Center for Plant Conservation Best Reintroduction Practice Guidelines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Pigmentation of the Corolla Certainly
Neerl. 349-351. Acta Bot. 26(4), August 1977, p. BRIEF COMMUNICATIONS Some observations on the anthocyanins in the flowers of Anthyllis vulneraria L. (Legumi- nosae - Fabaceae) * A.A. Sterk P. de Vlaming** and A.C. Bolsman-Louwen* * ** Hugo de Vries-Laboratorium, Genetisch Instituut, Universiteit van Amsterdam Anthyllis vulnerariashows an appreciable variation in the colour of the corolla which ranges from pale yellow to a deep purplish red. Also the calyx often has purple teeth. Most of the subspecies of A. vulneraria (16 out of 24) occur in the Medi- in the N. and About the terranean area, more particularly W. parts. moiety of these subspecies has purple or reddish flowers; the other halfpredominantly central with yellow or yellowish ones. In Europe 4 subspecies yellow corollas variants In N. also 4 found occur; red-flowered are rare. Europe subspecies are red-flowered vulneraria vulneraria of which one has a variety: A. ssp. var. coccinea (Cullen 1968). The red floral colour is predominantly found in the Mediterraneanarea. According to Becker (1912) the red-floweredpopulations are mostly encountered in drierand warmer climates; the yellow-flowered ones being more dominantin the colderand moister regions. the of corolla Observations by Couberc (1971) suggest that pigmentation the is strongly influenced by environmental conditions and certainly does not always provide a reliable taxonomic characteristic. The anthocyanin pigments of Anthyllis had not been studied previously. The flavonols have been inves- tigated by Gonnet & Jay (1972). In this study flowers of 12 populations of A. vulneraria were studied and flowers of one population of A. montana. The results are shown in the table. -
Novelties in the Hornwort Flora of Croatia and Southeast Europe
cryptogamie Bryologie 2019 ● 40 ● 22 DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Denis LAMY ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Marianne SALAÜN ([email protected]) MISE EN PAGE / PAGE LAYOUT : Marianne SALAÜN RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Biologie moléculaire et phylogénie / Molecular biology and phylogeny Bernard GOFFINET Department of Ecology and Evolutionary Biology, University of Connecticut (United States) Mousses d’Europe / European mosses Isabel DRAPER Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid (Spain) Francisco LARA GARCÍA Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid (Spain) Mousses d’Afrique et d’Antarctique / African and Antarctic mosses Rysiek OCHYRA Laboratory of Bryology, Institute of Botany, Polish Academy of Sciences, Krakow (Pologne) Bryophytes d’Asie / Asian bryophytes Rui-Liang ZHU School of Life Science, East China Normal University, Shanghai (China) Bioindication / Biomonitoring Franck-Olivier DENAYER Faculté des Sciences Pharmaceutiques et Biologiques de Lille, Laboratoire de Botanique et de Cryptogamie, Lille (France) Écologie des bryophytes / Ecology of bryophyte Nagore GARCÍA MEDINA Department of Biology (Botany), and Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid (Spain) COUVERTURE / COVER : Extraits d’éléments de la Figure 2 / Extracts of -
Status of Insectivorous Plants in Northeast India
Technical Refereed Contribution Status of insectivorous plants in northeast India Praveen Kumar Verma • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box # 136 • Jorhat 785 001 (Assam) • India • [email protected] Jan Schlauer • Zwischenstr. 11 • 60594 Frankfurt/Main • Germany • [email protected] Krishna Kumar Rawat • CSIR-National Botanical Research Institute • Rana Pratap Marg • Lucknow -226 001 (U.P) • India Krishna Giri • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box #136 • Jorhat 785 001 (Assam) • India Keywords: Biogeography, India, diversity, Red List data. Introduction There are approximately 700 identified species of carnivorous plants placed in 15 genera of nine families of dicotyledonous plants (Albert et al. 1992; Ellison & Gotellli 2001; Fleischmann 2012; Rice 2006) (Table 1). In India, a total of five genera of carnivorous plants are reported with 44 species; viz. Utricularia (38 species), Drosera (3), Nepenthes (1), Pinguicula (1), and Aldrovanda (1) (Santapau & Henry 1976; Anonymous 1988; Singh & Sanjappa 2011; Zaman et al. 2011; Kamble et al. 2012). Inter- estingly, northeastern India is the home of all five insectivorous genera, namely Nepenthes (com- monly known as tropical pitcher plant), Drosera (sundew), Utricularia (bladderwort), Aldrovanda (waterwheel plant), and Pinguicula (butterwort) with a total of 21 species. The area also hosts the “ancestral false carnivorous” plant Plumbago zelayanica, often known as murderous plant. Climate Lowland to mid-altitude areas are characterized by subtropical climate (Table 2) with maximum temperatures and maximum precipitation (monsoon) in summer, i.e., May to September (in some places the highest temperatures are reached already in April), and average temperatures usually not dropping below 0°C in winter. -
Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia
Available online at http://journals.usamvcluj.ro/index.php/promediu ProEnvironment ProEnvironment 11 (2018) 143-157 Review The Rights of Alive – Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia CIOANCĂ Lia-Maria1*, Luminița UJICĂ2, Marijana MIKULANDRA3, Ryszard SOŁTYSIK4, Maja ČERNE5 1Babeș-Bolyai University Cluj-Napoca, University Extension Bistrița, Andrei Mureşanu st., no. 3-5, Romania 2High Scool with Sportive Program Bistrița, Calea Moldovei no. 18. Romania 3OŠ Tina Ujevi Osnovna škola Tina Ujevića Koturaška cesta 75 10000 Zagreb, Croatia 4Zespół Szkół Nr1 w Humniskach, 36 – 206, Huminska 264, Poland 5OŠ Rogaška Slatina, Kidričeva ulica 24, 3250 Rogaška Slatina Slovenia Received 23 July 2018; received and revised form 18 September 2018; accepted 25 September 2018 Available online 30 September 2018 Abstract This article deals with the impact of destructive actions of human population on natural world. As a consequence of relying on non-renewable energy sources and reckless encroachment on natural habitats a lot of plant and animal species have become extinct and more and more species are getting endangered. Thus celebrating biodiversity and solidarity for all life forms, from the tiniest one to the most complex eco-systems, has been in the centre of our attention and operational activities. Keywords: durable development, ecology, endangered species. 1. Introduction Within the massive destruction of forests and forest climate, we witness significant changes, Just as the man has passed from the stage of sometimes radical of the environment. For the animal hunter and collector up to animal raiser and farmer, and plants which have survived through a long period the natural vegetation has increasingly been subject of adaptation, a new difficult era starts again. -
Phytotaxa, a Synthesis of Hornwort Diversity
Phytotaxa 9: 150–166 (2010) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2010 • Magnolia Press ISSN 1179-3163 (online edition) A synthesis of hornwort diversity: Patterns, causes and future work JUAN CARLOS VILLARREAL1 , D. CHRISTINE CARGILL2 , ANDERS HAGBORG3 , LARS SÖDERSTRÖM4 & KAREN SUE RENZAGLIA5 1Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269; [email protected] 2Centre for Plant Biodiversity Research, Australian National Herbarium, Australian National Botanic Gardens, GPO Box 1777, Canberra. ACT 2601, Australia; [email protected] 3Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496; [email protected] 4Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] 5Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901; [email protected] Abstract Hornworts are the least species-rich bryophyte group, with around 200–250 species worldwide. Despite their low species numbers, hornworts represent a key group for understanding the evolution of plant form because the best–sampled current phylogenies place them as sister to the tracheophytes. Despite their low taxonomic diversity, the group has not been monographed worldwide. There are few well-documented hornwort floras for temperate or tropical areas. Moreover, no species level phylogenies or population studies are available for hornworts. Here we aim at filling some important gaps in hornwort biology and biodiversity. We provide estimates of hornwort species richness worldwide, identifying centers of diversity. We also present two examples of the impact of recent work in elucidating the composition and circumscription of the genera Megaceros and Nothoceros. -
5.3.1 Flora and Vegetation
Flora and fauna assessment for the Calingiri study area Prepared for Muchea to Wubin Integrated Project Team (Main Roads WA, Jacobs and Arup) 5.3 FIELD SURVEY 5.3.1 Flora and vegetation A total of 296 plant taxa (including subspecies and varieties) representing 154 genera and 55 families were recorded in the study area. This total is comprised of 244 (82.4%) native species and 52 (17.6%) introduced (weed) species, and included 60 annual, 223 perennial species, one species that is known to be either annual or perennial and 12 unknown life cycles (Appendix 8). The current survey recorded a similar number of species to previous flora surveys conducted along GNH and higher average diversity (average number of taxa per km) (Table 5-7). Table 5-7 Comparison of floristic data from the current survey with previous flora surveys of GNH between Muchea and Wubin Survey Road Vegetation Taxa Av. taxa Families Genera Weeds length types (no.) per km (no.) (no.) (no.) (km) (no.) Current survey 19 25 296 16 55 154 52 Worley Parsons (2013) 21 12 197 9 48 114 29 ENV (ENV 2007) 25 18 357 14 59 171 44 Western Botanical (2006) 68 34 316 5 52 138 26 Ninox Wildlife Consulting (1989) 217 19 300 1 59 108 40 The most prominent families recorded in the study area were Poaceae, Fabaceae, Proteaceae, Myrtaceae, Asteraceae and Iridaceae (Table 5-8). The dominant families recorded were also prominent in at least some of the previous flora surveys. Table 5-8 Comparison of total number of species per family from the current survey with previous flora surveys Family Current survey Worley Parsons ENV (2007) Western Botanical Ninox Wildlife (2013) (2006) Consulting (1989) Poaceae 40 N/A1 42 4 15 Fabaceae 36 31 50 64 60 Proteaceae 30 N/A1 38 48 43 Myrtaceae 23 30 29 64 40 Asteraceae 19 N/A1 22 5 7 Iridaceae 14 N/A1 6 3 - 1 data not available. -
CBD Sixth National Report
Australia’s Sixth National Report to the Convention on Biological Diversity 2014 2018 ‒ 24 March 2020 © Commonwealth of Australia 2020 Ownership of intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth). Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 4.0 International Licence except content supplied by third parties, logos and the Commonwealth Coat of Arms. Inquiries about the licence and any use of this document should be emailed to [email protected]. Cataloguing data This report should be attributed as: Australia’s Sixth National Report to the Convention on Biological Diversity 2014‒2018, Commonwealth of Australia, Canberra, 2020 CC BY 4.0. ISBN 978-1-76003-255-5 This publication is available at http://www.environment.gov.au/biodiversity/international/un-convention-biological-diversity. Department of Agriculture, Water and the Environment GPO Box 858 Canberra ACT 2601 Telephone 1800 900 090 Web awe.gov.au The Australian Government acting through the Department of Agriculture, Water and the Environment has exercised due care and skill in preparing and compiling the information and data in this publication. Notwithstanding, the Department of Agriculture, Water and the Environment, its employees and advisers disclaim all liability, including liability for negligence and for any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying on any of the information or data in this publication to the maximum extent permitted by law. -
Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the -
Restoration Fremontia Vol
VOL. 48, NO.1 NOVEMBER 2020 RESTORATION FREMONTIA VOL. 48, NO.1, NOVEMBER 2020 FROM THE EDITORS What kind of world do we want, and how do we get there? These are Protecting California’s native flora since the questions that drive restoration, the central theme of this issue. They 1965 are also the questions that have led the California Native Plant Society Our mission is to conserve California’s native leadership to initiate an important change to this publication, which will plants and their natural habitats, and increase take effect in the spring 2021 issue. understanding, appreciation, and horticultural The name of this publication, Fremontia, has been a point of concern use of native plants. and discussion since last winter, when members of the CNPS leader- ship learned some disturbing facts about John C. Frémont, from whom Copyright ©2020 dozens of North American plants, including the flannelbush plant California Native Plant Society Fremontodendron californicum, derive their names. According to multi- ISSN 0092-1793 (print) ple sources, including the State of California Native American Heritage ISSN 2572-6870 (online) Commission, Frémont was responsible for brutal massacres of Native Americans in the Sacramento Valley and Klamath Lake. As a consequence, The views expressed by the authors in this issue do not necessarily represent policy or proce- the CNPS board of directors voted unanimously to rename Fremontia, a dure of CNPS. process slated for completion by the end of 2020. The decision to rename Fremontia, a name that dates back to the ori- gins of the publication in 1973, is about the people who have been—and 2707 K Street, Suite 1 continue to be—systematically excluded from the conservation commu- Sacramento, CA 95816-5130 nity. -
Research Matters Newsletter of the Australian Flora Foundation
A charity fostering scientific research into the biology and cultivation of the Australian flora Research Matters Newsletter of the Australian Flora Foundation No. 31, January 2020 Inside 2. President’s Report 2019 3. AFF Grants Awarded 5. Young Scientist Awards 8. From Red Boxes to the World: The Digitisation Project of the National Herbarium of New South Wales – Shelley James and Andre Badiou 13. Hibbertia (Dilleniaceae) aka Guinea Flowers – Betsy Jackes 18. The Joy of Plants – Rosanne Quinnell 23. What Research Were We Funding 30 Years Ago? 27. Financial Report 28. About the Australian Flora Foundation President’s Report 2019 Delivered by Assoc. Prof. Charles Morris at the AGM, November 2019 A continuing development this year has been donations from Industry Partners who wish to support the work of the Foundation. Bell Art Australia started this trend with a donation in 2018, which they have continued in 2019. Source Separation is now the second Industry Partner sponsoring the Foundation, with a generous donation of $5,000. Other generous donors have been the Australian Plants Society (APS): APS Newcastle ($3,000), APS NSW ($3,000), APS Sutherland ($500) and SGAP Mackay ($467). And, of course, there are the amounts from our private donors. In August, the Council was saddened to hear of the death of Dr Malcolm Reed, President of the Foundation from 1991 to 1998. The Foundation owes a debt of gratitude to Malcolm; the current healthy financial position of the Foundation has its roots in a series of large donations and bequests that came to the Foundation during his tenure. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
Acacia in THIS ISSUE Dacacia the Name Acacia Comes This Issue of Seed Notes from the Greek Acacia, Ace Will Cover the Genus Or Acis Meaning a Point Or Acacia
No. 9 Acacia IN THIS ISSUE DAcacia The name Acacia comes This issue of Seed Notes from the Greek acacia, ace will cover the genus or acis meaning a point or Acacia. thorn, or from acazo, to D Description sharpen, although this name applies more to African than D Geographic Australian species (Australian distribution and Acacia have no thorns or habitat larger prickles, unlike those D Reproductive biology that are native to Africa). D Seed collection Many species of Acacia, or wattles as they are commonly D Phyllodes and flowers of Acacia aprica. Photo – Andrew Crawford Seed quality called in Australia, are valuable assessment for a range of uses, in D Seed germination particular as garden plants. Description In Australia, Acacia (family is modified to form a leaf- D Recommended reading They are also used for amenity plantings, windbreaks, shade DMimosaceae) are woody like structure or phyllode. trees, groundcovers, erosion plants that range from These phyllodes may be flat and salinity control. The timber prostrate under-shrubs to or terete. Some species do of some Acacia is very hard tall trees. Acacia flowers are not have phyllodes and the and is ideal for fence posts small, regular and usually flattened stems or cladodes (e.g. A. saligna or jam). Other bisexual. They occur in spikes act as leaves. Foliage can Acacia species are used to or in globular heads and vary from blueish to dark make furniture and ornaments. range in colour from cream green to silvery grey. Most The seed of some wattles is to intense yellow. The leaves species of Acacia have glands a good food source for birds, of Acacia may be bipinnate on the axis of the phyllodes, other animals and humans (the primary leaflets being although in Australian as ‘bush tucker’.