Interaction of Biochar Type and Rhizobia Inoculation Increases the Growth and Biological Nitrogen Fixation of Robinia Pseudoacacia Seedlings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Host-Secreted Antimicrobial Peptide Enforces Symbiotic Selectivity in Medicago Truncatula
Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula Qi Wanga, Shengming Yanga, Jinge Liua, Kata Terecskeib, Edit Ábrahámb, Anikó Gombárc, Ágota Domonkosc, Attila Szucs} b, Péter Körmöczib, Ting Wangb, Lili Fodorc, Linyong Maod,e, Zhangjun Feid,e, Éva Kondorosib,1, Péter Kalóc, Attila Keresztb, and Hongyan Zhua,1 aDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; bInstitute of Biochemistry, Biological Research Center, Szeged 6726, Hungary; cNational Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllo} 2100, Hungary; dBoyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853; and eU.S. Department of Agriculture–Agricultural Research Service Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853 Contributed by Éva Kondorosi, February 14, 2017 (sent for review January 17, 2017; reviewed by Rebecca Dickstein and Julia Frugoli) Legumes engage in root nodule symbioses with nitrogen-fixing effectors or microbe-associated molecular patterns (MAMPs) soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed such as surface polysaccharides to facilitate their invasion of the in membrane-bound vesicles called symbiosomes and differentiate host (7, 8). Therefore, effector- or MAMP-triggered plant im- into bacteroids that are capable of converting atmospheric nitrogen munity mediated by intracellular nucleotide binding/leucine-rich into ammonia. Bacteroid differentiation -
Specificity in Legume-Rhizobia Symbioses
International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). -
Biochar As an Innovative Wood Product: a Look at Barriers to Realization of Its Full Potential
BIOCHAR AS AN INNOVATIVE WOOD PRODUCT: A LOOK AT BARRIERS TO REALIZATION OF ITS FULL POTENTIAL May 2017 Harry Groot Jeff Howe, Ph. D Jim Bowyer, Ph. D Ed Pepke, Ph. D. Richard A. Levins, Ph. D. Kathryn Fernholz DOVETAIL PARTNERS, INC. Biochar as an Innovative Wood Product A Look at Barriers to Realization of its Full Potential Executive Summary In the previous Dovetail Report Biochar 101: An Introduction to an Ancient Product Offering Modern Opportunities (Groot et al. 20161) the bottom line was: “Biochar is a product with clear benefits but many questions yet to be answered.” That remains the case. However, ongoing research has expanded the knowledge base, and the debate about biochar’s value and cost effectiveness is narrowing as more is known. A barrier to further market growth is that the industry producing biochar is unsettled, with Photo 1. Biochar made from Pecan Hulls (photo by H. Groot) little agreement regarding product standards, message, or carbon accounting. There is an opportunity for more collaboration to resolve these issues, especially among the mid to large-scale producers. The most common use of biochar is as a soil amendment for high-value fruit and vegetable crops, including use in greenhouse and nursery operations, and there is already significant market acceptance in this sector. Biochar is also used to remove impurities and toxins in water filtration and soil remediation, and these applications appear to offer significant growth potential. Commodity crop production conceivably offers the potential for use of the greatest volume of biochar, but there is little information available about the relative cost and benefits of biochar in this application. -
Non-Timber Forest Products in Brazil: a Bibliometric and a State of the Art Review
sustainability Review Non-Timber Forest Products in Brazil: A Bibliometric and a State of the Art Review Thiago Cardoso Silva * , Emmanoella Costa Guaraná Araujo, Tarcila Rosa da Silva Lins , Cibelle Amaral Reis, Carlos Roberto Sanquetta and Márcio Pereira da Rocha Department of Forestry Engineering and Technology, Federal University of Paraná, 80.210-170 Curitiba, Brazil; [email protected] (E.C.G.A.); [email protected] (T.R.d.S.L.); [email protected] (C.A.R.); [email protected] (C.R.S.); [email protected] (M.P.d.R.) * Correspondence: [email protected]; Tel.: +55-8199-956-6178 Received: 4 July 2020; Accepted: 22 August 2020; Published: 2 September 2020 Abstract: Non-timber forest products (NTFPs) are a consolidated source of income and acquisition of inputs from forest environments. Therefore, the objective of this work was to carry out a collection of publications on NTFPs in Brazil, until 2019, available in the Scopus database, presenting a bibliometric review and the state of the art of this theme from the evaluation of these publications, discussing the challenges of Brazilian legislation on NTFPs. After screening the articles of interest, 196 documents were evaluated, in which they were observed institutions and authors, analyzing networks of citations and terms used, areas of forest sciences and sciences that encompass the most explored biomes and the most studied species. The results showed that the concern to research on NTFPs in Brazil began in the 1990s, with an increase in the number of publications over the years. Besides that, the research on NTFPs is multidisciplinary, with emphasis on the areas of Agricultural and Biological Sciences and Environmental Science. -
Agroforestry News Index Vol 1 to Vol 22 No 2
Agroforestry News Index Vol 1 to Vol 22 No 2 2 A.R.T. nursery ..... Vol 2, No 4, page 2 Acorns, edible from oaks ..... Vol 5, No 4, page 3 Aaron, J R & Richards: British woodland produce (book review) ..... Acorns, harvesting ..... Vol 5, No 4, Vol 1, No 4, page 34 page 3 Abies balsamea ..... Vol 8, No 2, page Acorns, nutritional composition ..... 31 Vol 5, No 4, page 4 Abies sibirica ..... Vol 8, No 2, page 31 Acorns, removing tannins from ..... Vol 5, No 4, page 4 Abies species ..... Vol 19, No 1, page 13 Acorns, shelling ..... Vol 5, No 4, page 3 Acca sellowiana ..... Vol 9, No 3, page 4 Acorns, utilisation ..... Vol 5, No 4, page 4 Acer macrophyllum ..... Vol 16, No 2, page 6 Acorus calamus ..... Vol 8, No 4, page 6 Acer pseudoplatanus ..... Vol 3, No 1, page 3 Actinidia arguta ..... Vol 1, No 4, page 10 Acer saccharum ..... Vol 16, No 1, page 3 Actinidia arguta, cultivars ..... Vol 1, No 4, page 14 Acer saccharum - strawberry agroforestry system ..... Vol 8, No 1, Actinidia arguta, description ..... Vol page 2 1, No 4, page 10 Acer species, with edible saps ..... Vol Actinidia arguta, drawings ..... Vol 1, 2, No 3, page 26 No 4, page 15 Achillea millefolium ..... Vol 8, No 4, Actinidia arguta, feeding & irrigaton page 5 ..... Vol 1, No 4, page 11 3 Actinidia arguta, fruiting ..... Vol 1, Actinidia spp ..... Vol 5, No 1, page 18 No 4, page 13 Actinorhizal plants ..... Vol 3, No 3, Actinidia arguta, nurseries page 30 supplying ..... Vol 1, No 4, page 16 Acworth, J M: The potential for farm Actinidia arguta, pests and diseases forestry, agroforestry and novel tree .... -
Biochar Registration Aid
Biochar Registration Aid ❖ Biochar means materials derived from thermochemical conversion of biomass in an oxygen-limited environment containing at least 60% carbon. Refer to Section 14513.5 of the Food and Agricultural Code. ❖ If your product includes a guarantee for biochar, you must submit a laboratory analysis that verifies that the total carbon content of the biochar ingredient is 60% or greater. ❖ If the laboratory analysis shows that the ingredient is not at least 60% carbon, the ingredient cannot be labeled as biochar. Choose another term to describe the input. Examples of possible acceptable terms are: ash, charcoal, or processed charcoal. Label Requirements: 1. Label must state the feedstock(s) for the biochar. For example: wood biochar 2. 100% Biochar products can only be registered as Auxiliary Soil and Plant Substances (ASPS). If biochar is blended with other soil amendment inputs, it can be categorized as a packaged or bulk soil amendment. 3. If International Biochar Initiative (IBI) certification claimed, provide a copy of the certification. Label Format 1. If the product is an Auxiliary Soil and Plant Substance (ASPS), add the percent of biochar being guaranteed under a “NON-PLANT FOOD INGREDIENT” heading. For example: NON-PLANT FOOD INGREDIENT 95%......... Wood Biochar 2. If the product is a combination product that guarantees nutrients, add the percent of biochar being guaranteed under an “ALSO CONTAINS NON-PLANT FOOD INGREDIENT” heading. For example: ALSO CONTAINS NON-PLANT FOOD INGREDIENT 95%......... Wood Biochar 3. If the product is a packaged soil amendment or a combination product that guarantees nutrients and other soil amending ingredients, biochar may be added to the soil amendment ingredient list. -
U.S. Forest Activities Produce Over 80 Million Green Tons of Woody Biomass Residues Each Year, Creating a Renewable Energy Resou
U.S. Forest activities produce over 80 million green tons of woody biomass residues each year, creating a renewable energy resource comparable in size to the annual production of oil from Alaska’s North Slope, yet no technologies have emerged that can economically utillize this material -- until now. -- Large capital investment to risk ratio: Centralized plants THE PROBLEM: typically require new, expensive, and complex technologies. LETTING VALUABLE NATURAL RESOURCES GO TO WASTE These facilities typically require long start up/operational time before realizing profits. Forestry residues are comprised of branches, tree tops, and small diameter stems left over after normal operations. This material is typically concentrat- -- High transportation costs & supply uncertainty: Large ed into “slash piles” and burned, wasting a valuable resource and creating plants require high volumes of feedstock. Transporting feed- air quality and health problems linked to smoke production. Despite growing stock is cost prohibitive (typically a radius of 30-50-miles is the interests in tapping this domestic renewable energy resource, woody bio- maximum). This leads to supply uncertainty and the risk of over- mass presents several unique challenges for integration into the mainstream exploitation of forest resources. energy economy. 2. Mobile Processors: Small-scale, portable technologies reduce Woody Biomass have prohibitively high biomass trans- transportation costs by bringing the conversion process to the forest. portation and production costs because of: Mobile processor prototypes produce solid and liquid fuel products at Low energy content per unit weight high energy conversion rates. While this approach shows promise, sev- High water content (typically 20-50%) eral limitations exist: Material distributed over large spatial areas Natural resistance to chemical conversion. -
Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals
microorganisms Review Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals Ravinder K. Goyal 1,* , Maria Augusta Schmidt 1,2 and Michael F. Hynes 2 1 Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada; [email protected] 2 Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada; [email protected] * Correspondence: [email protected] Abstract: The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created oppor- tunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. -
Soil Carbon & Biochar
SOIL CARBON & BIOCHAR WHAT IS SOIL CARBON? Soil carbon sequestration, also known as “carbon farming” or “regenerative agriculture,” includes various ways of managing land, especially farmland, so that soils absorb and hold more carbon. Increasing soil carbon is accomplished in three key ways: (1) switching to low- till or no-till practices; (2) using cover crops and leaving crop residues to decay; and (3) us- ing species or varieties with greater root mass. Double-cropping systems, where a second crop is grown after a food or feed crop, also keep more carbon in the soil. WHAT IS BIOCHAR? Biochar is another way of getting carbon into soils. Biochar is a kind of charcoal created when biomass from crop residues, grass, trees, or other plants is combusted at tempera- tures of 300–600°C without oxygen. This process, known as pyrolysis, enables the carbon in the biomass to resist decay. The biochar is then introduced into soils, where, under cer- tain conditions, it might sequester carbon for many hundreds of years. CO-BENEFITS AND CONCERNS + Improved soil quality: soil carbon − Reversibility: the carbon captured sequestration and biochar help restore via soil carbon sequestration and degraded soils, which can improve biochar can be released if the soils agricultural productivity and help soils are disturbed; societies would need to retain water. maintain appropriate soil management practices indefinitely. − Saturation: soils can only hold a finite amount of carbon; once they are − Difficulty of measurement: monitoring saturated, societies will no longer be and verifying carbon removal, especially able to sequester more carbon using via soil carbon sequestration is currently soil carbon sequestration. -
Small Scale Biochar Production and Require All Feedstock to Be Loaded at the Beginning of Is Open at the Top to Allow Air to Reach the Burning Biomass
Nebraska Forest Service, University of Nebraska-Lincoln Biochar Production Economics Selected Resources General Biochar Information: Fabricating a small scale kiln is most economical when you have small Scale International Biochar Initiative the materials on hand and the skills (i.e. welding) to manufacture it. www.biochar-international.org While small scale kilns are not necessarily cost-effective for commercial production of biochar these methods may be appropriate for: Biochar U.S. Based Biochar Information: U.S. Biochar Initiative • Nurseries, tree care companies, green industry biochar-us.org • Farmers and ranchers looking to utilize waste products production • Gardeners, permaculturists, small scale farmers Biochar for Forest Restoration in the Making Biochar Western United States. 2015. Wilson • Windbreak renovations Biochar Associates White Paper for The process of producing biochar is called pyroly- South Umpqua Rural Community • Loggers, forestry contractors sis. Pyrolysis, by definition, is the “decomposition of Partnership (SURCP). • material by heat.” It occurs in processes as simple as a www.wilsonbiochar.com Anyone interested in producing biochar for small, niche markets such as farmers markets campfire and as complex as a state-of-the-art biorefinery. Example: Assuming a biochar recovery rate of 33%, a 55 gallon drum Biochar as an Innovative Wood Product: A Look retort kiln would yield ~2.5 cubic feet of biochar per batch. One cubic Biochar production methods are scalable and can be at Barriers to Realization of its Full Potential. adjusted based on local conditions, feedstock 2017. Groot, et al. Dovetail Partners, Inc. foot of biochar retails between $30 and $60. Per batch, a profit be- tween $75 and $150 could be generated. -
Working with Rhizobia J.G
Working with rhizobia J.G. Howieson and M.J. Dilworth (Eds.) Working with rhizobia J.G. Howieson and M.J. Dilworth (Eds.) Centre for Rhizobium Studies Murdoch University 2016 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing- country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. The series is distributed internationally, with an emphasis on developing countries. © Australian Centre for International Agricultural Research (ACIAR) 2016 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected]. Howieson J.G. and Dilworth M.J. (Eds.). 2016. Working with rhizobia. Australian Centre for International -
Characterization of Tropical Tree Rhizobia and Description of Mesorhizobium Plurifarium Sp
< Printed in Great Britain > International Journal of Systematic Bacteriology (1998), 48, 369-382 Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Philippe de/Lajudie,’t3 Anne WiIlem~,~~~Giselle Nick,’ Fatima Moreiraf5 Flore Molouba,’ Bart Hostef3Urbain Torckf3Marc Neyra,’ MattR ew D. Collinsf4Kristina LindstrÖm,‘/Bernard Dreyfuslt and Monique Gillis3 Author for correspondence: Monique Gillis. Tel: $32 9 264 5117. Fax: +32 9 264 5092. e-mail: [email protected] 1 Laboratoire de A collection of strains isolated from root nodules of Acacia species in Senegal Microbiologie des Sols, was analysed previously by electrophoresis of total cell protein, ORSTOM BP 1386, Dakar, Senegal, West Africa auxanographic tests, rRNA-DNA hybridization, 165 rRNA gene sequencing, DNA base composition and DNA-DNA hybridization [de Lajudie, P., Willems, A., 2 Department of Applied Chemistry & Microbiology, Pot, B. & 7 other authors (1994). Intl Syst Bacterio/ 44,715-7331. Strains from University of Helsinki, PO Acacia were shown to belong to two groups, Sinorhizobium terangae, and a Box 56, Biocentre 1, so-called gel electrophoretic cluster U, which also included some reference Viikinkaari 9, FIN-O0014 Helsinki, Finland strains from Brazil. Further taxonomic characterization of this group using the same techniques plus repetitive extragenic palindromic-PCR and nodulation 3 Laboratoriumvoor - Microbiologie, Universiteit tests is presented in this paper. Reference strains from Sudan and a number of Gent, K.-L.