A Recent Inventory of the Bats of Mozambique with Documentation of Seven New Species for the Country
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mozambique Zambia South Africa Zimbabwe Tanzania
UNITED NATIONS MOZAMBIQUE Geospatial 30°E 35°E 40°E L a k UNITED REPUBLIC OF 10°S e 10°S Chinsali M a l a w TANZANIA Palma i Mocimboa da Praia R ovuma Mueda ^! Lua Mecula pu la ZAMBIA L a Quissanga k e NIASSA N Metangula y CABO DELGADO a Chiconono DEM. REP. OF s a Ancuabe Pemba THE CONGO Lichinga Montepuez Marrupa Chipata MALAWI Maúa Lilongwe Namuno Namapa a ^! gw n Mandimba Memba a io u Vila úr L L Mecubúri Nacala Kabwe Gamito Cuamba Vila Ribáué MecontaMonapo Mossuril Fingoè FurancungoCoutinho ^! Nampula 15°S Vila ^! 15°S Lago de NAMPULA TETE Junqueiro ^! Lusaka ZumboCahora Bassa Murrupula Mogincual K Nametil o afu ezi Namarrói Erego e b Mágoè Tete GiléL am i Z Moatize Milange g Angoche Lugela o Z n l a h m a bez e i ZAMBEZIA Vila n azoe Changara da Moma n M a Lake Chemba Morrumbala Maganja Bindura Guro h Kariba Pebane C Namacurra e Chinhoyi Harare Vila Quelimane u ^! Fontes iq Marondera Mopeia Marromeu b am Inhaminga Velha oz P M úngu Chinde Be ni n è SOFALA t of ManicaChimoio o o o o o o o o o o o o o o o gh ZIMBABWE o Bi Mutare Sussundenga Dondo Gweru Masvingo Beira I NDI A N Bulawayo Chibabava 20°S 20°S Espungabera Nova OCE A N Mambone Gwanda MANICA e Sav Inhassôro Vilanculos Chicualacuala Mabote Mapai INHAMBANE Lim Massinga p o p GAZA o Morrumbene Homoíne Massingir Panda ^! National capital SOUTH Inhambane Administrative capital Polokwane Guijá Inharrime Town, village o Chibuto Major airport Magude MaciaManjacazeQuissico International boundary AFRICA Administrative boundary MAPUTO Xai-Xai 25°S Nelspruit Main road 25°S Moamba Manhiça Railway Pretoria MatolaMaputo ^! ^! 0 100 200km Mbabane^!Namaacha Boane 0 50 100mi !\ Bela Johannesburg Lobamba Vista ESWATINI Map No. -
11010329.Pdf
THE RISE, CONSOLIDATION AND DISINTEGRATION OF DLAMINI POWER IN SWAZILAND BETWEEN 1820 AND 1889. A study in the relationship of foreign affairs to internal political development. Philip Lewis Bonner. ProQuest Number: 11010329 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11010329 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT The Swazi kingdom grew out of the pressures associated with competition for trade and for the rich resources of Shiselweni. While centred on this area it acquired some of its characteristic features - notably a regimental system, and the dominance of a Dlamini aristocracy. Around 1815 the Swazi came under pressure from the South, and were forced to colonise the land lying north of the Lusutfu. Here they remained for some years a nation under arms, as they plundered local peoples, and were themselves swept about by the currents of the Mfecane. In time a more settled administration emerged, as the aristocracy spread out from the royal centres at Ezulwini, and this process accelerated under Mswati as he subdued recalcitrant chiefdoms, and restructured the regiments. -
Risk Factors Associated with Sexual Violence Towards Girls in Swaziland
Research Risk factors associated with sexual violence towards girls in Swaziland Matthew J Breiding,a Avid Reza,b Jama Gulaid,c Curtis Blanton,b James A Mercy,a Linda L Dahlberg,a Nonhlanhla Dlaminid & Sapna Bamrahe Objective To explore risk factors for sexual violence in childhood in a nationally representative sample of females aged 13 to 24 years in Swaziland. Methods During a household survey respondents were asked to report any experiences of sexual violence before the age of 18 years. The association between childhood sexual violence and several potential demographic and social risk factors was explored through bivariate and multivariate logistic regression. Findings Participants totalled 1244. Compared with respondents who had been close to their biological mothers as children, those who had not been close to her had higher odds of having experienced sexual violence (crude odds ratio, COR: 1.89; 95% CI: 1.14–3.14), as did those who had had no relationship with her at all (COR: 1.93; 95% CI: 1.34–2.80). In addition, greater odds of childhood sexual violence were noted among respondents who were not attending school at the time of the survey (COR: 2.26; 95% CI: 1.70–3.01); who were emotionally abused as children (COR: 2.04; 95% CI: 1.50–2.79); and who knew of another child who had been sexually assaulted (COR: 1.77; 95% CI: 1.31–2.40) or was having sex with a teacher (COR: 2.07; 95% CI: 1.59–2.69). Childhood sexual violence was positively associated with the number of people the respondent had lived with at any one time (COR: 1.03; 95% CI: 1.01–1.06). -
O C E a N O C E a N C T I C P a C I F I C O C E a N a T L a N T I C O C E a N P a C I F I C N O R T H a T L a N T I C a T L
Nagurskoye Thule (Qanaq) Longyearbyen AR CTIC OCE AN Thule Air Base LAPTEV GR EENLA ND SEA EAST Resolute KARA BAFFIN BAY Dikson SIBERIAN BARENTS SEA SEA SEA Barrow SEA BEAUFORT Tiksi Prudhoe Bay Vardo Vadso Tromso Kirbey Mys Shmidta Tuktoyaktuk Narvik Murmansk Norilsk Ivalo Verkhoyansk Bodo Vorkuta Srednekolymsk Kiruna NORWEGIAN Urengoy Salekhard SEA Alaska Oulu ICELA Anadyr Fairbanks ND Arkhangelsk Pechora Cape Dorset Godthab Tura Kitchan Umea Severodvinsk Reykjavik Trondheim SW EDEN Vaasa Kuopio Yellowknife Alesund Lieksa FINLAND Plesetsk Torshavn R U S S Yakutsk BERING Anchorage Surgut I A NORWAY Podkamennaya Tungusk Whitehorse HUDSON Nurssarssuaq Bergen Turku Khanty-Mansiysk Apuka Helsinki Olekminsk Oslo Leningrad Magadan Yurya Churchill Tallin Stockholm Okhotsk SEA Juneau Kirkwall ESTONIA Perm Labrador Sea Goteborg Yedrovo Kostroma Kirov Verkhnaya Salda Aldan BAY UNITED KINGDOM Aluksne Yaroslavl Nizhniy Tagil Aberdeen Alborg Riga Ivanovo SEA Kalinin Izhevsk Sverdlovsk Itatka Yoshkar Ola Tyumen NORTH LATVIA Teykovo Gladkaya Edinburgh DENMARK Shadrinsk Tomsk Copenhagen Moscow Gorky Kazan OF BALTIC SEA Cheboksary Krasnoyarsk Bratsk Glasgow LITHUANIA Uzhur SEA Esbjerg Malmo Kaunas Smolensk Kaliningrad Kurgan Novosibirsk Kemerovo Belfast Vilnius Chelyabinsk OKHOTSK Kolobrzeg RUSSIA Ulyanovsk Omsk Douglas Tula Ufa C AN Leeds Minsk Kozelsk Ryazan AD A Gdansk Novokuznetsk Manchester Hamburg Tolyatti Magnitogorsk Magdagachi Dublin Groningen Penza Barnaul Shefeld Bremen POLAND Edmonton Liverpool BELARU S Goose Bay NORTH Norwich Assen Berlin -
Chiroptera: Pteropodidae)
Chapter 6 Phylogenetic Relationships of Harpyionycterine Megabats (Chiroptera: Pteropodidae) NORBERTO P. GIANNINI1,2, FRANCISCA CUNHA ALMEIDA1,3, AND NANCY B. SIMMONS1 ABSTRACT After almost 70 years of stability following publication of Andersen’s (1912) monograph on the group, the systematics of megachiropteran bats (Chiroptera: Pteropodidae) was thrown into flux with the advent of molecular phylogenetics in the 1980s—a state where it has remained ever since. One particularly problematic group has been the Austromalayan Harpyionycterinae, currently thought to include Dobsonia and Harpyionycteris, and probably also Aproteles.Inthis contribution we revisit the systematics of harpyionycterines. We examine historical hypotheses of relationships including the suggestion by O. Thomas (1896) that the rousettine Boneia bidens may be related to Harpyionycteris, and report the results of a series of phylogenetic analyses based on new as well as previously published sequence data from the genes RAG1, RAG2, vWF, c-mos, cytb, 12S, tVal, 16S,andND2. Despite a striking lack of morphological synapomorphies, results of our combined analyses indicate that Boneia groups with Aproteles, Dobsonia, and Harpyionycteris in a well-supported, expanded Harpyionycterinae. While monophyly of this group is well supported, topological changes within this clade across analyses of different data partitions indicate conflicting phylogenetic signals in the mitochondrial partition. The position of the harpyionycterine clade within the megachiropteran tree remains somewhat uncertain. Nevertheless, biogeographic patterns (vicariance-dispersal events) within Harpyionycterinae appear clear and can be directly linked to major biogeographic boundaries of the Austromalayan region. The new phylogeny of Harpionycterinae also provides a new framework for interpreting aspects of dental evolution in pteropodids (e.g., reduction in the incisor dentition) and allows prediction of roosting habits for Harpyionycteris, whose habits are unknown. -
Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam
viruses Article Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam Satoru Arai 1, Fuka Kikuchi 1,2, Saw Bawm 3 , Nguyễn Trường Sơn 4,5, Kyaw San Lin 6, Vương Tân Tú 4,5, Keita Aoki 1,7, Kimiyuki Tsuchiya 8, Keiko Tanaka-Taya 1, Shigeru Morikawa 9, Kazunori Oishi 1 and Richard Yanagihara 10,* 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] (S.A.); [email protected] (F.K.); [email protected] (K.A.); [email protected] (K.T.-T.); [email protected] (K.O.) 2 Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 3 Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 4 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam; [email protected] (N.T.S.); [email protected] (V.T.T.) 5 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam 6 Department of Aquaculture and Aquatic Disease, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 7 Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 8 Laboratory of Bioresources, Applied Biology Co., Ltd., Tokyo 107-0062, Japan; [email protected] 9 Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] 10 Pacific Center for Emerging Infectious Diseases Research, John A. -
Geology and Geomorphology of the Urema Graben with Emphasis on the Evolution of Lake Urema
Journal of African Earth Sciences 58 (2010) 272–284 Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci Geology and geomorphology of the Urema Graben with emphasis on the evolution of Lake Urema Franziska Steinbruch * Scientific Services of Gorongosa National Park, Avenida do Poder Popular 264, Beira, Mozambique article info abstract Article history: The Lake Urema floodplain belongs to the Urema Catchment and is located in the downstream area of the Received 19 December 2008 Pungwe River basin in Central Mozambique. The floodplain is situated in the Urema Graben, which is the Received in revised form 8 February 2010 southern part of the East African Rift System. Little geological information exists about this area. The cir- Accepted 12 March 2010 culated information is not readily available, and is often controversial and incomplete. In this paper the Available online 20 March 2010 state of knowledge about the geology and tectonic evolution of the Lake Urema wetland area and the Urema Catchment is compiled, reviewed and updated. This review is intended to be a starting point Keywords: for approaching practical questions such as: How deep is the Urema Graben? What controls the hydrol- East African Rift System ogy of Lake Urema? Where are the hydrogeological boundaries? Where are the recharge areas of the Lake Floodplain Hydrogeology Urema floodplain? From there information gaps and needs for further research are identified. Lake Urema Ó 2010 Elsevier Ltd. All rights reserved. Mozambique 1. Introduction 2. Regional geology and tectonic evolution The Lake Urema floodplain belongs to the Urema Catchment 2.1. -
Close Relative of Human Middle East Respiratory Syndrome Coronavirus in Bat, South Africa
Publisher: CDC; Journal: Emerging Infectious Diseases Article Type: Letter; Volume: 19; Issue: 10; Year: 2013; Article ID: 13-0946 DOI: 10.3201/eid1910.130946; TOC Head: Letters to the Editor Article DOI: http://dx.doi.org/10.3201/eid1910.130946 Close Relative of Human Middle East Respiratory Syndrome Coronavirus in Bat, South Africa Technical Appendix Sampling Bats were sampled between November 2010 and mid-2012 at caves in Table Mountain National Park and in Millwood forest, Garden Route National Park (permit no. 11LB_SEI01), at Phinda Private Game Reserve in KwaZulu Natal (permit no. OP2021/2011) and in Greyton, Western Cape (permit no. AAA007-00373-0035). Bats were captured during emergence from roof roosts or cave entrances using a harp trap, hand-net or mist nets. Animal handling and sample collection was done in accordance with accepted international guidelines for mammals as set out in Sikes et al. (1). Individuals were then placed in individual cloth bags for up to 3 hours to collect faecal pellets. Faecal pellets were removed from each bag using sterile forceps and suspended in 1.0ml of RNAlater in a 2ml cryovial before transport to the laboratory in Tygerberg and virological testing under institutional clearance (ref. SU-ACUM12-00001). In the Western Cape, all bats were released unharmed. In Phinda, they were euthanized with halothane and retained as accessioned voucher specimens in the mammal collection of the Durban Natural Science Museum. Associated specimen derivatives (e.g. faecal pellets) were obtained through a museum loan (loan no. M201011_1). Species were determined based on morphological features following current systematics (2). -
2000 334000 336000 338000 340000 342000 31°16'0"E 31°17'0"E 31°18'0"E 31°19'0"E 31°20'0"E 31°21'0"E 31°22'0"E 31°23'0"E 31°24'0"E 31°25'0"E
326000 328000 330000 332000 334000 336000 338000 340000 342000 31°16'0"E 31°17'0"E 31°18'0"E 31°19'0"E 31°20'0"E 31°21'0"E 31°22'0"E 31°23'0"E 31°24'0"E 31°25'0"E GLIDE number: TC-2021-000008-MOZ Activation ID: EMSR495 Int. Charter call ID: N/A Product N.: 04MANZINI, v2 0 0 0 0 0 0 4 4 7 7 Manzini - ESWATINI 0 0 7 7 Storm - Situation as of 30/01/2021 S " 0 ' Grading - Overview map 01 7 2 ° 6 2 S " 0 Mpumalanga ' Maputo 7 2 ° 6 2 Maputo^ Mozambique Channel Baia de Hhohho Maputo Mozambique Ekukhanyeni SouthMaputo Africa 03 Mozambique Channel Mbabane Manzini 05 ^ 0 0 (! Eswatini 0 0 04 0 0 2 2 7 7 0 0 Manzini INDIAN 7 7 OCEAN S " Lubombo 0 ' 8 2 ° 6 o 2 ut S p " a 0 ' M 8 2 ° 6 Ludzeludze 2 20 Shiselweni Kwazulu-Natal km Cartographic Information 1:25000 Full color A1, 200 dpi resolution 0 0.5 1 2 km 0 0 0 0 Grid: WGS 1984 UTM Zone 36S map coordinate system 0 0 0 0 7 7 Tick marks: WGS 84 geographical coordinate system S 0 0 " 7 7 0 ± ' 9 2 ° 6 2 S " 0 ' 9 2 ° Legend 6 2 Crisis Information Transportation Grading Facilities Grading Hydrography Road, Damaged Dam, Damaged River Blocked road / interruption Road, Possibly damaged General Information Stream Flooded Area Area of Interest (30/01/2021 07:55 UTC) Railway, Damaged Lake Detail map Flood trace Highway, No visible damage Manzini North Not Analysed Built Up Grading Primary Road, No visible damage Manzini Destroyed Administrative boundaries Secondary Road, No visible damage Possibly damaged Province Local Road, No visible damage Placenames Cart Track, No visible damage ! Placename Detail 02 Long-distance railway, No visible damage a Airfield runway, No visible damage n Land Use - Land Cover a Matsapha ! w Manzini Features available in the vector package h ! s Consequences within the AOI u s Possibly Total Total in u Destroyed Damaged 0 Lobamba 0 damaged* affected** AOI L 0 0 S " 0 0 ha 13.8 0 Flooded area ' 8 8 0 3 6 Lomdzala 6 ha 44.1 ° Flood trace 0 0 6 2 7 7 S Estimated population 573 177,811 " 0 ' 0 Built-up No. -
Popo Wa Mbuga Ya Wanyama Ya Tarangire Bats of Tarangire
Web Version 1 Popo wa Mbuga ya Wanyama ya Tarangire Bats of Tarangire National Park Imetayarishwa na (created by): Bill Stanley & Rebecca Banasiak Utayarishaji na mfadhili (production and support): The Wildlife Conservation Society, The Field Museum of Natural History [[email protected]] [www.fieldmuseum.org/tanzania] Version 1 6/2009 © Field Museum of Natural History, Chicago Photos by: Bill Stanley and Charles A.H. Foley Epomophorus wahlbergi Hipposideros ruber Cardioderma cor Wahlberg's Epauletted Fruit Bat Noack's Leaf-nosed Bat Heart-nosed Bat Lavia frons Taphozous perforatus Nycteris hispida Yellow-winged Bat Egyptian Tomb Bat Hairy Slit-faced Bat Chaerephon pumilus Scotoecus hindei Scotophilus dinganii Little Free-tailed Bat Hinde's Lesser House Bat Yellow-bellied House Bat Neoromicia capensis Neoromicia nanus Neoromicia somalicus Cape Serotine Banana Pipistrelle Somali Serotine Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here.....Small paragraph here. -
Final Report on the Project
BP Conservation Programme (CLP) 2005 PROJECT NO. 101405 - BRONZE AWARD WINNER ECOLOGY, DISTRIBUTION, STATUS AND PROTECTION OF THREE CONGOLESE FRUIT BATS FINAL REPORT Patrick KIPALU Team Leader Observatoire Congolais pour la Protection de l’Environnement OCPE – ong Kinshasa – Democratic Republic of the Congo E-mail: [email protected] APRIL 2009 1 Table of Content Acknowledgements…………………………………………………………………. p3 I. Project Summary……………………………………………………………….. p4 II. Introduction…………………………………………………………………… p4-p7 III. Materials and Methods ……………………………………………………….. p7-p10 IV. Results per Study Site…………………………………………………………. p10-p15 1. Pointe-Noire ………………………………………………………….. p10-p12 2. Mayumbe Forest /Luki Reserve……………………………………….. p12-p13 3. Zongo Forest…………………………………………………………... p14 4. Mbanza-Ngungu ………………………………………………………. P15 V. General Results ………………………………………………………………p15-p16 VI. Discussions……………………………………………………………………p17-18 VII. Conclusion and Recommendations……………………………………….p 18-p19 VIII. Bibliography………………………………………………………………p20-p21 Acknowledgements 2 The OCPE (Observatoire Congolais pour la Protection de l’Environnement) project team would like to start by expressing our gratefulness and saying thank you to the BP Conservation Program, which has funded the execution of this project. The OCPE also thanks the Van Tienhoven Foundation which provided a further financial support. Without these organisations, execution of the project would not have been possible. We would like to thank specially the BPCP “dream team”: Marianne D. Carter, Robyn Dalzen and our regretted Kate Stoke for their time, advices, expertise and care, which helped us to complete this work, Our special gratitude goes to Dr. Wim Bergmans, who was the hero behind the scene from the conception to the execution of the research work. Without his expertise, advices and network it would had been difficult for the project team to produce any result from this project. -
Vegetation Survey of Mount Gorongosa
VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.