CERN Achievements in Relativistic Heavy Ion Collisions, Hence Covering a Period of Time That Dates Back to 1980
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mar (E) K of QGP: Strangeness
The Mar(e)k of QGP: Strangeness∗ Jan Rafelski Department of Physics, The University of Arizona Tucson, AZ 85721, USA Strangeness signature of of quark-gluon plasma (QGP) is central to the exploration of baryon-dense matter: the search for the critical point and onset of deconfinement. I report on the discovery of QGP by means of strangeness: The key historical figures and their roles in this quest are introduced and the experimental results obtained are discussed. The im- portant role of antihyperons is emphasized. The statistical hadronization model, and sudden hadronization are described. Results of present day data analysis: strangeness and entropy content of a large fireball, and the universal hadronization condition describing key features of all explored collision systems are presented. PACS numbers: 25.75.-qRelativistic heavy-ion collisions 12.38.MhQuark-gluon plasma 24.10.PaThermal and statistical models 1. Introduction The introduction in 1964 of the new quark paradigm [1] `happened' nearly in parallel to the rise of the thermal model of hadron production pre- cipitated by Hagedorn's invention of the statistical bootstrap model, for a review of Hagedorn's work, see Ref. [2]. The paradigm of quarks explained a large number of properties of elementary particles, allowing at the time one prediction, a new particle, the triple-strange Ω−(sss). On the other hand Hagedorn was following fragmentary experimental data on particle produc- tion; these data were not in agreement with the rudimentary statistical arXiv:1701.00296v2 [hep-ph] 6 Feb 2017 particle production models proposed by Koppe [3] and Fermi [4]. Hage- dorn's work is a classic example of a discovery case where theory preceded experiment, focusing the direction of future experimental work. -
Feasibility Studies for Open Charm Measurements with NA61/SHINE Experiment at CERN-SPS
Feasibility studies for open charm measurements with NA61/SHINE experiment at CERN-SPS by Yasir Ali A DOCTORAL DISSERTATION PERFORMED IN THE INSTITUTE OF PHYSICS JAGIELLONIAN UNIVERSITY KRAKOW (POLAND) SUBMITTED TO THE FACULTY OF PHYSICS, ASTRONOMY AND APPLIED COMPUTER SCIENCES OF THE JAGIELLONIAN UNIVERSITY 2015 Thesis advisor: Dr hab. Pawe lStaszel Project coordinator: Prof. Dr hab. Pawe lMoskal This thesis is dedicated to my parents for their love, endless support and encouragement and to my beloved fiance ii ACKNOWLEDGEMENTS I would like to gratefully and sincerely thank my supervisor Dr hab. Pawe lStaszel for his guidance, support and most importantly, his help during my PhD studies at the Institute of Physics Jagieollonian University. His mentorship was paramount in providing a well rounded experience consistent with my long-term career goals. I would also like to thank all members of the NA61 Collaboration, especially Prof. Dr Marek Gazdzicki, Dr Peter Seyboth and all other colleagues who helped me from time to time. I am also grateful to Antoni Marcinek and Sebastian Kupny for their consistent suggestions during my project. I would also like to thank Prof. Dr. Roman P laneta for his assistance and guid- ance. Additionally, I would like to be grateful and say thanks to the coordinator of International PhD-studies programme Prof. Dr Pawe l Moskal for his all time help and support in four years during my stay in Krakow. Finally, and most importantly, I would like to say thanks to my parents. Their support, encouragement, quiet patience and unwavering love were undeniably the bedrock upon which my educational carrier has been built. -
Before Matter As We Know It Emerged, the Universe Was Filled with The
Cambridge University Press 0521385369 - Hadrons and Quark–Gluon Plasma Jean Letessier and Johann Rafelski Frontmatter More information HADRONS AND QUARK–GLUON PLASMA Before matter as we know it emerged, the universe was filled with the primordial state of hadronic matter called quark–gluon plasma. This hot soup of quarks and gluons is effectively an inescapable consequence of our current knowledge about the fundamental hadronic interactions: quantum chromodynamics. This book covers the ongoing search to verify the prediction experimentally and discusses the physical properties of this novel form of matter. It provides an accessible introduction to the recent developments in this interdisciplinary field, covering the basics as well as more advanced material. It begins with an overview of the subject, followed by discussion of experimental methods and results. The second half of the book covers hadronic matter in confined and deconfined form, and strangeness as a signature of the quark–gluon phase. A firm background in quantum mechanics, special relativity, and statistical physics is assumed, as well as some familiarity with particle and nuclear physics. However, the essential introductory elements from these fields are presented as needed. This text is suitable as an introduction for graduate students, as well as pro- viding a valuable reference for researchers already working in this and related fields. JEAN LETESSIER has been CNRS researcher at the University of Paris since 1978. Prior to that he worked at the Institut de Physique Nucleaire, Orsay, where he wrote his thesis on hyperon–nucleon interaction in 1970, under the direction of Professor R. Vinh Mau, and was a teaching assistant at the University of Bordeaux. -
PROPOSAL for a Silicon Vertex Tracker (VTX) for the PHENIX Experiment Proposal for a Silicon Vertex Tracker (VTX) for the PHENIX Experiment
PROPOSAL for a Silicon Vertex Tracker (VTX) for the PHENIX Experiment Proposal for a Silicon Vertex Tracker (VTX) for the PHENIX Experiment M. Baker, R. Nouicer, R. Pak, P. Steinberg Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973-5000, USA Z. Li Brookhaven National Laboratory, Instrumentation Division, Upton, NY 11973-5000, USA J.S. Haggerty, J.T. Mitchel, C.L. Woody Brookhaven National Laboratory, Physics Department, Upton, NY 11973-5000, USA A.D. Frawley Florida State University, Tallahassee, FL 32306, USA J. Crandall, J.C. Hill, J.G. Lajoie, C.A. Ogilvie, H. Pei, J. Rak, G.Skank, S. Skutnik, G. Sleege, G. Tuttle Iowa State University, Ames, IA 56011, USA M. Tanaka High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan. N. Saito, M. Togawa Kyoto University, Kyoto 606, Japan H.W. van Hecke, G.J. Kunde, D.M. Lee, M. J. Leitch, P.L. McGaughey, W.E. Sondheim Los Alamos National Laboratory, Los Alamos, NM 87545, USA T. Kawasaki, K. Fujiwara Niigata University, Niigata 950-2181, Japan T.C. Awes, M. Bobrek, C.L. Britton, W.L. Bryan, K.N. Castleberry, V. Cianciolo, Y.V. Efremenko, K.F. Read, D.O. Silvermyr, P.W. Stankus, A.L. Wintenberg, G.R. Young Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Y. Akiba, H. En’yo, Y. Goto, J.M. Heuser, H. Kano, H. Ohnishi, V. Rykov, T. Tabaru, K.Tanida, J. Tojo RIKEN (The Institute of Physical and Chemical Research,) Wako, Saitama 351-0198, Japan A. Deshpande RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA S. -
People and Things
People and things cesses, such as those of Interest plore the low energy regime of to astrophysicists. Experiments at quantum chromodynamics (QCD), 20 Tesla for sale PSI have provided important limits the candidate field theory of quark on the masses of the electron-type interactions and, with the electro- An Oxford Instruments supercon• and muon-type neutrinos. weak picture, one of the twin fa• ducting solenoid magnet which has When the muon does decay, it cets of Standard Model formalism. exceeded 20 Tesla is now available goes most of the time into an elec• Muon capture on hydrogen has commercially. Although higher tron and a pair of suitably labelled been a challenge to experimental• fields have been achieved with lab• neutrinos. The strength of this de• ists; the process is rare and is oratory magnets, this is said to be cay is one of the basic input para• masked by atomic and molecular the most powerful such magnet on meters of the electroweak picture effects, but a new generation of the market. within the Standard Model. Careful studies is planned at meson facto• Operating at 2.15 K, the 32 mm analysis of the spins of the muon ries. diameter coil uses niobium-titanium and the electron in these decays, Atomic and molecular physics wire for the outer windings with together with studies of the scat• again emerges as a dominant the inner sections of niobium-tin tering of muon-type neutrinos off theme in the interaction of muons optimized for high field use. Oxford electrons, could help look beyond with hydrogen isotopes - deuter• Instruments is at Eynsham, Oxford, the Standard Model. -
A Golden Anniversary for the PS
I n t e r n at I o n a l Jo u r n a l o f HI g H -en e r g y PH y s I c s CERN COURIERV o l u m e 49 nu m b e r 9 n o V e m b e r 2009 A golden anniversary for the PS FACILITIES FIRST BEAM HEAVY IONS Towards a future A look back to the NA60 on the trail of electron–ion collider p13 start-up of LEP p23 thermal dileptons p31 CCNov09Cover.indd 1 13/10/09 10:41:35 Untitled-1 1 12/10/09 11:21:56 CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August. The views expressed are not necessarily those of the CERN management. Editor Christine Sutton Editorial assistant Carolyn Lee CERN CERN, 1211 Geneva 23, Switzerland E-mail [email protected] Fax +41 (0) 22 785 0247 Web cerncourier.com Advisory board James Gillies, Rolf Landua and Maximilian Metzger COURIERo l u m e u m b e r o V e m b e r Laboratory correspondents: V 49 N 9 N 2009 Argonne National Laboratory (US) Cosmas Zachos Brookhaven National Laboratory (US) P Yamin Cornell University (US) D G Cassel DESY Laboratory (Germany) Ilka Flegel, Ute Wilhelmsen EMFCSC (Italy) Anna Cavallini Enrico Fermi Centre (Italy) Guido Piragino Fermi National Accelerator Laboratory (US) Judy Jackson Forschungszentrum Jülich (Germany) Markus Buescher GSI Darmstadt (Germany) I Peter IHEP, Beijing (China) Tongzhou Xu IHEP, Serpukhov (Russia) Yu Ryabov INFN (Italy) Romeo Bassoli Jefferson Laboratory (US) Steven Corneliussen JINR Dubna (Russia) B Starchenko KEK National Laboratory (Japan) Youhei Morita Lawrence Berkeley Laboratory (US) Spencer Klein Taking gradients to new limits p5 A night in November p19 Herwig Schopper at 85 p36 Los Alamos National Laboratory (US) C Hoffmann Nikhef (Netherlands) Paul de Jong Novosibirsk Institute (Russia) S Eidelman News 5 NSCL (US) Geoff Koch Orsay Laboratory (France) Anne-Marie Lutz US industry-built ILC cavity reaches 41 MV/m. -
From Strangeness Enhancement to Quark-Gluon Plasma Discovery∗
August 29, 2017 0:23 ws-rv961x669 Book Title KMR_ForWalterWSHess4B page 1 From Strangeness Enhancement to Quark-Gluon Plasma Discovery∗ Peter Koch1, Berndt M¨uller2 and Johann Rafelski3 1Bitfabrik GmbH & Co. KG, D-63110 Rodgau, Germany 2Department of Physics, Duke University, Durham, NC 27708, USA 3Department of Physics, The University of Arizona, Tucson, AZ 85721, USA This is a short survey of signatures and characteristics of the quark-gluon plasma in the light of experimental results that have been obtained over the past three decades. In particular, we present an in-depth discussion of the strangeness ob- servable, including a chronology of the experimental effort to detect QGP at CERN-SPS, BNL-RHIC, and CERN-LHC. ∗Dedicated to our mentor Walter Greiner; to be published in the memorial volume edited by Peter O. Hess. 1. Introduction Just fifteen years after the coincident creation in 1964 of two great ideas governing the strong interactions | quarks and the Hagedorn temperature TH | these two concepts merged, giving birth to a new discipline, the physics of the novel fifth state of matter, the quark-gluon plasma (QGP). Today there is consensus that QGP filled the cosmos during the first 20 µs after the Big-Bang. For three decades laboratory experiments at the European Center for Particle Physics (CERN) and Brookhaven National Laboratory (BNL) have been exploring this primordial phase of matter colliding nuclei at relativistic energies. As the ideas about QGP formation in relativistic heavy ion collisions matured a practical challenge emerged: How can the locally color deconfined QGP state be distinguished from a gas of confined hadrons? In the period 1979{86 the strangeness signature of QGP was developed for this purpose, with our 1986 review1 in essence arXiv:1708.08115v1 [nucl-th] 27 Aug 2017 completing the theoretical foundations. -
People and Things
People and things cesses, such as those of Interest plore the low energy regime of to astrophysicists. Experiments at quantum chromodynamics (QCD), 20 Tesla for sale PSI have provided important limits the candidate field theory of quark on the masses of the electron-type interactions and, with the electro- An Oxford Instruments supercon• and muon-type neutrinos. weak picture, one of the twin fa• ducting solenoid magnet which has When the muon does decay, it cets of Standard Model formalism. exceeded 20 Tesla is now available goes most of the time into an elec• Muon capture on hydrogen has commercially. Although higher tron and a pair of suitably labelled been a challenge to experimental• fields have been achieved with lab• neutrinos. The strength of this de• ists; the process is rare and is oratory magnets, this is said to be cay is one of the basic input para• masked by atomic and molecular the most powerful such magnet on meters of the electroweak picture effects, but a new generation of the market. within the Standard Model. Careful studies is planned at meson facto• Operating at 2.15 K, the 32 mm analysis of the spins of the muon ries. diameter coil uses niobium-titanium and the electron in these decays, Atomic and molecular physics wire for the outer windings with together with studies of the scat• again emerges as a dominant the inner sections of niobium-tin tering of muon-type neutrinos off theme in the interaction of muons optimized for high field use. Oxford electrons, could help look beyond with hydrogen isotopes - deuter• Instruments is at Eynsham, Oxford, the Standard Model. -
QM04 Strangeness Report
Strangeness Report Federico Antinori Istituto Nazionale di Fisica Nucleare, Padova, Italy Abstract The paper provides a short report on strangeness production in ultrarelativistic nucleus- nucleus collision, with the main stress on strange particle abundances. 1. Introduction Strangeness is a vast subject. The amount of measurements relative to strange particles is huge. A major reason why strangeness is so interesting is that the strange flavour is not present at the beginning of the collision; it has to be produced by “cooking” in the reaction. The study of strangeness production, therefore, provides us with essential information about the physical environment created in nucleus-nucleus collisions. The primary piece of information is just how much strangeness is produced, i.e. the strangeness abundance. In these proceedings, many measurements involving strange particles are covered in other review papers [1-5]; I will concentrate mainly on the abundance of strange particles: particle yields and particle ratios. Our present knowledge on the pattern of enhancement of the production yields of strange and multi-strange particles in nucleus-nucleus collisions is summarised in section 2. Section 3 contains a brief discussion of the status of the comparison between experimental data and conventional hadronic transport models. Thermal equilibrium fits are discussed in section 4, while the experimental observations which may point to physics beyond equilibrium thermodynamics are discussed, rather speculatively, in section 5. The Φ mysteries are treated separately in section 6. Finally, I offer my conclusions in section 7. My oral presentation at the Quark Matter 2004 Conference also contained a selection of results on spectra from RHIC which could not find their way into the proceedings for reasons of space. -
Strange Anti-Baryons from Quark-Gluon Plasma
Volume 262, number 2,3 PHYSICS LETTERS B 20 June 1991 Strange anti-baryons from quark-gluon plasma Johann Rafelski Department of Physics, University of Arizona, Tucson, AZ 85721, USA Received 5 April 1991 Experimental results on strange anti-baryon production in nuclear S--,W collisions at 200 A GeV are described in terms of a simple model of an explosivelydisintegrating quark-lepton plasma (QGP). The importance of the strange anti-baryon signal for the identification of the QGP state and for the diagnosis of its properties is demonstrated. The general problem one encounters trying to di- The model we develop here is relatively simple and agnose by means of strongly interacting particles the is applicable mainly to the computation of ratios of presence and properties of the putative quark-gluon particle abundances within a narrow kinematic do- plasma (QGP) state of highly excited hadronic mat- main. In our approach we will only employ well es- ter is that most particles observed in high energy nu- tablished principles of statistical ensemble physics. cleus-nucleus collisions have to pass through the stage Such an approach is justified as we will be able to work of the hadronic gas (HG) consisting of individual around possible transparency, flow or spatial inhom- hadronic particles, in which their abundance and ogeneity of fireballs formed in individual nuclear col- spectrum is substantially altered. However, the com- lisions. To this objective we will consider in particu- position of the QGP phase ofhadronic matter differs lar only the narrow, central region of rapidity and from the HG phase in crucial detail: the density of particles of high transverse mass. -
Advances in Quark Gluon Plasma
Advances in Quark Gluon Plasma Gin´esMart´ınez Garc´ıa SUBATECH, CNRS/IN2P3, Ecole´ des Mines de Nantes, Universit´ede Nantes, 4 rue Alfred Kastler, 44307 Nantes, France (Dated: April 5, 2013) In the last 20 years, heavy-ion collisions have been a unique way to study the hadronic matter in the laboratory. Its phase diagram remains unknown, although many experimental and theoretical studies have been undertaken in the last decades. After the initial experiences accelerating heavy nuclei onto fixed targets at the AGS (BNL, USA) and the SPS (CERN, Switzerland), the Relativistic Heavy Ion Collider (RHIC) at BNL was the first ever built heavy-ion collider. RHIC delivered its first collisions in June 2000 boosting the heavy-ion community. Impressive amount of experimental results has been obtained by the four major experiments at RHIC: PHENIX, STAR, PHOBOS and BRAHMS. In November 2010, the Large Hadron Collider (LHC) at CERN delivered lead-lead collisions at unprecedented center-of- mass energies, 14 times larger than that at RHIC. The three major experiments, ALICE, ATLAS and CMS, have already obtained many intriguing results. Needless to say that the heavy-ion programs at RHIC and LHC promise fascinating and exciting results in the next decade. The first part of the lectures will be devoted to introduce briefly the QCD descrip- tion of the strong interaction (as part of the Standard Model of Particle Physics) and to remind some basic concepts on phase transitions and on the phase diagram of matter. In the second part, I will focus on the properties of matter at energy densities above ≈1 GeV/fm3. -
J/Psi $ Yield Modification in 200 Gev Per Nucleon Au+Au
Florida State University Libraries 2016 J/# Yield Modification in 200 GeV Per Nucleon Au+Au Collisions with the PHENIX Experiment at RHIC Jeffrey Klatsky Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES J/ψ YIELD MODIFICATION IN 200 GEV PER NUCLEON AU+AU COLLISIONS WITH THE PHENIX EXPERIMENT AT RHIC By JEFFREY CURRY KLATSKY A Dissertation submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2016 Copyright c 2016 Jeffrey Curry Klatsky. All Rights Reserved. Jeffrey Curry Klatsky defended this dissertation on April 7, 2016. The members of the supervisory committee were: Anthony Frawley Professor Co-Directing Dissertation Volker Crede Professor Co-Directing Dissertation Tim Cross University Representative Susan Blessing Committee Member Simon Capstick Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii To my parents, without whose constant love and support I would have quit long ago. iii ACKNOWLEDGMENTS I want to say something like, “Wow, I honestly don’t know how I made it this far.” But that would be a lie, because there is no doubt in my mind that I’ve only made it this far because of the countless people that have helped me in one way or another during my time as an FSU grad student. I have eight years worth of people to thank, so if a momentary lapse in my failing memory has caused me to forget you, I deeply apologize.