Natural Glasses Maria Rita Cicconi, Daniel Neuville
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
STEINHEIM CRATER Steinheim Am Albuch, Steinheim Crater Is Located in the Swabain Alb
STEINHEIM CRATER Steinheim am Albuch, Steinheim crater is located in the Swabain Alb. Since the impact a small town has been built on site. However the crater still remains popular due to it being the best preserved crater with a central uplift. Formation: The Steinheim crater is the smaller partner to the Ries crater. It is located in Alb, Steinheim. It is thought that the two craters were formed 15million years ago. However, there are two theories to how the Steinheim crater formed; either a double meteorite or a 150m fragmentation of one larger impactor as it collided with the earth to form the 24km Reis crater. In either theory, the impactor travelled at around 7.2x104 km/hour impacted the Earth. This meteorite collided with the earth with a similar amount of energy as 100,000 Hiroshima bombs. It is thought that the meteorite hit the earth’s crust at an angle between 30 and 50 degrees which, on impact, caused the pressure to increase by a million bar. As the pressure rises, the temperature also increases to 30,000 degrees causing rocks to disintegrate. Formation of a complex crater Morphology The Steinheim crater is a typical complex crater. This means it has a central uplift in the centre of the crater. The central uplift has been measured to be around 1000m in diameter and be 50m above the basin floor, and the crater itself being 3.8 km in diameter and the sides measuring to ~100m deep. However according to gravity re- searchers, the crater could in fact be double the size! Because the impact crater is exposed, it is subject to erosion and weathering and therefore the morphology of the crater has changed little each year that passes. -
Bellucci Et Al. 2016 Trinitite Revised V Final
1 Direct Pb isotopic analysis of a nuclear fallout debris particle from the 2 Trinity nuclear test 3 4 5 Jeremy J. Bellucci1*, Joshua F. Snape1, Martin W. Whitehouse1, Alexander A. Nemchin1,2 6 7 *Corresponding author, email address: [email protected] 8 9 1Department of Geosciences, Swedish Museum of Natural History, SE-104 05 10 Stockholm, Sweden 11 2 Department of Applied Geology, Curtin University, Perth, WA 6845, Australia 12 13 Abstract 14 15 The Pb isotope composition of a nuclear fallout debris particle has been directly 16 measured in post-detonation materials produced during the Trinity nuclear test by a 17 secondary ion mass spectrometry (SIMS) scanning ion image technique (SII). This 18 technique permits the visual assessment of the spatial distribution of Pb and can be used 19 to obtain full Pb isotope compositions in user-defined regions in a 70 µm x 70 µm 20 analytical window. In conjunction with BSE and EDS mapping of the same particle, the 21 Pb measured in this fallout particle cannot be from a major phase in the precursor arkosic 22 sand. Similarly, the Pb isotope composition of the particle is resolvable from the 23 surrounding glass at the 2σ uncertainty level. The Pb isotope composition measured in 24 the particle here is in excellent agreement with that inferred from measurements of green 25 and red trinitite, suggesting that these types of particles are responsible for the Pb isotope 26 compositions measured in both trinitite glasses. 27 28 29 Keywords: 30 31 Trinitite, Trinity Test, Post Detonation Nuclear Forensics, Pb isotopes, SIMS, Scanning 32 Ion Imaging, Fallout Debris, Forensics 33 34 35 Introduction 36 37 In the event of a non-state sanctioned nuclear attack, forensic investigations will 38 be necessary to determine the provenance of the weapon and the materials used in 39 construction of the device. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
TRANSIENT LUNAR PHENOMENA: REGULARITY and REALITY Arlin P
The Astrophysical Journal, 697:1–15, 2009 May 20 doi:10.1088/0004-637X/697/1/1 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY Arlin P. S. Crotts Department of Astronomy, Columbia University, Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027, USA Received 2007 June 27; accepted 2009 February 20; published 2009 April 30 ABSTRACT Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a “feature” as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. -
Relict Zircon Inclusions in Muong Nong-Type Australasain Tektites: Implications Regarding the Location of the Source Crater
Lunar and Planetary Science XXXI 1196.pdf RELICT ZIRCON INCLUSIONS IN MUONG NONG-TYPE AUSTRALASAIN TEKTITES: IMPLICATIONS REGARDING THE LOCATION OF THE SOURCE CRATER. B. P. Glass, Geology Department, University of Delaware, Newark, DE 19716, USA ([email protected]) Introduction: Over the last thirty years we Australasian tektite samples from which we have have recovered crystalline inclusions from ap- identified inclusions; however, not all of the recov- proximately forty Muong Nong-type tektites from ered inclusions have been identified by XRD. the Australasian tektite strewn field in order to Based on appearance, the percent of inclusion- learn more about the nature of the parent material bearing specimens containing zircon is probably and the formation process [e.g., 1, 2]. More re- 100% or very close to it. Nearly all the zircons cently we have used geographic variations in con- are opaque white and their X-ray patterns show centration (number/gm) of crystalline inclusions to extreme X-ray asterism. However, of the 28 zir- indicate the possible location of the source crater cons identified by X-ray diffraction, only two [3]. The purpose of this abstract is to summarize (both from the same specimen whose place of ori- all the presently available data regarding relict gin is unknown) produced X-ray diffraction pat- zircon inclusions recovered from Australasian terns indicating that baddeleyite may be present. Muong Nong-type tektites and to discuss implica- The X-ray patterns from these two grains con- tions regarding the possible location of the source tained the two strongest lines for baddeleyite and crater which has still not been found. -
Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life ..................................................................... -
AND GEOLOGY of the SURROUNDING AREA I
. " ... , - .: ~... GP3/10 ~ " . :6',;, J .~~- -i-~ .. '~ MANITOBA MINES BRANCH DEPARTMENT OF MfNES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO~EXPLOSION CRATER .. AND GEOLOGY OF THE SURROUNDING AREA i . , - by H. R. McCabe and B. B. Bannatyne Geological Paper 3/70 Winnipeg 1970 Electronic Capture, 2011 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. (i) GP3/10 MANITOBA M]NES BRANCH DEPARTMENT OF MINES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO·EXPLOSION CRATER AND GEOLOGY OF THE SURROUNDING AREA by H. R. McCabe and B. B. Bannatync • Geological Paper 3/70 Winnipeg 1970 (ii) TABLE OF CONTENTS Page Introduction' r Previous work I .. Present work 2 Purpose 4 Acknowledgcmcnts 4 Part A - Regional geology and structural setting 4 Post-Silurian paleogeography 10 Post-crater structure 11 Uthology 11 Precambrian rocks 12 Winnipeg Fomlation 13 Red River Fomlation 14 Stony Mountain Formation 15 Gunn Member 15 Gunton Member 16 Stoncwall Formation 16 Interlake Group 16 Summary 17 Part B - Lake St. Martin crypto-explosion crater 33 St. Martin series 33 Shock metamorphism 33 Quartz 33 Feldspar 35 Biotite 35 Amphibole 36 Pseudotachylyte 36 Altered gneiss 37 Carbonate breccias 41 Polymict breccias 43 Aphanitic igneous rocks - trachyandcsitc 47 Post·crater Red Beds and Evaporites (Amaranth Formation?) 50 Red Bed Member 50 Evaporite Member 52 Age of Red Bed·Evaporite sequence 53 Selected References 67 . -
Regional Oral History Off Ice University of California the Bancroft Library Berkeley, California
Regional Oral History Off ice University of California The Bancroft Library Berkeley, California Richard B. Gump COMPOSER, ARTIST, AND PRESIDENT OF GUMP'S, SAN FRANCISCO An Interview Conducted by Suzanne B. Riess in 1987 Copyright @ 1989 by The Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West,and the Nation. Oral history is a modern research technique involving an interviewee and an informed interviewer in spontaneous conversation. The taped record is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The resulting manuscript is typed in final form, indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. All uses of this manuscript are covered by a legal agreement between the University of California and Richard B. Gump dated 7 March 1988. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley. No part of the manuscript may be quoted for publication without the written permission of the Director of The Bancroft Library of the University of California, Berkeley. -
America the Beautiful Part 1
America the Beautiful Part 1 Charlene Notgrass 1 America the Beautiful Part 1 by Charlene Notgrass ISBN 978-1-60999-141-8 Copyright © 2020 Notgrass Company. All rights reserved. All product names, brands, and other trademarks mentioned or pictured in this book are used for educational purposes only. No association with or endorsement by the owners of the trademarks is intended. Each trademark remains the property of its respective owner. Unless otherwise noted, scripture quotations are taken from the New American Standard Bible®, Copyright © 1960, 1962, 1963, 1971, 1972, 1973, 1975, 1977, 1995 by the Lockman Foundation. All rights reserved. Used by permission. Cover Images: Jordan Pond, Maine, background by Dave Ashworth / Shutterstock.com; Deer’s Hair by George Catlin / Smithsonian American Art Museum; Young Girl and Dog by Percy Moran / Smithsonian American Art Museum; William Lee from George Washington and William Lee by John Trumbull / Metropolitan Museum of Art. Back Cover Author Photo: Professional Portraits by Kevin Wimpy The image on the preceding page is of Denali in Denali National Park. No part of this material may be reproduced without permission from the publisher. You may not photocopy this book. If you need additional copies for children in your family or for students in your group or classroom, contact Notgrass History to order them. Printed in the United States of America. Notgrass History 975 Roaring River Rd. Gainesboro, TN 38562 1-800-211-8793 notgrass.com Thunder Rocks, Allegany State Park, New York Dear Student When God created the land we call America, He sculpted and painted a masterpiece. -
Geochemical Characterization of Moldavites from a New Locality, the Cheb Basin, Czech Republic
Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic Item Type Article; text Authors Řanda, Zdeněk; Mizera, Jiři; Frána, Jaroslav; Kučera, Jan Citation Řanda, Z., Mizera, J., Frána, J. and Kučera, J. (2008), Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic. Meteoritics & Planetary Science, 43(3), 461-477. DOI 10.1111/j.1945-5100.2008.tb00666.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 30/09/2021 11:07:40 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656405 Meteoritics & Planetary Science 43, Nr 3, 461–477 (2008) AUTHOR’S PROOF Abstract available online at http://meteoritics.org Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic ZdenÏk ÿANDA1, Ji¯í MIZERA1, 2*, Jaroslav FRÁNA1, and Jan KU»ERA1 1Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 ÿež, Czech Republic 2Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V HolešoviËkách 41, 182 09 Praha 8, Czech Republic *Corresponding author. E-mail: [email protected] (Received 02 June 2006; revision accepted 15 July 2007) Abstract–Twenty-three moldavites from a new locality, the Cheb Basin in Western Bohemia, were analyzed by instrumental neutron activation analysis for 45 major and trace elements. Detailed comparison of the Cheb Basin moldavites with moldavites from other substrewn fields in both major and trace element composition shows that the Cheb Basin is a separate substrewn field. -
Low-Altitude Airbursts and the Impact Threat
M.B.E. Boslough and D.A. Crawford / International Journal of Impact Engineering Low-altitude airbursts and the impact threat M.B.E. Boslough* and D.A. Crawford Sandia National Laboratories, PO Box 5800, Albuquerque NM 87185, USA International Journal of Impact Engineering 35 (2008) 1441–1448 Received 7 May 2007; Accepted 6 June 2008; Available online 5 August 2008 journal homepage: www.elsevier.com/locate/ijimpeng Abstract We present CTH simulations of airbursts in the Earth’s lower atmosphere from hypervelocity asteroid impacts. The intent of these simulations was to explore the phenomenology associated with low-altitude airbursts, with the particular goal of determining whether the altitude of maximum energy deposition can be used as a reasonable estimate of the equivalent height of a point source explosion. Our simulations suggest that this is not a good approximation. The center of mass of an exploding projectile is transported downward in the form of a high-temperature jet of expanding gas. The jet descends by a significant fraction of the burst altitude before its velocity becomes subsonic. The time scale of this descent is similar to the time scale of the explosion itself, so the jet simultaneously couples its kinetic energy and its internal energy to the atmosphere. Because of this downward flow, larger blast waves and stronger thermal radiation pulses are felt at the surface than would be predicted by a point source explosion at the height where the burst was initiated. For impacts with a kinetic energy above some threshold, the hot jet of vaporized projectile (the descending ―fireball‖) makes contact with the Earth’s surface, where it expands radially.