Hazardous Fuels Reduction Using Flame Cap Biochar Kilns

Total Page:16

File Type:pdf, Size:1020Kb

Hazardous Fuels Reduction Using Flame Cap Biochar Kilns Hazardous Fuels This fact sheet describes a do-it-yourself technique for Reduction Using making backyard biochar. The Utah Biomass Flame Cap Biochar Resources Group has demonstrated this method Kilns for reducing hazardous By: Darren McAvoy, Megan Dettenmaier forest fuels while creating a valuable product (biochar) Introduction using simple, Warning: Fire use requires extreme caution. low-cost materials. Hazardous fuels are a problem across the West. From 2000- 2017 bark beetles affected 85,000 square miles of forests in the western U.S. (an area the size of Utah). The accumulation of this beetle-killed timber occupies many forested slopes posing a fire risk to citizens, landscapes, and nearby infrastructure. Additionally, invasive species such as Russian olive (Elaeagnus Figure 1. Metal biochar kiln processing feedstock in Utah. angustifolia L.) and tamarisk (Tamarix spp.) the season possible for fuel reduction efforts, choke streams and rivers and prevent native sequesters carbon, and yields biochar, a species from growing and supporting the charcoal like product made from organic ecosystem. The accumulation of hazardous material. fuels such as beetle-killed timber and invasive species is dangerous, additionally as dead and What is biochar? dying trees decompose through cellular Biochar is the result of the thermochemical respiration, greenhouse gases (CO2 and CH4 separation that occurs when biomass is fired to methane) are released into the atmosphere. To temperatures ranging from 400 to 600 degrees deal with this excess fuel, trees are removed C. Because of biochar’s high porosity and from forests generating large quantities of surface area, when added to soil, it increases “waste wood”. This waste wood is commonly water holding capacity, making it available to called slash; it is often piled and burned plants over an extended period of time (Karhu, (known as pile burning), releasing stored Mattila, Bergström, & Regina, 2011; Tryon, carbon and greenhouse gasses into the 1948). Biochar as a soil amendment dates atmosphere (figure 2). While effective for back 7,000 years where it was used to improve dealing with large quantities of slash, piling and nutrient deficient Amazonian soil known as burning results in extreme heat pulses into the “Terra Preta de Indios” (Lal, 2009). Tapping ground, which has negative consequences on into biochar as a means for soil carbon storage the physical, chemical, and mineralogical may be a useful way to mitigate climate properties of the soil under the slash piles change (Batista et al., 2018). (Arocena & Opio, 2003; Jiménez Esquilín, Stromberger, Massman, Frank, & Shepperd, We have demonstrated a practical method for 2007). producing biochar using simple metal kilns that: An innovative alternative to this approach utilizes fire to dispose of slash, but contains the 1) give people an easy way to mitigate fire fire in simple metal kilns (figure 3). When danger both affordably and locally, compared to the pile and burn method, this 2) help citizens take fuel reduction projects into approach produces considerably less smoke, their own hands in wildland and rural settings, does less damage to the soil, is safer, extends and Figure 2. Typical hand ignited slash piles. Figure 3. Metal biochar kiln processing feedstock. 2 METAL KILNS PILE AND BURN Pile and burn technique simply Flame cap technique contains the SMOKE burns entire feedstock piles in combustion, which burns feedstock IMPACTS unregulated way, this creates more efficiently, creating less smoke. significantly more smoke. Piling and burning occurs directly Containing the fire in a metal kiln on the soil surface. The SOIL creates a barrier between the heat consequences to the forest floor IMPACTS and soil, buffering and protecting the can be extremely detrimental to soil soils from extreme heat pulses structure and microorganisms VALUE- Using kilns creates biochar, a Piling and burning does not result ADDED valuable product for soil carbon in any value-added product. PRODUCT sequestration, and amending soils 3) create a valuable product with many benefits: biochar. By carefully following fire escape precautions, these techniques are appropriate in the wildland-urban interface zone, where many people reside. The danger of introducing fire in this environment requires an abundance of caution, preparation and planning; however, under favorable weather and fuel moisture conditions and by following a few simple guidelines, anyone can make biochar. We outline the biological, environmental, and economical benefits to using simple kilns when compared with traditional pile and burn methods. The table above describes consequences for smoke accumulation, soil health, and byproducts when piling and burning vs. using Figure 4. Demonstration that biochar can be biochar kilns to remove hazardous fuels. made in a parking lot, or in the forest. 3 Metal Kilns There are infinite varieties of kiln shapes and sizes for making biochar. We have adopted the “Oregon Kiln”, or flame cap kiln made from 14- gauge steel. The kilns described in this process are 5’ by 5’ by 2’ deep, they weigh approximately 200 lbs. and can easily be carried by four people. Kilns are tapered at the bottom, which makes them easy to stack and transport. The flame cap kilns work well for Figure 5. Making biochar using a simple metal stock tank. forestry operations because they are portable and maneuverable in the woods. Crews have used these simple kilns for more than 100 firings, and they maintain their durability. The capacity of the kilns described here People make biochar using various kiln styles obviously cannot tackle the size and complexity using whatever materials available (figure 5). of the hazardous fuels problem in the West With open source plans, welding shops in Utah today. However, this technique can make an manufacture flame-cap kilns for approximately impact on the edges of areas where fuel $800 (figure 6). reduction efforts are needed. Figure 6. Open source plans for building biochar kiln. 4 Location and Timing Only personnel from appropriate public agencies are legally permitted to operate kilns on public lands. These kilns and techniques are appropriate to use on private land, however extreme caution should be taken to avoid an accidental wildfire. Even on private land, fire restrictions and burning permits are required. Consult with fire agency personnel; consider weather and surrounding fuel conditions and fire preparedness long before attempting to make biochar. Although this approach somewhat contains the flames within a box, there is ample opportunity for escaped embers to start an unwanted fire. Do not operate kilns in windy conditions, or near extremely dry fuel sources, including yards and homes. Each Figure 7. Biochar kilns stacked and ready for situation is different and should be evaluated transport. on a case by case basis. 5) Have an active water source readily at hand SAFETY e.g. fully charged hose. This will allow you to One of the benefits of the flame cap kilns is knock down embers and spot fires that result their mobility (figure 7). Kilns are easily moved from embers. Be prepared to deal with rapidly and can be used in the forest where the moving firebrands and sparks carried by biomass is located, eliminating the costly unexpected winds. expense of feedstock transportation (figure 6). 6) Have a shovel, Pulaski and a chain saw on Making biochar in the forest requires the hand to extinguish unwanted fire starts. creation of a diligent fire safety plan. To avoid the risk of accidental ignition: 7) Wear proper personal protective gear, preferably fire retardant clothing. At minimum, 1) Place kilns where the flames will not impinge participants should wear leather gloves, boots, on nearby vegetation, flammables, overhead and eye protection. Choose cotton clothing and obstructions or other hazards. avoid wearing polyester. 2) Avoid operating kilns in windy conditions to 8) Communicate with your local fire authorities avoid embers starting unwanted fires. and inform them of operations, including 3) Prepare the site with hand tools or contingency plans. machinery to ensure kilns will rest on level 10) Use care and proper form when moving the ground. kilns, as they are heavy and moving them can 4) Dig a trail or firebreak around the kilns to cause injury, especially when full of coals and contain any burning material that may fall out of water (do not move a kiln that is full of water, the kiln. drain or dump first). 5 Figure 8. Examples of feedstock size separation. Feedstock preparation In Utah, we used the flame cap kilns for making biochar from juniper, pinyon, aspen, Douglas- Figure 9 (top), 10 (bottom). Demonstration of fir, tamarisk, and Russian olive. Feedstock how to load a kiln. preparation is more important than species. For the most efficient burn use the driest feedstock ensure there is no flammable material within possible. Cut feedstock into lengths slightly 100 feet of the kiln. smaller than the kiln length to maximize space and kiln capacity. Sort and stack feedstock into Fill the kiln with dry branches and logs up to 6 rough diameter classes; small diameter sticks inches diameter; pile layers in a crisscross in one pile, medium in another and logs up to 8 pattern (figure 9). Then pile small, dry sticks inches in diameter in third pile; this organization (kindling) on top of the logs and light the kiln will help when loading the kiln (figure 8). from the top (figure 10). This technique will soon form a ‘cap’ of flames across the top of Initial Kiln Loading the kiln; maintaining the flame cap is an important part of the process; as combustibles Place the kiln on a flat surface that can rise through the flame cap they are consumed withstand heat (not directly on pavement) and by the flames, resulting in a very clean burn. 6 Kiln Operation Keep loading the kiln with pre-cut feedstock over the next 2 to 4 hours (figures 11, 12, 13).
Recommended publications
  • Interaction of Biochar Type and Rhizobia Inoculation Increases the Growth and Biological Nitrogen Fixation of Robinia Pseudoacacia Seedlings
    Article Interaction of Biochar Type and Rhizobia Inoculation Increases the Growth and Biological Nitrogen Fixation of Robinia pseudoacacia Seedlings Qiaoyu Sun 1, Yong Liu 2, Hongbin Liu 1 and R. Kasten Dumroese 3,* 1 Key Laboratory of Non-Point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 10081, China; [email protected] (Q.S.); [email protected] (H.L.) 2 Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; [email protected] 3 US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1221 South Main Street, Moscow, ID 83843, USA * Correspondence: [email protected]; Tel.: +1-208-883-2324; Fax: +1-208-882-3915 Received: 29 May 2020; Accepted: 23 June 2020; Published: 26 June 2020 Abstract: Adding biochar to soil can change soil properties and subsequently affect plant growth, but this effect can vary because of different feedstocks and methods (e.g., pyrolysis or gasification) used to create the biochar. Growth and biological nitrogen fixation (BNF) of leguminous plants can be improved with rhizobia inoculation that fosters nodule development. Thus, this factorial greenhouse study examined the effects of two types of biochar (i.e., pyrolysis and gasification) added at a rate of 5% (v:v) to a peat-based growth substrate and rhizobia inoculation (yes or no) on 15 15 Robinia pseudoacacia (black locust) seedlings supplied with NH4 NO3. Seedling and nodule growth, nitrogen (N) content, and δ15N 1000 were evaluated after 3 months.
    [Show full text]
  • Biochar As an Innovative Wood Product: a Look at Barriers to Realization of Its Full Potential
    BIOCHAR AS AN INNOVATIVE WOOD PRODUCT: A LOOK AT BARRIERS TO REALIZATION OF ITS FULL POTENTIAL May 2017 Harry Groot Jeff Howe, Ph. D Jim Bowyer, Ph. D Ed Pepke, Ph. D. Richard A. Levins, Ph. D. Kathryn Fernholz DOVETAIL PARTNERS, INC. Biochar as an Innovative Wood Product A Look at Barriers to Realization of its Full Potential Executive Summary In the previous Dovetail Report Biochar 101: An Introduction to an Ancient Product Offering Modern Opportunities (Groot et al. 20161) the bottom line was: “Biochar is a product with clear benefits but many questions yet to be answered.” That remains the case. However, ongoing research has expanded the knowledge base, and the debate about biochar’s value and cost effectiveness is narrowing as more is known. A barrier to further market growth is that the industry producing biochar is unsettled, with Photo 1. Biochar made from Pecan Hulls (photo by H. Groot) little agreement regarding product standards, message, or carbon accounting. There is an opportunity for more collaboration to resolve these issues, especially among the mid to large-scale producers. The most common use of biochar is as a soil amendment for high-value fruit and vegetable crops, including use in greenhouse and nursery operations, and there is already significant market acceptance in this sector. Biochar is also used to remove impurities and toxins in water filtration and soil remediation, and these applications appear to offer significant growth potential. Commodity crop production conceivably offers the potential for use of the greatest volume of biochar, but there is little information available about the relative cost and benefits of biochar in this application.
    [Show full text]
  • Non-Timber Forest Products in Brazil: a Bibliometric and a State of the Art Review
    sustainability Review Non-Timber Forest Products in Brazil: A Bibliometric and a State of the Art Review Thiago Cardoso Silva * , Emmanoella Costa Guaraná Araujo, Tarcila Rosa da Silva Lins , Cibelle Amaral Reis, Carlos Roberto Sanquetta and Márcio Pereira da Rocha Department of Forestry Engineering and Technology, Federal University of Paraná, 80.210-170 Curitiba, Brazil; [email protected] (E.C.G.A.); [email protected] (T.R.d.S.L.); [email protected] (C.A.R.); [email protected] (C.R.S.); [email protected] (M.P.d.R.) * Correspondence: [email protected]; Tel.: +55-8199-956-6178 Received: 4 July 2020; Accepted: 22 August 2020; Published: 2 September 2020 Abstract: Non-timber forest products (NTFPs) are a consolidated source of income and acquisition of inputs from forest environments. Therefore, the objective of this work was to carry out a collection of publications on NTFPs in Brazil, until 2019, available in the Scopus database, presenting a bibliometric review and the state of the art of this theme from the evaluation of these publications, discussing the challenges of Brazilian legislation on NTFPs. After screening the articles of interest, 196 documents were evaluated, in which they were observed institutions and authors, analyzing networks of citations and terms used, areas of forest sciences and sciences that encompass the most explored biomes and the most studied species. The results showed that the concern to research on NTFPs in Brazil began in the 1990s, with an increase in the number of publications over the years. Besides that, the research on NTFPs is multidisciplinary, with emphasis on the areas of Agricultural and Biological Sciences and Environmental Science.
    [Show full text]
  • Agroforestry News Index Vol 1 to Vol 22 No 2
    Agroforestry News Index Vol 1 to Vol 22 No 2 2 A.R.T. nursery ..... Vol 2, No 4, page 2 Acorns, edible from oaks ..... Vol 5, No 4, page 3 Aaron, J R & Richards: British woodland produce (book review) ..... Acorns, harvesting ..... Vol 5, No 4, Vol 1, No 4, page 34 page 3 Abies balsamea ..... Vol 8, No 2, page Acorns, nutritional composition ..... 31 Vol 5, No 4, page 4 Abies sibirica ..... Vol 8, No 2, page 31 Acorns, removing tannins from ..... Vol 5, No 4, page 4 Abies species ..... Vol 19, No 1, page 13 Acorns, shelling ..... Vol 5, No 4, page 3 Acca sellowiana ..... Vol 9, No 3, page 4 Acorns, utilisation ..... Vol 5, No 4, page 4 Acer macrophyllum ..... Vol 16, No 2, page 6 Acorus calamus ..... Vol 8, No 4, page 6 Acer pseudoplatanus ..... Vol 3, No 1, page 3 Actinidia arguta ..... Vol 1, No 4, page 10 Acer saccharum ..... Vol 16, No 1, page 3 Actinidia arguta, cultivars ..... Vol 1, No 4, page 14 Acer saccharum - strawberry agroforestry system ..... Vol 8, No 1, Actinidia arguta, description ..... Vol page 2 1, No 4, page 10 Acer species, with edible saps ..... Vol Actinidia arguta, drawings ..... Vol 1, 2, No 3, page 26 No 4, page 15 Achillea millefolium ..... Vol 8, No 4, Actinidia arguta, feeding & irrigaton page 5 ..... Vol 1, No 4, page 11 3 Actinidia arguta, fruiting ..... Vol 1, Actinidia spp ..... Vol 5, No 1, page 18 No 4, page 13 Actinorhizal plants ..... Vol 3, No 3, Actinidia arguta, nurseries page 30 supplying ..... Vol 1, No 4, page 16 Acworth, J M: The potential for farm Actinidia arguta, pests and diseases forestry, agroforestry and novel tree ....
    [Show full text]
  • Biochar Registration Aid
    Biochar Registration Aid ❖ Biochar means materials derived from thermochemical conversion of biomass in an oxygen-limited environment containing at least 60% carbon. Refer to Section 14513.5 of the Food and Agricultural Code. ❖ If your product includes a guarantee for biochar, you must submit a laboratory analysis that verifies that the total carbon content of the biochar ingredient is 60% or greater. ❖ If the laboratory analysis shows that the ingredient is not at least 60% carbon, the ingredient cannot be labeled as biochar. Choose another term to describe the input. Examples of possible acceptable terms are: ash, charcoal, or processed charcoal. Label Requirements: 1. Label must state the feedstock(s) for the biochar. For example: wood biochar 2. 100% Biochar products can only be registered as Auxiliary Soil and Plant Substances (ASPS). If biochar is blended with other soil amendment inputs, it can be categorized as a packaged or bulk soil amendment. 3. If International Biochar Initiative (IBI) certification claimed, provide a copy of the certification. Label Format 1. If the product is an Auxiliary Soil and Plant Substance (ASPS), add the percent of biochar being guaranteed under a “NON-PLANT FOOD INGREDIENT” heading. For example: NON-PLANT FOOD INGREDIENT 95%......... Wood Biochar 2. If the product is a combination product that guarantees nutrients, add the percent of biochar being guaranteed under an “ALSO CONTAINS NON-PLANT FOOD INGREDIENT” heading. For example: ALSO CONTAINS NON-PLANT FOOD INGREDIENT 95%......... Wood Biochar 3. If the product is a packaged soil amendment or a combination product that guarantees nutrients and other soil amending ingredients, biochar may be added to the soil amendment ingredient list.
    [Show full text]
  • U.S. Forest Activities Produce Over 80 Million Green Tons of Woody Biomass Residues Each Year, Creating a Renewable Energy Resou
    U.S. Forest activities produce over 80 million green tons of woody biomass residues each year, creating a renewable energy resource comparable in size to the annual production of oil from Alaska’s North Slope, yet no technologies have emerged that can economically utillize this material -- until now. -- Large capital investment to risk ratio: Centralized plants THE PROBLEM: typically require new, expensive, and complex technologies. LETTING VALUABLE NATURAL RESOURCES GO TO WASTE These facilities typically require long start up/operational time before realizing profits. Forestry residues are comprised of branches, tree tops, and small diameter stems left over after normal operations. This material is typically concentrat- -- High transportation costs & supply uncertainty: Large ed into “slash piles” and burned, wasting a valuable resource and creating plants require high volumes of feedstock. Transporting feed- air quality and health problems linked to smoke production. Despite growing stock is cost prohibitive (typically a radius of 30-50-miles is the interests in tapping this domestic renewable energy resource, woody bio- maximum). This leads to supply uncertainty and the risk of over- mass presents several unique challenges for integration into the mainstream exploitation of forest resources. energy economy. 2. Mobile Processors: Small-scale, portable technologies reduce Woody Biomass have prohibitively high biomass trans- transportation costs by bringing the conversion process to the forest. portation and production costs because of: Mobile processor prototypes produce solid and liquid fuel products at Low energy content per unit weight high energy conversion rates. While this approach shows promise, sev- High water content (typically 20-50%) eral limitations exist: Material distributed over large spatial areas Natural resistance to chemical conversion.
    [Show full text]
  • Soil Carbon & Biochar
    SOIL CARBON & BIOCHAR WHAT IS SOIL CARBON? Soil carbon sequestration, also known as “carbon farming” or “regenerative agriculture,” includes various ways of managing land, especially farmland, so that soils absorb and hold more carbon. Increasing soil carbon is accomplished in three key ways: (1) switching to low- till or no-till practices; (2) using cover crops and leaving crop residues to decay; and (3) us- ing species or varieties with greater root mass. Double-cropping systems, where a second crop is grown after a food or feed crop, also keep more carbon in the soil. WHAT IS BIOCHAR? Biochar is another way of getting carbon into soils. Biochar is a kind of charcoal created when biomass from crop residues, grass, trees, or other plants is combusted at tempera- tures of 300–600°C without oxygen. This process, known as pyrolysis, enables the carbon in the biomass to resist decay. The biochar is then introduced into soils, where, under cer- tain conditions, it might sequester carbon for many hundreds of years. CO-BENEFITS AND CONCERNS + Improved soil quality: soil carbon − Reversibility: the carbon captured sequestration and biochar help restore via soil carbon sequestration and degraded soils, which can improve biochar can be released if the soils agricultural productivity and help soils are disturbed; societies would need to retain water. maintain appropriate soil management practices indefinitely. − Saturation: soils can only hold a finite amount of carbon; once they are − Difficulty of measurement: monitoring saturated, societies will no longer be and verifying carbon removal, especially able to sequester more carbon using via soil carbon sequestration is currently soil carbon sequestration.
    [Show full text]
  • Small Scale Biochar Production and Require All Feedstock to Be Loaded at the Beginning of Is Open at the Top to Allow Air to Reach the Burning Biomass
    Nebraska Forest Service, University of Nebraska-Lincoln Biochar Production Economics Selected Resources General Biochar Information: Fabricating a small scale kiln is most economical when you have small Scale International Biochar Initiative the materials on hand and the skills (i.e. welding) to manufacture it. www.biochar-international.org While small scale kilns are not necessarily cost-effective for commercial production of biochar these methods may be appropriate for: Biochar U.S. Based Biochar Information: U.S. Biochar Initiative • Nurseries, tree care companies, green industry biochar-us.org • Farmers and ranchers looking to utilize waste products production • Gardeners, permaculturists, small scale farmers Biochar for Forest Restoration in the Making Biochar Western United States. 2015. Wilson • Windbreak renovations Biochar Associates White Paper for The process of producing biochar is called pyroly- South Umpqua Rural Community • Loggers, forestry contractors sis. Pyrolysis, by definition, is the “decomposition of Partnership (SURCP). • material by heat.” It occurs in processes as simple as a www.wilsonbiochar.com Anyone interested in producing biochar for small, niche markets such as farmers markets campfire and as complex as a state-of-the-art biorefinery. Example: Assuming a biochar recovery rate of 33%, a 55 gallon drum Biochar as an Innovative Wood Product: A Look retort kiln would yield ~2.5 cubic feet of biochar per batch. One cubic Biochar production methods are scalable and can be at Barriers to Realization of its Full Potential. adjusted based on local conditions, feedstock 2017. Groot, et al. Dovetail Partners, Inc. foot of biochar retails between $30 and $60. Per batch, a profit be- tween $75 and $150 could be generated.
    [Show full text]
  • Life Cycle Assessment of Biochar Produced from Forest Residues Using Portable Systems
    Journal of Cleaner Production xxx (xxxx) xxx Contents lists available at ScienceDirect Journal of Cleaner Production journal homepage: www.elsevier.com/locate/jclepro Life cycle assessment of biochar produced from forest residues using portable systems * Maureen Puettmann a, Kamalakanta Sahoo b, c, , Kelpie Wilson d, Elaine Oneil e a WoodLife Environmental Consultants & Consortium for Research on Renewable Industrial Materials (CORRIM), United States b Forest Products Laboratory, United States Forest Service, Madison, WI, 53726, United States c Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, United States d Wilson Biochar Associates, United States e University of Washington & CORRIM, United States article info abstract Article history: Forest fires are getting extreme and more frequent because of increased fuel loads in the forest and Received 28 June 2019 extended dry conditions. Fuel treatment (i.e., thinning) methods to mitigate forest fires will generate Received in revised form large volumes of forest residues together with available logging residues that can be used to produce 22 November 2019 biochar. It has been proposed that portable biochar systems are economical means to utilize forest Accepted 3 December 2019 residues as an alternative to slash burning. In this study, the environmental impacts of biochar produced Available online xxx from forest residues using three portable systems [1. Biochar Solutions Incorporated (BSI), 2. Oregon Kiln, Handling Editor: Panos Seferlis and 3. Air-curtain Burner] were evaluated using a cradle-to-gate life-cycle assessment approach. Envi- ronmental impacts were analyzed considering the various quality of feedstock, biomass collection Keywords: methods, different production sites, and various sources of power used in the production of biochar.
    [Show full text]
  • Biochar Production for Forestry, Farms, and Communities
    Biochar Production for Forestry, Farms, and Communities 1 CREDITS Author: Kai Hoffman-Krull Published by: Northwest Natural Resource Group www.nnrg.org In partnership with: Forage Funding provided by: USDA Risk Management Agency www.rma.usda.gov Cover photo: dreamdv2 via Pixabay.com 2 Photo: Matt Freeman-Gleason CONTENTS CREDITS ........................................................................................................................................... 2 CONTENTS ....................................................................................................................................... 3 SUMMARY ....................................................................................................................................... 4 INTRODUCTION: THE POTENTIAL OF BIOCHAR .............................................................................. 4 Farms ........................................................................................................................................... 5 Forests ......................................................................................................................................... 6 Summary of Biochar Production Methods ................................................................................. 7 PHYSICAL AND CHEMICAL PARAMETERS OF BIOCHAR PRODUCTION ........................................... 8 Pyrolysis ...................................................................................................................................... 8 Key Feedstock
    [Show full text]
  • Prospects of Biochar Use in Forestry
    Prospects of Biochar Use in Forestry Deborah Page-Dumroese Hongmei Gu Nate Anderson Rick Bergman A lile background Using forestry feedstocks to: • Reduce wildfire risk • Lessen insect and disease risk • Improve soil water relaons • Healthy trees/forests • Soil resilience to drought and flood • 10 long-term forestry field trials Overview • Forest harvesFng and feedstock management • Changing forest producFvity • Understanding the benefits • Climate change miFgaon Historic Issues of Land Management in the USA • 1979 • “A major problem confronFng forestry is how to more efficiently harvest Fmber without creang unacceptable impacts on the forest environment.” • “The full uFlizaon of residual material leW in the woods following logging and thinning operaons, and disease, and insect aack, and windthrow has long been a source of concern and frustraon to the forest manager.” From: Environmental Consequences of Timber HarvesFng in the northern Rocky Mountains. GTR-INT-190 Too much of a good thing… • Sites with too much logging slash • Wildfire risk • Not feasible to broadcast burn • Piles are created (and burned) Common pracHces on many forest sites • Piled and burned • Biomass from harvest operaons • Burning alters soil condiFons • Long-term alteraons Long-term impacts of pile burning • Many hectares impacted from hot, concentrated fires • Loss of OM • Nutrient volalizaon • Few trees or shrubs • OWen non-nave species Forest Supply Chain Context Current harves,ng model: Forest biomass to bioenergy 1. Felling trees (harvester) 5. Trucking (chipped biomass) 6. BIOENERGY! 2. Moving biomass (forwarding) 3. Storage (drying) 4. Chipping (roadside or mill) Or: Forest biomass to waste 1. Felling trees (harvester) 6. NO ENERGY and no C seQuestra,on! 2.
    [Show full text]
  • Impact of Biochar on Plant Productivity and Soil Properties Under a Maize Soybean Rotation on an Alfisol in Central Ohio DISSERT
    Impact of biochar on plant productivity and soil properties under a maize soybean rotation on an Alfisol in Central Ohio DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ryan Darrell Hottle Graduate Program in Environmental Science The Ohio State University 2013 Dissertation Committee: Rattan Lal, advisor Jay Martin Peter Curtis Berry Lyons Copyrighted by Ryan Darrell Hottle 2013 ABSTRACT Here we investigate the application of biochar to a maize (Zea mays)-soybeans (Glycine max L.) rotation in the U.S. Midwest in order to assess the agronomic impacts and changes to soil physical, chemical and biological properties. Biochar is a carbon- rich co-product of thermal degradation of biomass precursor material, a process called ―pyrolysis,‖ intended for the use as a soil amendment as opposed to combusted for heat or energy. Biochar could offer a sustainable means of generating energy, sequestering atmospheric CO2 (thereby mitigating climate change), and increasing agronomic productivity of crops through soil quality enhancement. At a global scale biochar could sequester >1 Pg C yr-1, thereby substantially helping to mitigate climate change. At present, the majority of long-term field trials using biochar as a soil amendemenMg have focused on highly weathered and degraded soils mainly in the tropics and subtropics. Very little long-term field trials have been conducted on agroecosystems in temperate parts of the world. Our research aimed to fill this void, by conducting a 4- year field experiment (2010-2013) with oak-derived biochar from a slow pyrolysis process at ~425⁰C at three rates (0 Mg ha-1, 5 Mg ha-1 and 25 Mg ha-1) with 100% and ii 50% of nitrogen fertilizer (146 kg ha-1 N and 72 kg ha-1 N, respectively) on a maize - soybean rotation on an Ohio alfisol soil.
    [Show full text]