Structural and Geochemical Analyses of Fragment-Rich Pseudotachylite Bodies and the Vredefort Granophyre of the Vredefort Impact Structure, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Structural and Geochemical Analyses of Fragment-Rich Pseudotachylite Bodies and the Vredefort Granophyre of the Vredefort Impact Structure, South Africa Structural and Geochemical Analyses of fragment-rich pseudotachylite bodies and the Vredefort Granophyre of the Vredefort Impact Structure, South Africa Thesis submitted to the Department of Earth Sciences, Free University of Berlin, Germany, in partial fulfilment of the requirements for the degree of Doctor rerum Naturum. Department of geoscience (FB Geowissenschaften) at the Freie Universität Berlin supported by the Museum für Naturkunde, Humboldt-Universität Daniel Lieger Berlin 2011 Structural and Geochemical Analyses of fragment-rich pseudotachylite bodies and the Vredefort Granophyre of the Vredefort Impact Structure, South Africa Daniel Lieger 1. Gutachter: Prof. Dr. Harry Becker 2. Gutachter: Prof. Dr. Ulrich Riller Disputation am: 16.05.2011 1 ZUSAMMENFASSUNG Meteoriteneinschläge (Impakte) werden heute als eine der wichtigsten Prozesse in der planetaren Geologie angesehen. Obwohl detaillierte strukturelle, petrografische und geochemische Studien von terrestrischen Impaktstrukturen existieren, sind deren Daten und Zusammenhänge kaum verstanden. Unsicherheiten existieren vor allem in der geometrischen und kinematischen Bedeutung von Dislokationszonen, der zeitlichen und mechanischen Bedeutung zwischen kontinuierlicher und diskontinuierlicher Deformation während der Zentralbergbildung sowie in der Entstehung und Platznahme der pseudotachylitischen Schmelze von großen fragmentreichen Körpern. Die vorliegende Arbeit untersucht die Entstehung des Zentralberges und der fragmentreichen pseudotachylitischen Zonen der komplexen, 2.023±4 Ga alten Vredefort Impaktstruktur in Südafrika. Der zentrale Bereich der Vredefort Impaktstruktur, der sogenannten Vredefort Dome, repräsentiert den erodierten Rest der angehobenen Gesteinspakete des Zentralberges. Der Vredefort Dome umfasst einen 40 Kilometer breiten archaischen Kern (Vredefort Core) bestehend aus migmatischen Gneisen mit einer Tonalit-Trondhjemit-Granodiorit- Vergesellschaftung sowie granitoide Plutone und Gesteine des Grünsteingürtels. Dieser innere Bereich des Vredefort Domes ist umgeben von dem 15-20 Kilometer breiten „Collar“, der aus steil gestellten bis überkippten, 3.07 bis 2.1 Ga alten Metasedimentgesteinen sowie intrudierten Alkaligraniten und Dioriten besteht. Das Vorkommen der Pseudotachylite ist die Gemeinsamkeit aller Gesteine des gesamten Vredefort Domes. Die Pseudotachylite kommen als unregelmäßig verlaufende, Millimeter bis Zentimeter breite Gänge sowie Dezimeter bis einige zehner Meter mächtige Körper mit meist scharfem Kontakt zum Nebengestein vor. Die Präsenz von stoßwellenmetamorphen Mineralen in einigen kleinen Gängen zeigt, dass diese Gänge das Produkt von Wechselwirkung der Stoßwelle mit dem Zielgestein sind. Zusätzlich entsteht bei der Wechselwirkung Reibungswärme, die ebenfalls verantwortlich für lokal gebildete Schmelzen ist. Reibungsschmelzen in Impaktstrukturen können auch ohne Einwirkung der Stoßwelle entstehen, indem Kraterrandschollen an übersteilten Kraterrändern an listischen Störungen abgleiten und Pseudotachylite bilden. Jedoch können weder stoßwelleninduzierte Schmelzen noch 2 Reibungsschmelzen die Vorkommen von Meter mächtigen Pseudotachyliten in den Impaktstrukturen erklären. Die umfangreiche strukturelle Analyse dieser Arbeit von dem prä-impakt Mineralgefüge und fragmentreichen Pseudotachyliten des Vredefort Domes hat gezeigt, dass die Gefüge und Pseudotachylite radial und konzentrisch hinsichtlich des Kraterzentrums angeordnet sind. Dabei ergab die Gefügeanalyse eine nordwest-südost streichende Spiegelebene. Die Gefügesymmetrie ist konsistent mit einer vertikalen Dehnung und Anhebung des inneren Kernbereichs sowie einer auswärts gerichteten Rotation und Dilatation des äußeren Kernbereichs, was durch numerische Modellierungen von Impaktereignissen berechnet wurde. Die symmetrische Anordnung, Geometrie und Brekzienintensität von pseudotachylitischen Körper stimmen mit der Verformung überein, die ebenfalls die numerischen Modelle wiedergaben. Mit Hilfe petrografischer und geochemischer Analysen sollte der Impaktschmelzsee als Quelle für die großen fragmentreichen Pseudotachylite bestätigt werden. Der Vergleich von geochemischen Daten der fragmentreichen Pseudotachylite mit denen der unmittelbaren Nebengesteinstypen zeigte, dass diese signifikant voneinander abweichen und dass die Assimilation des Nebengesteins die Schmelzzusammensetzung der pseudotachylitischen Schmelze modifizierte. Die chemischen Trends der kompositionellen Abweichung von Meter breiten fragmentreichen Pseudotachyliten vom direkten Nebengestein sind konsistent mit der Präsenz einer allochthonen granitoiden Schmelze, deren Zusammensetzung dem Vredefort Granophyr ähnelt. Der Vredefort Granophyr gilt als das Produkt der Differentiation des originalen Impaktschmelzsees. Die Untersuchung des Schmelztransportes anhand Zentimeter zu Meter breiten pseudotachylitischen Körpern ergab einen gerichteten Schmelztransport von großen in kleine pseudotachylitische Körper und Apophysen. Mit Hilfe der Mineralogie von Sulfiden und Silikaten wurde die Temperatur dieser Schmelze zwischen 1200-1700 °C bestimmt. Die Analysen der strukturellen und geochemischen Daten zeigten, dass in der Spätphase der Kraterbildung eine allochthone Schmelze aus dem überhitzten Impaktschmelzsee in Extensionsbrüche im Kraterboden intrudiert sein muss, um fragmentreiche Pseudotachylite zu bilden. Es ist wahrscheinlich, dass während des Kollapses des Zentralberges und der auswärts gerichteten Gesteinsbewegung die Schmelzbewegung dem Druckgradienten folgte und in fragment-reiche Dilatationszonen intrudierte. 3 Zusätzlich zur geochemischen Analyse der pseudotachylitischen Körper wurden geochemische Daten vom Vredefort Granophyr ermittelt, um den Einfluss der Impaktschmelze auf fragmentreichen Pseudotachylite zu bestimmen. Strukturell ähneln sich die Vorkommen der fragmentreichen Pseudotachylite und Vredefort Granophyre. Die Vredefort Granophyre sind ebenfalls radial und konzentrisch hinsichtlich des Kraterzentrums angeordnet. Jedoch durchschlagen sie, im Gegensatz zu den fragmentreichen Pseudotachyliten, den Kontakt zwischen dem Archaischen „Core“ und dem proterozoischen „Collar“. Geochemische Untersuchungen von Vredefort Granophyrgängen ergab eine chemische Heterogenität zwischen Gängen im Vredefort „Core“ und denen, die im „Core“ und „Collar“ verlaufen sowie innerhalb einzelner Gänge. Innerhalb der Gänge wurden zusätzlich neben den chemischen auch texturelle Unterschiede sowie unterschiedliche Fragmentverteilungen festgestellt, die sich in zwei Zonen trennen lassen. Diese beiden Zonen innerhalb der Vredefort Granophyre geben dabei zwei Intrusionsphasen an. Die strukturelle Betrachtung dieser Gänge deutet darauf hin, dass die Vredefort Granophyr-Impaktschmelze in ein Bruchsystem intrudierte, welches erst während der isostatischen Ausgleichsbewegung der darunterliegenden Kruste zehntausende Jahre später angelegt wurde. 4 ABSTRACT Despite the fact that large meteorite impacts belong to one of the most processes in planetary geology, detailed structural, petrographic and geochemical studies of terrestrial impact structures, let alone of large complex ones, are little understood. Major uncertainties centre around the geometric and kinetematic significance of prominent dislocations, the temporal and mechanical relationships between continuous and discontinuous deformation during formation of the central uplift as well as the formation and emplacement of pseudotachylitic melt in large breccia bodies. This study investigated the formation of the central uplift structure and pseudotachylitic breccia zones of the large, complex 2023±4 Ma old Vredefort Impact Structure. The central portion of the impact structure, the so-called Vredefort Dome, is the eroded relic of structurally uplifted rocks, generally referred to as the central uplift. The Vredefort Dome consists of a core, ca. 40 km in diameter, of a predominantly polydeformed Archean migmatitic gneisses, with subsidiary tonalite-trondhjemite-granodiorite assemblage, syn-tectonic granitoids and remnants of greenstone units. The core is surrounded by a 15-20 km wide ‘collar’ of subvertical to overturned, 3.07 and 2.1 Ga supracrustal strata that were deposited unconformably on the Archean crystalline basement rocks. The Vredefort dome is well known for its prominent pseudotachylite zones. The geometry of these zones ranges from mm- to cm-wide veins, dm- to m-scale dike-like bodies to tens of metres wide, irregular but overall planar zones. The presence of shock-metamorphic minerals in some very thin bodies indicates that these bodies were formed as a result of shock heating, whereby shear heating by friction may well have contributed to localized melting. However, neither in situ shock-induced nor frictional melting can explain the local occurrence of hundreds of meter wide pseudotachylite bodies. Comprehensive structural analysis of pre-impact mineral fabrics and properties of fragment-rich pseudotachylite in the Vredefort Dome have shown that these fabrics and pseudotachylite zones have commonly radial or concentric trends. The high spatial coverage of the data revealed that fabric strike is symmetric about a NW-SE striking vertical mirror plane passing through the Dome centre. The fabric symmetry is consistent with vertical stretching and uplift of the inner core and outward rotation and dilation in the outer core zone as is predicted for rocks at the current erosion level by numerical modelling of the impact event. More specifically, the well- 5 developed centro-symmetric
Recommended publications
  • AND GEOLOGY of the SURROUNDING AREA I
    . " ... , - .: ~... GP3/10 ~ " . :6',;, J .~~- -i-~ .. '~ MANITOBA MINES BRANCH DEPARTMENT OF MfNES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO~EXPLOSION CRATER .. AND GEOLOGY OF THE SURROUNDING AREA i . , - by H. R. McCabe and B. B. Bannatyne Geological Paper 3/70 Winnipeg 1970 Electronic Capture, 2011 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. (i) GP3/10 MANITOBA M]NES BRANCH DEPARTMENT OF MINES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO·EXPLOSION CRATER AND GEOLOGY OF THE SURROUNDING AREA by H. R. McCabe and B. B. Bannatync • Geological Paper 3/70 Winnipeg 1970 (ii) TABLE OF CONTENTS Page Introduction' r Previous work I .. Present work 2 Purpose 4 Acknowledgcmcnts 4 Part A - Regional geology and structural setting 4 Post-Silurian paleogeography 10 Post-crater structure 11 Uthology 11 Precambrian rocks 12 Winnipeg Fomlation 13 Red River Fomlation 14 Stony Mountain Formation 15 Gunn Member 15 Gunton Member 16 Stoncwall Formation 16 Interlake Group 16 Summary 17 Part B - Lake St. Martin crypto-explosion crater 33 St. Martin series 33 Shock metamorphism 33 Quartz 33 Feldspar 35 Biotite 35 Amphibole 36 Pseudotachylyte 36 Altered gneiss 37 Carbonate breccias 41 Polymict breccias 43 Aphanitic igneous rocks - trachyandcsitc 47 Post·crater Red Beds and Evaporites (Amaranth Formation?) 50 Red Bed Member 50 Evaporite Member 52 Age of Red Bed·Evaporite sequence 53 Selected References 67 .
    [Show full text]
  • The Tennessee Meteorite Impact Sites and Changing Perspectives on Impact Cratering
    UNIVERSITY OF SOUTHERN QUEENSLAND THE TENNESSEE METEORITE IMPACT SITES AND CHANGING PERSPECTIVES ON IMPACT CRATERING A dissertation submitted by Janaruth Harling Ford B.A. Cum Laude (Vanderbilt University), M. Astron. (University of Western Sydney) For the award of Doctor of Philosophy 2015 ABSTRACT Terrestrial impact structures offer astronomers and geologists opportunities to study the impact cratering process. Tennessee has four structures of interest. Information gained over the last century and a half concerning these sites is scattered throughout astronomical, geological and other specialized scientific journals, books, and literature, some of which are elusive. Gathering and compiling this widely- spread information into one historical document benefits the scientific community in general. The Wells Creek Structure is a proven impact site, and has been referred to as the ‘syntype’ cryptoexplosion structure for the United State. It was the first impact structure in the United States in which shatter cones were identified and was probably the subject of the first detailed geological report on a cryptoexplosive structure in the United States. The Wells Creek Structure displays bilateral symmetry, and three smaller ‘craters’ lie to the north of the main Wells Creek structure along its axis of symmetry. The question remains as to whether or not these structures have a common origin with the Wells Creek structure. The Flynn Creek Structure, another proven impact site, was first mentioned as a site of disturbance in Safford’s 1869 report on the geology of Tennessee. It has been noted as the terrestrial feature that bears the closest resemblance to a typical lunar crater, even though it is the probable result of a shallow marine impact.
    [Show full text]
  • Do Faults Preserve a Record of Seismic Slip: a Second Opinion
    Journal of Structural Geology 78 (2015) 1e26 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Review article Do faults preserve a record of seismic slip: A second opinion * Christie D. Rowe a, , W. Ashley Griffith b a Department of Earth & Planetary Sciences, McGill University, 3450 University St., Montreal, QC H3A 0E8, Canada b Department of Earth and Environmental Sciences, University of Texas at Arlington, Box 19049, Arlington, TX 76019, USA article info abstract Article history: Exhumed fault zones offer insights into deformation processes associated with earthquakes in unpar- Received 31 January 2015 alleled spatial resolution; however it can be difficult to differentiate seismic slip from slow or aseismic Received in revised form slip based on evidence in the rock record. Fifteen years ago, Cowan (1999) defined the attributes of 5 June 2015 earthquake slip that might be preserved in the rock record, and he identified pseudotachylyte as the only Accepted 9 June 2015 reliable indicator of past earthquakes found in ancient faults. This assertion was based on models of Available online 12 June 2015 frictional heat production (Sibson, 1975, 1986) providing evidence for fast slip. Significant progress in fault rock studies has revealed a range of reaction products which can be used to detect frictional heating Keywords: Fault rocks at peak temperatures less than the melt temperature of the rock. In addition, features formed under Paleoseismology extreme transient stress conditions associated with the propagating tip of an earthquake rupture can Pseudotachylyte now be recognized in the rock record, and are also uniquely seismic.
    [Show full text]
  • Impact Melt Rocks in the "Cretaceous
    Large Meteorite Impacts (2003) alpha_t-z.pdf Contents — T through Z Locations and Compositions of Mare Ponds in South Pole-Aitken Basin on the Moon and Its Implication to the Impact Tectonics T. Takata and S. Hori ............................................................................................................................. 4058 New Laboratory Results on Field Sections at the Impact Crater of Araguainha (MT, GO, Brazil). Area of Proximal and Distal Impact Ejecta, Including Microspherules Dated from the End of Permian J. M. Théry, A. Crosta, E. Veto Akos, E. Bilal, K. Gal-Solymos, and E. Dransart................................. 4096 Techniques of Shock Wave Experiments and Determination of Hugoniot Data of Solids K. Thoma................................................................................................................................................ 4134 Differential Stress-controlled Deformation of Quartz During and After Hypervelocity Impact — Microstructural Evidence from the Charlevoix Impact Structure, Quebéc, Canada C. A. Trepmann and J. G. Spray............................................................................................................. 4026 Mjølnir Marine Crater Resulting from Oblique Impact: Compelling Evidence F. Tsikalas and J. I. Faleide................................................................................................................... 4005 A New Mid- to Late-Maastrichtian Impact in the Raton Basin 100m Below the K/T Boundary P. Turner, S. C. Sherlock, P. Clarke, and
    [Show full text]
  • Spay-Frictional Melting
    EA38CH09-Spray ARI 23 March 2010 21:35 Frictional Melting Processes in Planetary Materials: From Hypervelocity Impact to Earthquakes John G. Spray Planetary and Space Science Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada; email: [email protected] Annu. Rev. Earth Planet. Sci. 2010. 38:221–54 Key Words First published online as a Review in Advance on comminution, fault lubrication, shock veins January 28, 2010 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org by University of Central Florida on 08/25/10. For personal use only. Frictional melting is the result of the conversion of mechanical deforma- This article’s doi: tion to heat under adiabatic conditions of slip. Within planetary materials, 10.1146/annurev.earth.031208.100045 which are mainly natural ceramics, frictional melting occurs at high strain − − − Copyright c 2010 by Annual Reviews. rates (typically >10 2 s 1) and at slip velocities greater than 0.1 m s 1.The Annu. Rev. Earth Planet. Sci. 2010.38:221-254. Downloaded from arjournals.annualreviews.org All rights reserved pathway to friction melting is controlled by the mechanical properties of a 0084-6597/10/0530-0221$20.00 rock’s constituent minerals, especially fracture toughness. Minerals with the lowest fracture toughnesses and breakdown temperatures are preferentially comminuted and fused to form the melt. The product is a polyphase suspen- sion comprising mineral and rock fragments enclosed in a liquid matrix. This cools to form the rock type known as pseudotachylyte, and at even higher strain rates, it forms shock veins in meteorites and in impact craters, which may contain high-pressure mineral polymorphs.
    [Show full text]
  • Meteorite Impacts, Earth, and the Solar System
    Traces of Catastrophe A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures Bevan M. French Research Collaborator Department of Mineral Sciences, MRC-119 Smithsonian Institution Washington DC 20560 LPI Contribution No. 954 i Copyright © 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any portion thereof requires the written permission of the Insti- tute as well as the appropriate acknowledgment of this publication. Figures 3.1, 3.2, and 3.5 used by permission of the publisher, Oxford University Press, Inc. Figures 3.13, 4.16, 4.28, 4.32, and 4.33 used by permission of the publisher, Springer-Verlag. Figure 4.25 used by permission of the publisher, Yale University. Figure 5.1 used by permission of the publisher, Geological Society of America. See individual captions for reference citations. This volume may be cited as French B. M. (1998) Traces of Catastrophe:A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston. 120 pp. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone:281-486-2172 Fax:281-486-2186 E-mail:[email protected] Mail order requestors will be invoiced for the cost of shipping and handling. Cover Art.“One Minute After the End of the Cretaceous.” This artist’s view shows the ancestral Gulf of Mexico near the present Yucatán peninsula as it was 65 m.y.
    [Show full text]
  • Shatter Cones in Hypervelocity Impact Experiments: Structure, Formation and Comparison to Natural Impact Craters
    Shatter cones in hypervelocity impact experiments: Structure, formation and comparison to natural impact craters DISSERTATION Zur Erlangung des akademischen Grades “doctor rerum naturalium“ (Dr. rer. nat.) Der Fakultät für Umwelt und natürliche Ressourcen Der Albert-Ludwigs-Universität Freiburg i. Brsg. vorgelegt von Jakob Wilk Geb. in Berlin, Pankow Freiburg im Breisgau 2017 Dekan: Prof. Dr. Tim Freytag Erstbetreuer/Referent: Prof. Dr. Thomas Kenkmann Korreferent: Prof. Dr. Alex Deutsch Zweitbetreuer: Prof. Dr. Stefan Hergarten Tag der Disputation: ABSTRACT Impact processes have dominated the formation and development of planetary bodies in our solar system. The study of impact crater formation provides deeper knowledge of early Earth’s history and enables us to understand a surface process profoundly shaping the surface of most rocky planetary bodies. The highly dynamic process of impact cratering causes a series of characteristic effects in the targeted rocks, which are referred to as shock metamorphic effects. These shock effects provide a valuable tool to analyze impact craters and their formation. Shatter cones are diagnostic for shock metamorphism. They are the only macroscopic effect caused by shock, thus, being unambiguously identifiable in the field, provide a valuable tool to find and verify impact structures. Over the last decades, hypervelocity impact experiments and shock recovery experiments fundamentally enhanced our understanding of impact cratering, by controlled laboratory conditions. With this technique, e.g., microscopic effects were calibrated to corresponding shock pressures, or the effect of target properties on the cratering process was extensively studied. However, in only few experiments shatter cones were found and analyzed. Thus, the conditions of shatter cone formation remained unclear.
    [Show full text]
  • Evidence for a Late Triassic Multiple Impact Event on Earth
    letters to nature (1 3 1 km) images of visible reflectance and infrared brightness span 43.58 of palaeolongitude. These structures may thus repre- temperature from a companion instrument ATSR-2, to estimate sent the remains of a crater chain at least 4,462 km long. The cloud fraction, cloud-top height and other cloud and surface Obolon’ and Red Wing craters, on the other hand, lie on great parameters. M circles of identical declination with Rochechouart and Saint Martin, respectively. We therefore suggest that the five impact Received 29 November 1996; accepted 9 December 1997. structures were formed at the same time (within hours) during a 1. Houghton, J. T. et al. (eds) Climate Change 1994, Part 1, Radiative Forcing of Climate Change (Cambridge Univ. Press, 1995). multiple impact event caused by a fragmented comet or asteroid 2. Houghton, J. T. et al. (eds) Climate Change 1995 (Cambridge Univ. Press, 1996). colliding with Earth. 3. Hollandsworth, S. M. et al. Ozone trends deduced from combined NIMBUS-7 SBUV and NOAA-11 SBUV/2 data. Geophys. Res. Lett. 22, 905–908 (1995). Approximately 150 impact structures are now known on Earth, 3 8 4. McPeters, R. D., Hollandsworth, S. M., Flynn, L. E., Herman, J. R. & Seftor, C. J. Long-term ozone most of which are ,200 Myr old . They represent a small portion of trends derived for the 16-year combined Nimbus 7 Meteor 3 TOMS Version 7 record. Geophys. Res. what would have been a much larger number, most structures Lett. 23, 3699–3702 (1996). 5. WMO, Report of the International Ozone Trends Panel 1988 Vol.
    [Show full text]
  • Impact Crater Processes in the MSL Landing Sites
    Impact crater processes and MSL landing sites – Potential for impact hydrothermal deposits associated with a) megabreccia and b) thick hot ejecta? Potential for crater lake sediments? Horton Newsom, Jim Bell, Dawn Sumner, John Spray, Shawn Wright Mars data and cratering information - thanks to numerous contributors to the previous landing site meetings and LSWG activities, including David Kring, Michelle Minitti, Peter Schultz Landing site craters – Large! ◦ Gale Crater – 155 km diameter ◦ Holden Crater – 154 km ◦ Oyama Crater (Mawrth) – 107 km ◦ Eberswalde Crater – 65 km Terrestrial analogs ◦ Chicxulub, Mexico – 150 km diameter Impact melt-bearing breccias in ejecta with hydrothermal clay deposits ◦ Vredefort, S.A. – 160 km Deeply eroded with pseudotachylyte dikes ◦ Manicouagan, Canada – 80 km Megabreccia, and hydrothermal alteration - smectite etc. ◦ Ries, Germany – 24 km Melt-bearing breccias in ejecta (suevite) – limited hydrothermal alteration MSL Access M? H E G? H? E? All All All Clays - Impact hydrothermal origin? ◦ Gale Ellipse – Fe/Mg clay (possible hydrothermal debris from crater wall) Mound – Fe-rich smectite clay (unlikely to be impact related) ◦ Mawrth Ellipse – Fe-rich smectite clay, Al-rich clay (possible hydrothermal alteration from eroded Oyama impact melt layer) ◦ Holden Crater rim wall and landing site fan – Fe/Mg clay and (mixed layer clays suggest possible impact hydrothermal materials) Ellipse - Fe/Mg clay (possible hydrothermal debris from crater wall and megabreccia) Go-to sites – Fe/Mg clay, Megabreccia
    [Show full text]
  • 39Ar Age for the Rochechouart Impact Structure: at Least 5 
    Meteoritics & Planetary Science 52, Nr 8, 1600–1611 (2017) doi: 10.1111/maps.12880 A new high-precision 40Ar/39Ar age for the Rochechouart impact structure: At least 5 Ma older than the Triassic–Jurassic boundary Benjamin E. COHEN1,2,* , Darren F. MARK1,3, Martin R. LEE2 , and Sarah L. SIMPSON2 1NERC Argon Isotope Facility, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride G75 0QF, UK 2School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK 3Department of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK *Corresponding author. E-mail address: [email protected] (Received 19 August 2016; revision accepted 19 March 2017) Abstract–The Rochechourt impact structure in south-central France, with maximum diameter of 40–50 km, has previously been dated to within 1% uncertainty of the Triassic– Jurassic boundary, at which time ~30% of global genera became extinct. To evaluate the temporal relationship between the impact and the Triassic–Jurassic boundary at high precision, we have re-examined the structure’s age using multicollector ARGUS-V 40Ar/39Ar mass spectrometry. Results from four aliquots of impact melt are highly reproducible, and yield an age of 206.92 Æ 0.20/0.32 Ma (2r, full analytical/external uncertainties). Thus, the Rochechouart impact structure predates the Triassic–Jurassic boundary by 5.6 Æ 0.4 Ma and so is not temporally linked to the mass extinction. Rochechouart has formerly been proposed to be part of a multiple impact event, but when compared with new ages from the other purported “paired” structures, the results provide no evidence for synchronous impacts in the Late Triassic.
    [Show full text]
  • Vredefort Dome
    World Heritage Scanned Nomination File Name: 1162.pdf UNESCO Region: AFRICA __________________________________________________________________________________________________ SITE NAME: Vredefort Dome DATE OF INSCRIPTION: 15th July 2005 STATE PARTY: SOUTH AFRICA CRITERIA: N (i) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Decisions of the 29th Session of the World Heritage Committee Criterion (i): Vredefort Dome is the oldest, largest, and most deeply eroded complex meteorite impact structure in the world. It is the site of the world’s greatest single, known energy release event. It contains high quality and accessible geological (outcrop) sites which demonstrate a range of geological evidences of a complex meteorite impact structure. The rural and natural landscapes of the serial property help portray the magnitude of the ring structures resulting from the impact. The serial nomination is considered to be a representative sample of a complex meteorite impact structure. A comprehensive comparative analysis with other complex meteorite impact structures demonstrated that it is the only example on earth providing a full geological profile of an astrobleme below the crater floor, thereby enabling research into the genesis and development of an astrobleme immediately post impact. BRIEF DESCRIPTIONS Vredefort Dome, approximately 120km south west of Johannesburg, is a representative part of a larger meteorite impact structure, or astrobleme. Dating back 2,023 million years, it is the oldest astrobleme found on earth so far. With a radius of 190km, it is also the largest and the most deeply eroded. Vredefort Dome bears witness to the world’s greatest known single energy release event, which caused devastating global change, including, according to some scientists, major evolutionary changes.
    [Show full text]
  • Shock Metamorphism in Ordinary Chondrites
    Shock Metamorphism in Ordinary Chondrites: Constraining Pressure and Temperature History by Jinping Hu A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved July 2016 by the Graduate Supervisory Committee: Thomas Sharp, Chair James Tyburczy Kurt Leinenweber Meenakshi Wadhwa Mikhail Zolotov ARIZONA STATE UNIVERISTY August 2016 ABSTRACT Shock metamorphism in meteorites constrains the impact histories of asteroids and planets. Shock-induced high-pressure (HP) minerals can provide more precise estimates of shock conditions than shock-induced deformation effects. In this research, I use shock features, particularly HP minerals, in ordinary-chondrite samples to constrain not only shock pressures but also the pressure-temperature-time (P-T-t) paths they experienced. Highly shocked L5/6 chondrites Acfer 040, Mbale, NWA 091 and Chico and LL6 chondrite NWA 757 were used to investigate a variety of shock pressures and post-shock annealing histories. NWA 757 is the only highly shocked LL chondrite that includes abundant HP minerals. The assemblage of ringwoodite and majoritic garnet indicates an equilibration shock pressure of ~20 GPa, similar to many strongly shocked L chondrites. Acfer 040 is one of the only two chondrite samples with bridgmanite (silicate perovskite), suggesting equilibration pressure >25 GPa. The bridgmanite, which is unstable at low- pressure, was mostly vitrified during post-shock cooling. Mbale demonstrates an example of elevated post-shock temperature resulting in back-transformation of ringwoodite to olivine. In contrast, majoritic garnet in Mbale survives as unambiguous evidence of strong shock. In these two samples, HP minerals are exclusively associated with shock melt, indicating that elevated shock temperatures are required for rapid mineral transformations during the transient shock pulse.
    [Show full text]