Impact-Basin Control of Channels and Valleys on Mars

Total Page:16

File Type:pdf, Size:1020Kb

Impact-Basin Control of Channels and Valleys on Mars IMPACT-BASIN CONTROL OF CHANNELS AND VALLEYS ON MARS. Peter H. Schultz, Lunar and Planetary Institute, Houston, TX., John L. Rogers, American Petrofina, Houston, TX., and R. A. Schul tz, Arizona State University, Tempe,AZ. The number of large (>ZOO km) basins on Mars generally has been regarded as deficient relative to the Moon and Mercury (1,2,3). However, a new survey (4) identifies nearly 20 additional mu1 ti-ring structures ranging in size from 200 km to 1200 km in diameter (outer ring). These relict basins are recog- nized by the concentric arrangement of massifs, scarps, and plains units accentuated by a systematic pattern of differential erosion and reactivation of ring faults. These ancient impact basins provide important. information for the evolution of the early martian crust. First, the effective masking and erasure of impact basins indicate the extensive erosional and depositional processes characterizing early martian history. Second, the reactivation of buried basin structures reveals the long-lasting and deep-seated imprint from early basin-forming impacts. Third, the style and pattern of basin . reactivation provides important clues for the origin of basin ring plans. Fourth, basin distribution and interassociation with regional volcanism (Isidis) and tectonism (Val 1is Marineris) underscore the underestimated role of basins on later geologic evolution of the crust. And fifth, ancient impact basins appear to control the distribution and arrangement of martian channels and valleys. This last observation has implications for the evolution and recycling of martian volatiles and is further considered below. Outflow Channels: Aram (21. "SW, 2. "7N) and Ladon (2g0W, 18"s) basins best illustrate the association of large outflow channels and multi-ring structure. Aram basin exhibits four concentric rings with an outer ring diameter of 550 km. Ares Valles originated in Iani Chaos ( a chaotic terrain along an outer ring of Aram basin) and in Aram Chaos, which forms the central portion of Aram basin. Ares Valles was topographically and structurally controlled by Aram Basin until it breached the outer ring to the north and continued toward Chrysie. Similarly, Hydaspis Chaos is a region of chaotic terrain along the same outer ring coincident with Iani Chaos and is a source region for two outflow channels, the northeast branch following the outer ring plan and joining Ares Valles at the northern breach. Ladon Basin has a major outflow channel that originated along an inner 580 km diameter ring, ponded at the base of the outer975 km ring, and enlarged as it breached this ring and proceeded northeastward. Ladon Val les (28"W, 23"s) originated along the base of an inner 260 km diameter ring of a multi-ring structure that overlaps Ladon Basin. Other outflow channels, many of which are un-named, originated a1 ong the rings of heavily degraded impact basins. Al-qahira Vallis and Ma'adim Vallis began along an outer ring of a 1200 km diameter multi-ring structure and their courses were partly controlled by the ring pattern. Well-known basins such as Isidis, Hellas, and Argyre have associated outflow channels. The concentric arrangement of channel source regions around Chrysie suggest an analogous role for this degraded and buried structure. The location of channel source regions along rings of old impact basins is similar to the source regions of sinuous rilles (lava channe1s)on the Moon. The morphology of these structures, however, are obviously different and suggestive of water erosion (5,6). Consequently, it is suggested that old multi-ring impact basins provided traps for water during the early history of Mars. Renewed periods of regional volcanism/tectonism were concentrated O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System IMPACT-BAS1 N CONTROL Schultz, P. H. et. al. along reactivated ring faults in a manner similar to lunar mare volcanism, thereby resulting in hydrothermal melting of trapped ices. Such a process would have resulted in repeated ponding and catastrophic release of material. Narrow Valleys: Ancient impact basins also exhibit extensive networks of narrow valleys, such as those described in (7). They are most numerous in regions corresponding to basin ejecta facies and around massifs of older basins. Maps showing the occurrence of narrow valley networks and the style of massif mass wasting provide clues for the origin of such valleys. The oldest structures (e.g. , a 1000 km-diameter basin near Copernicus; 166. "SW, 43.O5N) exhibit massifs that have been heavily furrowed and channeled. Many of these massifs have been labeled voTcanoes due to their unique appearance (8). The younger basins (e.g., Ladon and Argyre) exhibit faceted and scalloped massifs with furrowing and valley networks restricted to the outer ring regions where they occur in localized areas, e.g., along scarps. The selective occurrence of valleys around younger basins suggests an origin related to local sapping and run-off. The pervasive distribution of narrow valley networks in the ejecta facies and the heavy furrowing and channeling of basin massifs may require an early period of global warming. SUMMARY: Ancient impact basins are believed to play an important, but largely unappreciated role in the cycle of martian volatiles throughout geologic time. Narrow valley systems suggest an early period of trapping water-ri ch material in basi n-control led topographic 1ows and pemeabl e ejecta facies. Outf 1ow channels may represent episodic re-re1 ease of these volatiles through basin-control led intrusions related to regional volcanic/ tectonic processes. References : 1. Wilhelms, D. E. (1973) J. Geophys.Res. 78, p. 4084-4095. 2. Wood, C. A. and Head, ~.mocLunar Sci . Conf. 7th, p. 3629- 3651. 3. Mutch, T, A., Arivdson, R. E,, Head,J. Way 111, Jones, K- L.3 and Saunders, R. S. (1 976) The Geology of Mars, 400 pp. 4. Schul tz, P. H., ~chultz,~. A., and Rogers, 3. L. ' (1982) J.Geophys.Res. (in press). 5. Baker, V. R. and Mil ton, D. 3. (1974) Icarus 23, p.27-41. 6. Masursky, H., Boyce, 3. M., Dial, A. L., Schaber, G. G., and Strobell, M. E. (1 977) J. Geo h s. Res. 82, p. 401 6-4038. 7. Pieri, D. C. 2i5, p. 895-897. 8. Scott, D. H. and ~anmc(1981) Lunar and Planetary Science XI I, p. 952-954. - O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System .
Recommended publications
  • Thermal Studies of Martian Channels and Valleys Using Termoskan Data
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. El, PAGES 1983-1996, JANUARY 25, 1994 Thermal studiesof Martian channelsand valleys using Termoskan data BruceH. Betts andBruce C. Murray Divisionof Geologicaland PlanetarySciences, California Institute of Technology,Pasadena The Tennoskaninstrument on boardthe Phobos '88 spacecraftacquired the highestspatial resolution thermal infraredemission data ever obtained for Mars. Included in thethermal images are 2 km/pixel,midday observations of severalmajor channel and valley systems including significant portions of Shalbatana,Ravi, A1-Qahira,and Ma'adimValles, the channelconnecting Vailes Marineris with HydraotesChaos, and channelmaterial in Eos Chasma.Tennoskan also observed small portions of thesouthern beginnings of Simud,Tiu, andAres Vailes and somechannel material in GangisChasma. Simultaneousbroadband visible reflectance data were obtainedfor all but Ma'adimVallis. We find thatmost of the channelsand valleys have higher thermal inertias than their surroundings,consistent with previousthermal studies. We show for the first time that the thermal inertia boundariesclosely match flat channelfloor boundaries.Also, butteswithin channelshave inertiassimilar to the plainssurrounding the channels,suggesting the buttesare remnants of a contiguousplains surface. Lower bounds ontypical channel thermal inertias range from 8.4 to 12.5(10 -3 cal cm-2 s-1/2 K-I) (352to 523 in SI unitsof J m-2 s-l/2K-l). Lowerbounds on inertia differences with the surrounding heavily cratered plains range from 1.1 to 3.5 (46 to 147 sr). Atmosphericand geometriceffects are not sufficientto causethe observedchannel inertia enhancements.We favornonaeolian explanations of the overall channel inertia enhancements based primarily upon the channelfloors' thermal homogeneity and the strongcorrelation of thermalboundaries with floor boundaries. However,localized, dark regions within some channels are likely aeolian in natureas reported previously.
    [Show full text]
  • Evidence for Volcanism in and Near the Chaotic Terrains East of Valles Marineris, Mars
    43rd Lunar and Planetary Science Conference (2012) 1057.pdf EVIDENCE FOR VOLCANISM IN AND NEAR THE CHAOTIC TERRAINS EAST OF VALLES MARINERIS, MARS. Tanya N. Harrison, Malin Space Science Systems ([email protected]; P.O. Box 910148, San Diego, CA 92191). Introduction: Martian chaotic terrain was first de- ple chaotic regions are visible in CTX images (Figs. scribed by [1] from Mariner 6 and 7 data as a “rough, 1,2). These fractures have widened since the formation irregular complex of short ridges, knobs, and irregular- of the flows. The flows overtop and/or bank up upon ly shaped troughs and depressions,” attributing this pre-existing topography such as crater ejecta blankets morphology to subsidence and suggesting volcanism (Fig. 2c). Flows are also observed originating from as a possible cause. McCauley et al. [2], who were the fractures within some craters in the vicinity of the cha- first to note the presence of large outflow channels that os regions. Potential lava flows are observed on a por- appeared to originate from the chaotic terrains in Mar- tion of the floor as Hydaspis Chaos, possibly associat- iner 9 data, proposed localized geothermal melting ed with fissures on the chaos floor. As in Hydraotes, followed by catastrophic release as the formation these flows bank up against blocks on the chaos floor, mechanism of chaotic terrain. Variants of this model implying that if the flows are volcanic in origin, the have subsequently been detailed by a number of au- volcanism occurred after the formation of Hydaspis thors [e.g. 3,4,5]. Meresse et al.
    [Show full text]
  • Évolution De Molécules Organiques En Conditions Martiennes Simulées
    Thèse de doctorat de l’Université Paris Est (UPE) Ecole doctorale Sciences, Ingénierie et Environnement (SIE) Évolution de molécules organiques en conditions martiennes simulées Expériences en laboratoire et en orbite basse terrestre sur la Station Spatiale Internationale Présentée par : Laura ROUQUETTE Sciences de l’Univers et Environnement Spécialité Astronomie, Astrophysique Sous la direction de : Pr. Hervé Cottin et Dr. Fabien Stalport Soutenue le 19 novembre 2018 Composition du jury : Sylvain BERNARD Chargé de Recherche Rapporteur Grégoire DANGER Maître de Conférences Rapporteur Antonella BARUCCI Astronome Examinatrice Frances WESTALL Directrice de Recherche Présidente Hervé COTTIN Professeur Directeur de thèse Fabien STALPORT Maître de Conférences Co-directeur de thèse 2 3 4 Remerciements En classe de 5ème, comme tous mes camarades, j’ai eu droit au classique rendez-vous d’orientation avec une conseillère. Elle m’a demandé ce que je voulais faire plus tard. Je lui ai répondu « astrophysicienne » et comme beaucoup d’adultes avant elle, et encore d’autres après elle, elle s’est un peu moquée de mon ambition. Elle m’a néanmoins expliqué que je devais passer mon brevet des collèges, faire un bac S, une licence, un master, puis un doctorat. La route a été longue depuis ce rendez-vous d’orientation de 5ème au collège Jolimont de Toulouse, et la liste des personnes à remercier pour ce grade de « docteur », obtenu quatorze ans plus tard, l’est également. Je vais donc essayer de n’oublier personne, mais probablement en vain. Tout d’abord, merci à mes parents d’avoir été là, du début à la fin. De m’avoir appris que beaucoup de choses étaient possibles avec du travail, de ne pas avoir fait taire mes ambitions, de m’avoir valorisée tout au long de ma vie.
    [Show full text]
  • Fluid-Deposited Fracture-Margin Ridges in Margaritifer Terra, Mars
    Lunar and Planetary Science XLVIII (2017) 1185.pdf FLUID-DEPOSITED FRACTURE-MARGIN RIDGES IN MARGARITIFER TERRA, MARS. Rebecca. J. Thomas1, Sally Potter-McIntyre2 and Brian. M. Hynek1,3 1 LASP, University of Colorado, Boulder, CO 80309, USA, [email protected], 2 Southern Illinois University, Geology Department, Parkinson Lab Mailcode 4324, Carbondale, IL 62901, 3 Department of Geological Sciences, University of Colorado, 399 UCB, Boulder, CO 80309, USA. Introduction: Sites where mineral deposition oc- thermal inertia material are present superposing the curred in association with fluid flow emanating from light-toned unit, indicating its original presence over a the subsurface are excellent targets at which to seek larger proportion of the floor. The floor fill is cross-cut evidence for past life on Mars. This is because aqueous by multiple fractures up to 650 m wide. By analogy environments are favorable to life, and precipitated with other impact craters in the region, where exposure minerals have the potential to encase biosignatures, of light-toned brecciated material (LTBr) from beneath protecting them from degradation in the oxidizing envi- a dark capping unit is clearly associated with crater- ronment at the martian surface [1,2]. We report the floor fractures, we propose that erosion was accom- occurrence of ridges at the margins of broad fractures plished by fluid upwelling from these fractures. Chan- in Margaritifer Terra, and conduct morphological and nels carved into the crater rim are consistent with over- stratigraphic analysis of two key sites to determine spill of this fluid to the surrounding terrain. At the their probable mode of formation.
    [Show full text]
  • Download Preprint
    Figure 1 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 2 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 3 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 4 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 5 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 6 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 7 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 8 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 9 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 10 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 11 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 12 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 13 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 14 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS Figure 15 SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS SUBMITTED TO JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS 1 Tectono-magmatic, sedimentary and hydrothermal history of Arsinoes and 2 Pyrrhae Chaos, Mars 3 Erica Luzzi1, Angelo Pio Rossi1, Cristian Carli2 and Francesca Altieri2 4 5 1Jacobs University, Bremen, Germany 6 2Inaf-IAPS Tor Vergata, Rome, Italy 7 Corresponding author: Erica Luzzi ([email protected]) 8 Key points 9 10 • We produced a morpho-stratigraphic map of Arsinoes and Pyrrhae Chaos, including the 11 volcanic grabens occurring throughout the study area; 12 • Spectral analyses of the light-toned deposits provide clues for sedimentary and 13 hydrothermal minerals; spectral analyses of the bedrock are indicative of basaltic 14 compositions; 15 • The observed volcano-tectonic surface features and the lack of evidences of any fluvial 16 activity suggest that magmatic processes might be primarily responsible for the collapse 17 of the chaotic terrain.
    [Show full text]
  • Modern Astronomy: Voyage to the Planets Lecture 4 the Red Planet
    Modern Astronomy: Voyage to the Planets Lecture 4 Mars the Red Planet University of Sydney Centre for Continuing Education Autumn 2005 first spacecraft to reach Mariner 4 flyby 1965 Mars Mariner 6 flyby 1969 Mariner 7 flyby 1969 Mariner 9 orbiter There have been many Mars 5 USSR orbiter 1973 spacecraft sent to orbiter/lander Viking 1 Landed Chryse Planitia Mars over the past 1976-1982 orbiter/lander Viking 2 Landed Utopia Planitia few decades. Here are 1976-1980 the successful ones, Mars Global orbiter Laser altimeter with a description of Surveyor 1997-present the highlights of each Mars Pathfinder lander & rover 1997 Landed Ares Vallis mission. 2001 Mars orbiter Studying composition Odyssey 2001-present Mars Express/ ESA orbiter + lander Geology + atmosphere Beagle 2003–present Spirit & rovers Landed Gusev Crater & Opportunity 2003–present Meridiani The Face of Mars Basic facts Mars Mars/Earth Mass 0.64185 x 1024 kg 0.107 Radius 3397 km 0.532 Mean density 3.92 g/cm3 0.713 Gravity (equatorial) 3.71 m/s2 0.379 Semi-major axis 227.92 x 106 km 1.524 Period 686.98 d 1.881 Orbital inclination 1.85o - Orbital eccentricity 0.0935 5.59 Axial tilt 25.2o 1.074 Rotation period 24.6229 h 1.029 Length of day 24.6597 h 1.027 Mars is quite small relative to Earth, but in other ways is extremely similar. The radius is only half that of Earth, though the total surface area is comparable to the land area of Earth. It take nearly twice as long to orbit the Sun, but the length of its day and its axial tilt are very close to Earth’s.
    [Show full text]
  • Martian Geomorphology and Its Relation to Subsurface Volatiles
    MECA Special Session at LPSC XVII: MARTIAN GEOMORPHOLOGY AND ITS RELATION TO SUBSURFACE VOLATILES MECA MECA Special Session at LPSC XVII: MARTIAN GEOMORPHOLOGY AND ITS RELATION TO SUBSURFACE VOLATILES edited by Stephen M. Clifford, Lisa A. Rossbacher, and James R. Zimbelman Sponsored by The Lunar and Planetary Institute Hosted by The NASA/Johnson Space Center March 17, 1986 Lunar and Planetary Institute 3303 NASA Road 1 Houstot1, Texas 77058-4399 LPI Technical Report 87 -02 Compiled in 1987 by the LUNAR AND PLANETARY INSTITUTE The Institute is operated by Universities Space Research Association under Contract NASW-4066 with the National Aeronautics and Space Administration. Material in this document may be copied without restraint for library, abstract service, educational, or personal research purposes; however, republication of any portion requires the written permission of the authors as well as appropriate acknowledgment of this publication. This report may be cited as: Clifford S. M., Rossbacher L. A., and Zimbelman J. R., eds. (1987) MECA Special Session at LPSC XVII: Martian Geomorphology and its Relation to SubsurJace Volatiles. LPI Tech. Rpt. 87-{)2. Lunar and Planetary Institute, Houston. 51 pp. Papers in this report may be cited as: Author A. A. (1986) Title of paper. In MECA Special Session at LPSC XVI!: Martian Geomorphology and its Relation to SubsurJace Volatiles (S. M. Clifford et aI., eds.), pp. XX- YY. LPI Tech Rpt. 87-{)2. Lunar and Planetary Institute, Houston. This report is distributed by: LIBRARY/ INFORMATION CENTER Lunar and Planetary Institute 3303 NASA Road I Houston, TX 77058-4399 Mail order requestors will be invoicedJor the cost oJpostage and handling.
    [Show full text]
  • Control of Exposed and Buried Impact Craters and Related Fracture Systems on Hydrogelogy, Ground Subsidence/Collapse, and Chaotic Terrain Formation, Mars
    CONTROL OF EXPOSED AND BURIED IMPACT CRATERS AND RELATED FRACTURE SYSTEMS ON HYDROGELOGY, GROUND SUBSIDENCE/COLLAPSE, AND CHAOTIC TERRAIN FORMATION, MARS. J.A.P. Rodriguez1, S. Sasaki1, J.M. Dohm2, K.L. Tanaka3, H.Miyamoto2, V.Baker2, J.A. Skinner, Jr.3,G.Komatsu4 , A.G. Fairén5 and J.C. Ferris6:1Department of Earth and Planetary Sci., Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033, Japan ([email protected]), 2Department of Hydrology and Wa- ter Resources, Univ. of Arizona, AZ 85721, 3Astrogeology Team, U.S. Geological Survey, Flagstaff, AZ 86001, 4International Research School of Planetary Sciences, Università d’Annunzio, 65127 Pescara, Italy, 5Centro de 6 Biología Molecular, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain , U.S. Geological Survey, Denver, CO, 80225. Introduction. Mars is a planet enriched by ground- source region, which may have contributed to the forma- water [1,2]. Control of subsurface hydrology by tectonic tion of the features shown in Fig. 1A,B, has been de- and igneous processes is widely documented, both for stroyed, suggesting that the formation of the moat may Earth and Mars [e.g., 3]. Impact craters result in exten- have involved hydrologic processes. In addition, a de- sive fracturing, including radial and concentric periph- pression that transects an impact crater (Fig. 1B) forms eral fault systems, which in the case of Earth have been part of a longer valley, which terminates at the western recognized as predominantly strike-slip and listric exten- margin of the Hydaspis Chaos (Fig. 1, V-B). This sce- sional, respectively [4].
    [Show full text]
  • Submitted for Publication in Journal of Geophysical Research: Planets
    Submitted for publication in Journal of Geophysical Research: Planets 1 Tectono-magmatic, sedimentary and hydrothermal history of Arsinoes and 2 Pyrrhae Chaos, Mars 3 Erica Luzzi1, Angelo Pio Rossi1, Cristian Carli2 and Francesca Altieri2 4 5 1Jacobs University, Bremen, Germany 6 2Inaf-IAPS Tor Vergata, Rome, Italy 7 Corresponding author: Erica Luzzi ([email protected]) 8 Key points 9 10 • We produced a geomorphic map of Arsinoes and Pyrrhae Chaos, including the 11 graben/fissures occurring throughout the study area; 12 • Spectral analyses of the light-toned deposits provide clues for sedimentary and 13 hydrothermal minerals; spectral analyses of the bedrock are indicative of basaltic 14 compositions; 15 • The observed volcano-tectonic surface features suggest a piecemeal caldera collapse as a 16 possible mechanism of formation for the chaotic terrains. 17 18 Abstract 19 Arsinoes and Pyrrhae Chaos are two adjacent chaotic terrains located east to Valles Marineris 20 and west to Arabia Terra, on Mars. In this work we produced a morpho-stratigraphic map of 21 the area, characterized by a volcanic bedrock disrupted into polygonal mesas and knobs 22 (Chaotic Terrain Unit) and two non-disrupted units interpreted as sedimentary and presenting 23 a spectral variation, likely associated to hydrated minerals. The reconstructed geological 24 history of the area starts with the collapse that caused the formation of the chaotic terrains. 25 Since volcano-tectonic evidences are widespread all-over the area (e.g. fissure vents/graben, 26 radial and concentric systems of faults, y-shaped conjunctions, lava flows, pit chains), and an 27 intricate system of lava conduits is hypothesized for the occurrence of such features, we 28 propose the possibility that the whole collapse was caused primarily by volcano-tectonic 29 processes.
    [Show full text]
  • Warner Et Al., 2011)
    Icarus 221 (2012) 20–42 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Topographic, spectral and thermal inertia analysis of interior layered deposits in Iani Chaos, Mars ⇑ E. Sefton-Nash a, , D.C. Catling b, S.E. Wood b, P.M. Grindrod c,d, N.A. Teanby a a School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK b Department of Earth and Space Sciences, University of Washington, 4000 15th Avenue NE, Seattle, WA 98195, USA c Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK d Centre for Planetary Sciences, University College London, Gower Street, London WC1E 6BT, UK article info abstract Article history: We present an analysis of Interior Layered Deposits (ILDs) in Iani Chaos using visible, infrared, hyperspec- Received 18 February 2012 tral and topographic datasets acquired by instruments aboard NASA’s Mars Global Surveyor, Mars Odys- Revised 25 June 2012 sey, Mars Reconnaissance Orbiter and ESA’s Mars Express spacecraft. We focus on four main regions Accepted 26 June 2012 where ILDs outcrop in Iani Chaos. Deposits span a 2 km range of elevations and exhibit moderate to Available online 6 July 2012 high albedos, layering at sub-decameter scales, thermal inertias of 300–800 J mÀ2 KÀ1 sÀ1/2 and a range of surface textures. Thermal inertia calculations use slope and azimuth corrections from High Resolution Keywords: Stereo Camera (HRSC) topography. Spectral features in hyperspectral data acquired by NASA’s Compact Mars, surface Reconnaissance Imaging Spectrometer for Mars (CRISM) suggest that gypsum (CaSO 2H O) and kieserite Geological processes 4Á 2 Spectroscopy (MgSO4ÁH2O) are present in most deposits.
    [Show full text]
  • Xanthe Terra Outflow Channel Geology at the Mars Pathfinder Landing Site
    XANTHE TERRA OUTFLOW CHANNEL GEOLOGY AT THE MARS PATHFINDER LANDING SITE. D.M. Nelson, R. Greeley. Department of Geology, Box 871404, Arizona State University, Tempe, Arizona, 85287-1404, USA. E-mail: [email protected] Summary. Geologic mapping of southern Chryse scour features; crater counts suggest an Early Hesperian Planitia and the Xanthe Terra outflow channels has age. Following sheetwash, Mawrth Vallis was formed, revealed a sequence of fluvial events which contributed possibly resulting from the discharge of floods from sediment to the Mars Pathfinder landing site (MPLS). Margaritifer and Iani Chaos. A broad area of subdued Three major outflow episodes are recognized: (1) broad terrain east of Ares Vallis indicates buried and embayed sheetwash across Xanthe Terra during the Early craters to the south of Mawrth Vallis. Floods could Hesperian period, (2) Early to Late Hesperian channel have passed over this surface before excavating Mawrth, formation of Shalbatana, Ravi, Simud, Tiu, and Ares then drained downslope into Acidalia Planitia. Valles, and (3) subsequent flooding which deepened the Alternatively, the subdued area could be a spill zone channels to their current morphologies throughout the formed during the early excavation of Ares Vallis. Late Hesperian. Materials from the most recent Channelization continued in the Late Hesperian with flooding, from Simud and Tiu Valles, and (to a lesser the development of Shalbatana, Ravi, Simud, Tiu, and extent) materials from Ares Vallis, contributed the Ares Valles. Shalbatana Vallis possibly formed by greatest amount of sediment to MPLS. subterranean discharge from Ganges Chasmata [7], and Introduction. Mars Pathfinder landed on Mars July Ravi was excavated by flooding from Aromatum 4, 1997, near the mouths of the outflow channels Ares Chaos.
    [Show full text]
  • ISPRS Abstract Book.Pdf
    ISPRS Working Group IV/7 Extraterrestrial Mapping Advances in Planetary Mapping 2007 Lunar and Planetary Institute, Houston, Tx, March 17, 2007 08:30 Registration 09:00 Welcome / Logistics Oral Presentations Moon Chair persons: J. Oberst and J. Haruyama 09:05 – 09:20 Report on the final completion of the unified Lunar control network 2005 and Lunar topographic model B.A. Archinal, M.R. Rosiek, R.L. Kirk, T.L. Hare, and B.L. Reddin 09:20 – 09:35 Global mapping of the Moon with the Lunar Imager/Spectrometer on SELENE J. Haruyama, M. Ohtake, T. Matunaga, T. Morota, C. Honda, M. Torii, Y. Yokota, H. Kawasaki, and LISM working group 09:35 – 09:50 Lunar orbiter laser altimeter on Lunar Reconnaissance Orbiter G. A. Neumann, D. E. Smith, and M. T. Zuber 09:50 – 10:05 LROC – Lunar Reconnaissance Orbiter Camera M.S. Robinson, E.M. Eliason, H.Hiesinger, B.L. Jolliff, A.S. McEwen, M.C. Malin, M.A. Ravine, D. Roberts, P.C. Thomas, and E.P. Turtle Coffee and Poster Viewing Methods in Planetary Mapping Chair persons: J. Haruyama and J. Oberst 10:35 – 10:50 Toward machine geomorphic mapping of planetary surfaces T.F. Stepinski 10:50 – 11:05 MR PRISM - an Image analysis tool and GIS for CRISM A.J. Brown, J. L. Bishop, and M.C. Storrie-Lombardi 11:05 – 11:20 Description of the JPL planetary web mapping server L. Plesea, T.M. Hare, E. Dobinson, and D. Curkendall 11:20 – 11:35 Do we really need to put stereo cameras on landers? A.C.
    [Show full text]