diversity Article Increased Genetic Diversity via Gene Flow Provides Hope for Acacia whibleyana, an Endangered Wattle Facing Extinction Colette Blyth 1,2,* , Matthew J. Christmas 3,*, Doug C. Bickerton 4, Renate Faast 1, Jasmin G. Packer 1,5, Andrew J. Lowe 1 and Martin F. Breed 2,6 1 School of Biological Sciences, University of Adelaide, North Terrace, SA 5005, Australia;
[email protected] (R.F.);
[email protected] (J.G.P.);
[email protected] (A.J.L.) 2 Group on Earth Observations Biodiversity Observation Network (GEO BON) Genetic Composition Working Group, 04103 Leipzig, Germany; martin.breed@flinders.edu.au 3 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 753 41, Sweden 4 Northern Territory Herbarium, Palmerston, NT 0831, Australia;
[email protected] 5 Environment Institute, University of Adelaide, North Terrace, SA 5005, Australia 6 College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia * Correspondence:
[email protected] (C.B.);
[email protected] (M.J.C.) Received: 29 June 2020; Accepted: 24 July 2020; Published: 30 July 2020 Abstract: In this paper we apply a conservation genomics approach to make evidence-based management recommendations for Acacia whibleyana, an endangered shrub endemic to Eyre Peninsula, South Australia. We used population genomic analysis to assess genetic connectivity, diversity, and historical inbreeding across all known stands of the species sampling remnant stands, revegetated stands of unknown origin, and a post-fire seedling cohort. Our results indicate a degree of historical connectivity across the landscape, but habitat loss and/or pollinator community disruption are potential causes of strong genetic structure across the remnant stands.