMPLOYING Division of application No. 09/565,665, filed on May DSULFIDE DERVATIVES OF 5, 2000, now Pat. No. 6,589,991. DTHIOCARBAMATES AND Division of application No. 09/103,639, filed on Jun. COMPOSITIONS USEFUL THEREFOR 23, 1998, now Pat. No. 6,093,743. (75) Inventors: Ching-San Lai, Carlsbad, CA (US); Publication Classification Vassil P. Vassilev, San Diego, CA (US) (51) Int. Cl." ..................... A61K 31/426; A61K 31/325; Correspondence Address: A61K 31/55; A61K 31/4545; FOLEY & LARDNER A61K 31/4025 P.O. BOX 80278 (52) U.S. Cl. .................... 514/369; 514/476; 514/217.03; SAN DIEGO, CA 92138-0278 (US) 514/316; 514/422 (57) ABSTRACT Assignee: Medinox, Inc. (73) The present invention provides novel combinations of (21) Appl. No.: 10/394,794 dithiocarbamate disulfide dimers with other active agents. In one method, the disulfide derivative of a dithiocarbamate is (22) Filed: Mar. 21, 2003 coadministered with a thiazolidinedione for the treatment of diabetes. In another embodiment, In another embodiment, invention combinations further comprise additional active Related U.S. Application Data agents Such as, for example, metformin, insulin, Sulfony lureas, and the like. In another embodiment, the present (60) Continuation-in-part of application No. 10/044,096, invention relates to compositions and formulations useful in filed on Jan. 11, 2002, now Pat. No. 6,596,770. Such therapeutic methods. Patent Application Publication Sep. 25, 2003 Sheet 1 of 6 US 2003/0181495 A1 90 Wavelength 340 - Fig. 1 2 340 Fig. 2 C ------- r Fig. 3 3: 19 () Way clength 40 Patent Application Publication Sep. 25, 2003 Sheet 2 of 6 US 2003/0181495 A1 1 OO Statistical: p<0.01 Product -Lillic Survival Atalysis Gcil cralized Savage (Mantel-Cux) s 60 - s L-PD (n=30) M 40 & O Uttracd (n=31) - O - 50 6 O 7 O 8 O 9 O OO O 12 O Animal Age Fig. 4 Patent Application Publication Sep. 25, 2003 Sheet 3 of 6 US 2003/0181495 A1 o aloos Állue AeS Patent Application Publication Sep. 25, 2003 Sheet 4 of 6 US 2003/0181495 A1 0.5 8 A l so -g Fig. 6 90 Wavelength 340 0.5 U r d l a -g O ----------- . 190 w 340 Fig. 7 . Wavelength 0.5 A. - la -g ... O Fig.8 190 Wavelength 340 Patent Application Publication Sep. 25, 2003 Sheet 5 of 6 US 2003/0181495 A1 1.5 w 90 Fig. 9 - Wavelength 1.5 Fig.10 Wavelength 0.35 Fig.11 Wavelength Patent Application Publication Sep. 25, 2003 Sheet 6 of 6 US 2003/0181495 A1 600 500 400 300 - 200 - O T - DO D 2 O 8 D 15 D 22 D 28 D 35 D 42 D 50 Time (days) Figure 12 600 500 400 3 OO 200 100 O D - 1 D 2 D 9 D 16 D 23 D 27 Time (days) Figure 13 US 2003/O181495 A1 Sep. 25, 2003 THERAPEUTIC METHODS EMPLOYING (1993). For example, in blood, NO produced by the endot DISULFIDE DERVATIVES OF helium diffuses isotropically in all directions into adjacent DTHOCARBAMATES AND COMPOSITIONS tissues. AS NO diffuses into the vascular Smooth muscle, it USEFUL THEREFOR binds to guanylate cyclase enzyme, which catalyzes the production of c(GMP, inducing vasodilation (see, for RELATED APPLICATIONS example, Ignarro, L. J., Ann. Rev. Toxicol. 30:535-560 (1990); Moncada, S., Acta Physiol. Scand. 145:201-227 0001. This application is a continuation-in-part of appli (1992); and Lowenstein and Snyder, Cell 70:705–707 cation Ser. No. 10/044,096, filed Jan. 11, 2002, now pend (1992)). The overproduction of nitric oxide causes an ing, which is in turn, a divisional of application Ser. No. extreme drop in blood preSSure, resulting in insufficient 09/565,665, filed May 5, 2000, now issued as U.S. Pat. No. tissue perfusion and organ failure, Syndromes that are asso 6,316,502, which is in turn, a divisional of application Ser. ciated with many diseases and/or conditions (e.g., Septic No. 09/103,639, filed Jun. 23, 1998, now issued as U.S. Pat. Shock, overexpression of cytokines, allograft rejection, and No. 6,093,743, each of which is hereby incorporated by the like). The overproduction of nitric oxide is triggered by reference herein in its entirety. a number of Stimuli, Such as, the overproduction of inflam matory cytokines (e.g., tumor necrosis factor (TNF), inter FIELD OF THE INVENTION leukin-1 (IL-1), interferons, endotoxin, and the like). Addi 0002 The present invention relates to therapeutic meth tionally, the overproduction of .NO has been discovered to ods employing dithiocarbamates to reduce the level of be one of the major Side-effects of a number of therapeutic Species associated with disease States in mammals. In one treatments, e.g., cytokine therapy (See, for example, Miles et aspect, the invention relates to compositions containing al., in Eur: J. Clin. Invest. 24:287-290 (1994) and Hibbs et disulfide derivatives of dithiocarbamates and to therapeutic al., in J. Clin. Invest. 89:867-877 (1992)), anti-diabetic methods employing Such compositions. therapy, and the like. Thus, abnormally elevated nitric oxide levels have been linked to many inflammatory and infectious BACKGROUND OF THE INVENTION diseases. 0007 Numerous therapeutic agents (e.g., inflammatory 0003) In 1987, nitric oxide (NO), a gaseous free-radical, cytokines (e.g., TNF, interleukins or interferons), anti-dia was discovered in humans (see, for example, Ignarro et al., betic agents, and infectious agents (e.g., endotoxin), and the in Proc. Natl. Acad. Sci., USA 84:9265-69 (1987) and like) induce nitric oxide overproduction by inducing tran Palmer et al., in Nature 327:524-26 (1987)). As an indication Scription of the inducible nitric oxide Synthase gene, leading of the significance of this discovery for the understanding of to the production of inducible nitric oxide Synthase, which human physiology and pathophysiology, Science magazine in turn results in the overproduction of nitric oxide. The selected nitric oxide as the molecule of the year in 1992. production of nitric oxide by the above-described pathway 0004 Nitric oxide is formed from the terminal guanidino can be disrupted in a variety of ways. Thus, for example, nitrogen atom of L-arginine by nitric oxide Synthase (NOS; there have been attempts to develop monoclonal antibodies see, for example, Rodeberg et al., in Am. J. Surg. 170:292 (e.g., anti-endotoxin antibodies, anti-cytokine antibodies, 303 (1995), and Bredt and Snyder in Ann. Rev. Biochem. anti-cytokine receptor antibodies, and the like) in efforts to 63:175-95 (1994)). Two major forms of nitric oxide syn block the NO production pathway at the transcriptional thase, constitutive and inducible enzymes, have been iden level. Unfortunately, however, such efforts have met with tified. very limited Success (see, for example, Glauser et al., in Clin. Infect. Dis. 18:S205-16 (1994) and St. John & Dorin 0005 Under physiological conditions, a low output of sky, in Chest 103:932-943 (1993)). At least one reason for .NO is produced by the constitutive, calcium-dependent the relative lack of SucceSS in the art is the fact that the NOS isoform (cNOS) present in numerous cells, including production of inflammatory cytokines is short-lived (see, for endothelium and neurons. This low level of nitric oxide is example, Wange & Steinsham in Eur. J. Haematol. 50:243 involved in a variety of regulatory processes, e.g., blood 249 (1993)), while overproduction of nitric oxide lasts vessel homeostasis, neuronal communication and immune Several days, causing Systemic hypotension, insufficient System function. On the other hand, under pathophysiologi cal conditions, a high output of NO is produced by the tissue perfusion and organ failure. inducible, calcium-independent NOS isoform (iNOS) which 0008 Thus, for example, during endotoxemia, TNF pro is expressed in numerous cell types, including endothelial duction peaks at about 1-2 hours. Therefore, in order to be cells, Smooth muscle cells and macrophages. These high effective, anti-TNF antibodies would have to be adminis levels of nitric oxide have been shown to be the etiology of tered at an early Stage after infection. Indeed, in many endotoxin shock. This high output of .NO further contributes clinical Settings, patients are likely to already have been to inflammation-related tissue damage, neuronal pathology, infected with bacteria prior to being admitted. Accordingly, N-nitrosamine-induced carcinogenesis and mutations in Such therapeutic methods have met with only limited Suc human cells and bacteria Via deamination reaction with CCSS. DNA. Nitric oxide can therefore be seen to be a mixed 0009 Currently, many pharmaceutical companies have blessing, being very desirable when present in Small turned their attention to the design and development of amounts, while potentially being highly detrimental when Substrate or product analogue inhibitors of the enzyme, produced in excessive quantities. NOS, in efforts to treat the overproduction of NO. However, 0006 Nitric oxide is a potent vasodilator (see, for recent data show that the inhibition of NOS is detrimental to example, Palmer in Arch. Surg. 128:396–401 (1993) and subjects. For example, rodent studies show that inhibition of Radomski & Moncada in Thromb. Haemos. 70:36-41 the production of nitric oxide causes intrauterine growth US 2003/O181495 A1 Sep. 25, 2003 retardation and hind-limb disruptions in rats (see, for 0013 The classic antidotal action for cyanide poisoning, example, Diket et al., in Am. J. Obstet. Gynecol. 171:1243– introduced by Chen et al. in 1933 (see, for example, Chen et 1250 (1994)).
Recommended publications
  • Evaluation of Antimicrobial and Antiproliferative Activities of Actinobacteria Isolated from the Saline Lagoons of Northwest
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329441; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 EVALUATION OF ANTIMICROBIAL AND ANTIPROLIFERATIVE ACTIVITIES 2 OF ACTINOBACTERIA ISOLATED FROM THE SALINE LAGOONS OF 3 NORTHWEST PERU. 4 5 Rene Flores Clavo1,2,8, Nataly Ruiz Quiñones1,2,7, Álvaro Tasca Hernandez3¶, Ana Lucia 6 Tasca Gois Ruiz4, Lucia Elaine de Oliveira Braga4, Zhandra Lizeth Arce Gil6¶, Luis 7 Miguel Serquen Lopez7,8¶, Jonas Henrique Costa5, Taícia Pacheco Fill5, Marcos José 8 Salvador3¶, Fabiana Fantinatti Garboggini2. 9 10 1 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of 11 Campinas (UNICAMP), Campinas, SP, Brazil. 12 2 Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), 13 University of Campinas (UNICAMP), Paulínia, SP, Brazil. 14 3 University of Campinas, Department of plant Biology Bioactive Products, Institute of 15 Biology Campinas, Sao Paulo, Brazil. 16 4 University of Campinas, Faculty Pharmaceutical Sciences, Campinas, Sao Paulo, Brazil. 17 5 University of Campinas, Institute of Chemistry, Campinas, Sao Paulo, Brazil. 18 6 Private University Santo Toribio of Mogrovejo, Facultity of Human Medicine, Chiclayo, 19 Lambayeque Perú. 20 7 Direction of Investigation Hospital Regional Lambayeque, Chiclayo, Lambayeque, Perú. 21 8 Research Center and Innovation and Sciences Actives Multidisciplinary (CIICAM), 22 Department of Biotechnology, Chiclayo, Lambayeque, Perú. 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329441; this version posted October 7, 2020.
    [Show full text]
  • Pharmacological Modulation of Processes Contributing to Spinal Hyperexcitability: Electrophysiological Studies in the Rat
    Pharmacological modulation of processes contributing to spinal hyperexcitability: electrophysiological studies in the rat. By Katherine J Carpenter A thesis submitted to the University of London for the degree of Doctor of Philosophy Department of Pharmacology University College London Gower Street London WC1E6BT ProQuest Number: U642184 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642184 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Two of the most effective analgesic strategies in man are (i) blockade of the NMDA receptor for glutamate, which plays a major role in nociceptive transmission and (ii) augmentation of inhibitory systems, exemplified by the use of ketamine and the opioids respectively. Both are, however, are associated with side effects. Potential novel analgesic targets are investigated here using in vivo electrophysiology in the anaesthetised rat with pharmacological manipulation of spinal neuronal transmission. Three different approaches were used to target NMDA receptors: (i) glycine site antagonists (Mrz 2/571 and Mrz 2/579), (ii) antagonists selective for receptors containing the NR2B subunit (ifenprodil and ACEA-1244), (iii) elevating the levels of N-acetyl-aspartyl- glutamate (NAAG), an endogenous peptide, by inhibition of its degradative enzyme.
    [Show full text]
  • The Isolation of a Novel Streptomyces Sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil That Inhibits Multiresistant Pathogens and Yeasts
    applied sciences Article The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts Gerry A. Quinn 1,* , Alyaa M. Abdelhameed 2, Nada K. Alharbi 3, Diego Cobice 1 , Simms A. Adu 1 , Martin T. Swain 4, Helena Carla Castro 5, Paul D. Facey 6, Hamid A. Bakshi 7 , Murtaza M. Tambuwala 7 and Ibrahim M. Banat 1 1 School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (D.C.); [email protected] (S.A.A.); [email protected] (I.M.B.) 2 Department of Biotechnology, University of Diyala, Baqubah 32001, Iraq; [email protected] 3 Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11568, Saudi Arabia; [email protected] 4 Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Ab-erystwyth, Wales SY23 3EE, UK; [email protected] 5 Instituto de Biologia, Rua Outeiro de São João Batista, s/nº Campus do Valonguinho, Universidade Federal Fluminense, Niterói 24210-130, Brazil; [email protected] 6 Institute of Life Science, Medical School, Swansea University, Swansea, Wales SA2 8PP, UK; [email protected] 7 School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (H.A.B.); [email protected] (M.M.T.) * Correspondence: [email protected] Abstract: The World Health Organization recently stated that new sources of antibiotics are urgently Citation: Quinn, G.A.; Abdelhameed, required to stem the global spread of antibiotic resistance, especially in multiresistant Gram-negative A.M.; Alharbi, N.K.; Cobice, D.; Adu, bacteria.
    [Show full text]
  • Anticancer Drug Discovery from Microbial Sources: the Unique Mangrove Streptomycetes
    molecules Review Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes Jodi Woan-Fei Law 1, Lydia Ngiik-Shiew Law 2, Vengadesh Letchumanan 1 , Loh Teng-Hern Tan 1, Sunny Hei Wong 3, Kok-Gan Chan 4,5,* , Nurul-Syakima Ab Mutalib 6,* and Learn-Han Lee 1,* 1 Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; [email protected] (J.W.-F.L.); [email protected] (V.L.); [email protected] (L.T.-H.T.) 2 Monash Credentialed Pharmacy Clinical Educator, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia; [email protected] 3 Li Ka Shing Institute of Health Sciences, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, China; [email protected] 4 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia 5 International Genome Centre, Jiangsu University, Zhenjiang 212013, China 6 UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia * Correspondence: [email protected] (K.-G.C.); [email protected] (N.-S.A.M.); [email protected] (L.-H.L.) Academic Editor: Owen M. McDougal Received: 8 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals.
    [Show full text]
  • Resistance‐Guided Isolation and Characterization of Antibiotic‐Producing Bacteria from River Sediments Nowreen Arefa1, Ashish Kumar Sarker2 and Md
    Arefa et al. BMC Microbiology (2021) 21:116 https://doi.org/10.1186/s12866-021-02175-5 RESEARCH ARTICLE Open Access Resistance‐guided isolation and characterization of antibiotic‐producing bacteria from river sediments Nowreen Arefa1, Ashish Kumar Sarker2 and Md. Ajijur Rahman1* Abstract Background: To tackle the problem of antibiotic resistance, an extensive search for novel antibiotics is one of the top research priorities. Around 60% of the antibiotics used today were obtained from the genus Streptomyces. The river sediments of Bangladesh are still an unexplored source for antibiotic-producing bacteria (APB). This study aimed to isolate novel APB from Padma and Kapotakkho river sediments having the potential to produce antibacterial compounds with known scaffolds by manipulating their self-protection mechanisms. Results: The antibiotic supplemented starch-casein-nitrate agar (SCNA) media were used to isolate antibiotic-resistant APB from the river sediments. The colonies having Streptomyces-like morphology were selectively purified and their antagonistic activity was screened against a range of test bacteria using the cross-streaking method. A notable decrease of the colony-forming units (CFUs) in the antibiotic supplemented SCNA plates compared to control plates (where added antibiotics were absent) was observed. A total of three azithromycin resistant (AZR) and nine meropenem resistant (MPR) isolates were purified and their antagonistic activity was investigated against a series of test bacteria including Shigella brodie, Escherichia coli, Pseudomonas sp., Proteus sp., Staphylococcus aureus,andBacillus cereus. All the AZR isolates and all but two MPR isolates exhibited moderate to high broad-spectrum activity. Among the isolates, 16S rDNA sequencing of NAr5 and NAr6 were performed to identify them up to species level.
    [Show full text]
  • Isolation and Characterization of Antagonistic Streptomyces Spp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository Indian Journal of Geo-Marine Sciences Vol. 44(1), November 2015, pp. ------ Isolation and characterization of antagonistic Streptomyces spp. from marine sediments along the southwest coast of India # Rekha Devi Chakraborty*† , Kajal Chakraborty# & Bini Thilakan *Crustacean Fisheries Division, # Marine Biotechnology Division, Central Marine Fisheries Research Institute, Kochi - 682018, India. [E.Mail:[email protected] ] Received ; revised Antagonistic Streptomyces spp. were isolated from marine and mangrove sediment samples collected off Cochin, along the southwest coast of India. Sediment samples were pre-treated and following the soil dilution technique, samples were surface plated on starch casein agar and actinomycetes isolation agar. In the primary screening, 7.4% of presumptive actinomycetes (135 isolates) showed antibacterial activity against one or more bacterial fish pathogens and 3.7% of these cultures showed broad spectrum activity against the tested pathogens. Morphologically white powdery colonies with chalky white /grey appearance were selected as presumptive Streptomyces cultures. Isolates subjected to biochemical, physiological and 16S rDNA characters revealed the presence of three species of Streptomyces dominated by Streptomyces tanashiensis followed by S. viridobrunneus and S. bacillaris. Isolates characterized by 16S rDNA indicated the presence of 650 bp band in Streptomyces spp. Primary screening for activity against selected fish pathogens was done by a cross streak method using modified nutrient agar medium. Prominent isolates showing high zone of activity against the fish pathogens ranged 17-35 mm by the paper disc method. Enriched broth of selected isolates showing high antagonistic activity was screened for pharmacologically active agents revealed ethyl acetate fractions to be active against selected microbial pathogens.
    [Show full text]
  • Isolation and Identification of Actinomycetes Strains from Switzerland and Their Biotechnological Potential
    382 CHIMIA 2020, 74, No. 5 BUILDING BRIDGES BETWEEN BIOTECHNOLOGY AND CHEMISTRY – IN MEMORIAM ORESTE GHISALBA doi:10.2533/chimia.2020.382 Chimia 74 (2020) 382–390 © F. Arn, D. Frasson, I. Kroslakova, F. Rezzonico, J. F. Pothier, R. Riedl, M. Sievers Isolation and Identification of Actinomycetes Strains from Switzerland and their Biotechnological Potential Fabienne Arna§, David Frassonb§, Ivana Kroslakovab, Fabio Rezzonicoc, Joël F. Pothierc, Rainer Riedla, and Martin Sieversb* Abstract: Actinomycetes strains isolated from different habitats in Switzerland were investigated for production of antibacterial and antitumoral compounds. Based on partial 16S rRNA gene sequences, the isolated strains were identified to genus level. Streptomyces as the largest genus of Actinobacteria was isolated the most frequently. A screening assay using the OmniLog instrument was established to facilitate the detection of active compounds from actinomycetes. Extracts prepared from the cultivated strains able to inhibit Staphylococcus aureus and Escherichia coli were further analysed by HPLC and MALDI-TOF MS to identify the produced antibiotics. In this study, the bioactive compound echinomycin was identified from two isolated Streptomyces strains. Natural compounds similar to TPU-0037-C, azalomycin F4a 2-ethylpentyl ester, a derivative of bafilomycin A1, milbe- mycin-α8 and dihydropicromycin were detected from different isolated Streptomyces strains. Milbemycin-α8 showed cytotoxic activity against HT-29 colon cancer cells. The rare actinomycete, Micromonospora sp. Stup16_ C148 produced a compound that matches with the antibiotic bottromycin A2. The draft genome sequence from Actinokineospora strain B136.1 was determined using Illumina and nanopore-based technologies. The isolated strain was not able to produce antibacterial compounds under standard cultivation conditions.
    [Show full text]
  • Isolation and Screening of Antibiotic Producing Actinomycetes from Garden Soil of Sathyabama University, Chennai
    Vol 8, Issue 6, 2015 ISSN - 0974-2441 Research Article ISOLATION AND SCREENING OF ANTIBIOTIC PRODUCING ACTINOMYCETES FROM GARDEN SOIL OF SATHYABAMA UNIVERSITY, CHENNAI SUDHA SRI KESAVAN S*, HEMALATHA R Department of Biotechnology, Sathyabama University, Chennai - 600 119, Tamil Nadu, India. Email: [email protected] Received: 03 July 2015, Revised and Accepted: 24 August 2015 ABSTRACT Objectives: To isolate and screen actinomycetes with antibacterial and antifungal activity from garden soil samples of Sathyabama University, Chennai. Methods: Six soil samples were collected, serially diluted and plated on starch casein agar supplemented with nalidixic acid and cyclohexamide for inhibition of bacteria and fungi, respectively. Primary screening of actinomycetes isolates was done by following cross streak method against test organisms. Submerged fermentation was followed for the production of crude antibiotics. Agar well diffusion method was done to determine the antimicrobial activity of the crude extract. The minimum inhibitory concentrations (MIC) also quantified for the crude extract by microtiter plate assay. The promising isolate was characterized by conventional methods. Results: On primary screening, 13 out of 22 actinomycete isolates (59%) showed potential antimicrobial activity against one or more test bacteria and/or fungus. The isolate BN8 shows antagonistic activity against all the tested bacteria and fungi, isolates BN5 and BN16 were active against only bacteria not fungi, and isolate BN2 was active against all tested fungi. The zone of inhibition was measured by using the crude extracts of all the four isolates. The crude extract produced by isolate BN8 showed zone on inhibition against all the tested bacterium in 100 μg/ml against Pseudomonas aeruginosa (22 mm), Klebsiella pneumonia (25 mm), Bacillus cereus (20 mm), Staphylococcus aureus (22 mm), Escherichia coli (15 mm), Aspergillus flavus (14 mm), Aspergillus niger (20 mm), Aspergillus fumigatus (10 mm), respectively.
    [Show full text]
  • Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases
    Mar. Drugs 2014, 12, 2539-2589; doi:10.3390/md12052539 OPEN ACCESS marine drugs ISSN 1660–3397 www.mdpi.com/journal/marinedrugs Review Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases Clara Grosso 1, Patrícia Valentão 1, Federico Ferreres 2 and Paula B. Andrade 1,* 1 REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal; E-Mails: [email protected] (C.G.); [email protected] (P.V.) 2 Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, Campus University Espinardo, Murcia 30100, Spain; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +351-22042-8654; Fax: +351-22609-3390. Received: 30 January 2014; in revised form: 10 April 2014 / Accepted: 16 April 2014 / Published: 2 May 2014 Abstract: Marine invertebrates produce a plethora of bioactive compounds, which serve as inspiration for marine biotechnology, particularly in drug discovery programs and biomaterials development. This review aims to summarize the potential of drugs derived from marine invertebrates in the field of neuroscience. Therefore, some examples of neuroprotective drugs and neurotoxins will be discussed. Their role in neuroscience research and development of new therapies targeting the central nervous system will be addressed, with particular focus on neuroinflammation and neurodegeneration. In addition, the neuronal growth promoted by marine drugs, as well as the recent advances in neural tissue engineering, will be highlighted. Keywords: aragonite; conotoxins; neurodegeneration; neuroinflammation; Aβ peptide; tau hyperphosphorylation; protein kinases; receptors; voltage-dependent ion channels; cyclooxygenases Mar.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences In-vitro studies on biocontrol of Alternaria solani and Botrytis fabae. Mohamed E. Osman1, Amany A. Abo Elnasr1, Walla S.M. Abd El All2, and Eslam T. Mohamed1*. 1Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt. 2National Organization for Drug Control and Research (NODCAR), Giza, Egypt. ABSTRACT Thirty-two isolates of actinomycetes were isolated from tomato field infected with early blight disease at Giza Governorate, Egypt. The isolates were screened for the production of antifungal compounds against Alternaria solani and Botrytis fabae using Agar plug diffusion method. Three Streptomyces strains were the most potent for active metabolites production on starch nitrate medium. They were identified to be Streptomyces recifensis, Streptomyces gelaticus and Streptomyces nodosus. Streptomyces nodosus was the most potent antimicrobial producer strain. Highly active metabolites were extracted from Streptomyces nodosus. The active metabolite has been identified according to physicochemical characteristics. Elemental analysis (C, H, N, O & S), spectroscopic characteristics (UV absorbance, HPLC, FT-IR, 1H NMR and Mass spectrum), melting point, solubility and color have been investigated. These analyses indicate a suggested empirical formula of C47H73NO17. The purified antifungal agent shows high level of identity to the known antibiotic amphotericin B. The minimum inhibition concentrations of the purified antifungal agent were also determined. Keywords: Antifungal, Actinomycetes, Streptomyces nodosus, Alternaria solani, Botrytis fabae. https://doi.org/10.33887/rjpbcs/2020.11.2.12 *Corresponding author March – April 2020 RJPBCS 11(2) Page No. 93 ISSN: 0975-8585 INTRODUCTION One of the world's most popular cultivated crops is tomatoes (Solanum lycopersicum L., syn.
    [Show full text]
  • Enzyme Profiles and Antimicrobial Activities of Bacteria Isolated from the Kadiini Cave, Alanya, Turkey
    Nihal Doğruöz-Güngör, Begüm Çandıroğlu, and Gülşen Altuğ. Enzyme profiles and antimicrobial activities of bacteria isolated from the Kadiini Cave, Alanya, Turkey. Journal of Cave and Karst Studies, v. 82, no. 2, p. 106-115. DOI:10.4311/2019MB0107 ENZYME PROFILES AND ANTIMICROBIAL ACTIVITIES OF BACTERIA ISOLATED FROM THE KADIINI CAVE, ALANYA, TURKEY Nihal Doğruöz-Güngör1,C, Begüm Çandıroğlu2, and Gülşen Altuğ3 Abstract Cave ecosystems are exposed to specific environmental conditions and offer unique opportunities for bacteriological studies. In this study, the Kadıini Cave located in the southeastern district of Antalya, Turkey, was investigated to doc- ument the levels of heterotrophic bacteria, bacterial metabolic avtivity, and cultivable bacterial diversity to determine bacterial enzyme profiles and antimicrobial activities. Aerobic heterotrophic bacteria were quantified using spread plates. Bacterial metabolic activity was investigated using DAPI staining, and the metabolical responses of the isolates against substrates were tested using VITEK 2 Compact 30 automated micro identification system. The phylogenic di- versity of fourty-five bacterial isolates was examined by 16S rRNA gene sequencing analyses. Bacterial communities were dominated by members of Firmicutes (86 %), Proteobacteria (12 %) and Actinobacteria (2 %). The most abundant genera were Bacillus, Staphylococcus and Pseudomonas. The majority of the cave isolates displayed positive proteo- lytic enzyme activities. Frequency of the antibacterial activity of the isolates was 15.5 % against standard strains of Bacillus subtilis, Staphylococcus epidermidis, S.aureus, and methicillin-resistant S.aureus. The findings obtained from this study contributed data on bacteriological composition, frequency of antibacterial activity, and enzymatic abilities regarding possible biotechnological uses of the bacteria isolated from cave ecosytems.
    [Show full text]