Cholesterol-Lowering Drugs and Prostate Cancer Risk: a Population-Based Case-Control Study

Total Page:16

File Type:pdf, Size:1020Kb

Cholesterol-Lowering Drugs and Prostate Cancer Risk: a Population-Based Case-Control Study 2226 Cholesterol-Lowering Drugs and Prostate Cancer Risk: A Population-based Case-Control Study Teemu J. Murtola,1 Teuvo L.J. Tammela,2 Jorma Lahtela,3 and Anssi Auvinen4 1School of Public Health, 2Department of Urology, Tampere University Hospital and Medical School, University of Tampere, and 3Department of Internal Medicine, Tampere University Hospital, Tampere, Finland and 4The Finnish Cancer Institute, Helsinki, Finland Abstract Background: Previous studies have shown that statin ginally elevated overall prostate cancer risk [odds ratio use may reduce prostate cancer risk. In the current (OR), 1.07; 95% confidence interval (95% CI), 1.00-1.16]. study, we evaluated the association between serum However, none of the statins was associated with cholesterol–lowering medication use and prostate the overall prostate cancer risk when analyzed sepa- cancer risk at the population level. rately. On the other hand, the risk of advanced prostate Materials and Methods: All newly diagnosed prostate cancer was decreased among users of atorvastatin, cancer cases in Finland during 1995 to 2002 and matched lovastatin, and simvastatin (OR 0.61, 95% CI0.37-0.98; controls (24,723 case control pairs) were identified from OR 0.61, 95% CI0.43-0.85; and OR 0.78, 95% CI0.61-1.01, the Finnish Cancer Registry and the Population Register respectively). The risk was not affected among users of Center, respectively. Detailed information on cholester- other cholesterol drug groups. ol-lowering drug purchases during the study period was Conclusions: Our large population-based study showed obtained from the prescription database of the Social no evidence for reduced overall prostate cancer risk among Insurance Institution of Finland. users of cholesterol-lowering drugs, whereas the risk Results: After adjustment for potential confounders, of advanced cancer was decreased among statin users. having ever-use of any statin was associated with mar- (Cancer Epidemiol Biomarkers Prev 2007;16(11):2226–32) Introduction Prostate cancer is the most common malignancy among Asia, the incidence of prostate cancer is rising partly due men in most countries (1). It is also among the three most to the Westernization of life-styles (4). common causes of cancer death in most Western A group of cholesterol-lowering drugs, 3-hydroxy-3- countries (1). Nevertheless, prostate cancer is usually a methylglutaryl CoA reductase inhibitors (statins), have slowly growing cancer with a long latency period. shown promise in chemoprevention of prostate cancer. Autopsy studies show that a quarter of men in their Multiple statins have been reported to inhibit prostate 40s and up to 40% of men ages 80 years or older harbor cancer cell proliferation in vitro by induction of cell cycle indolent local malignant lesions of the prostate (2, 3). The arrest and apoptosis (5, 6). Recently, a large prospective slow growth rate of prostate cancer provides a window cohort study reported decreased risk of advanced of opportunity to influence different stages of carcino- prostate cancer among statin users, whereas the overall genesis, making prostate cancer an attractive target for prostate cancer risk was unaffected (7). Other observa- chemoprevention. Environmental factors strongly influ- tional studies have suggested reduced risk for also over- ence prostate cancer risk as shown by the Asian all prostate cancer in statin users (8, 9). However, recent immigrants in North America. Asian men traditionally meta-analyses of randomized trials of statins (10-12), have a low prostate cancer risk, although the prevalence along with other observational studies (13-16), have of latent prostate cancer precursors is comparable with revealed no association with the cancer of the prostate that of the population in the Western countries (4). or of any other site. However, among Asian immigrants in North America, Of the other types of cholesterol-lowering drugs, the risk of clinical cancer increases toward that of the fibrate use has not been found to affect cancer risk (8), Western population with years of residence, and also in although they are reported to cause neoplasia in rodents (17). The only study, to our knowledge, estimating cancer incidence in resin users concluded that statin users are Received 7/1/07; revised 8/24/07; accepted 9/19/07. 28% less likely to be diagnosed with any type of cancer Grant support: Academy of Finland grant 205 862, Sigrid Juselius Foundation, and Finnish Cancer Society. Teemu Murtola’s work was supported by grants from than the users of resins (13). No reports of acipimox effect Pirkanmaa Regional Fund of the Finnish Cultural Foundation, Medical Research Fund on cancer risk have been published. of Tampere and University Hospital, Irja Karvonen cancer trust and nonrestricted grants from Astellas, Lilly Foundation, Schering Foundation, and research foundation This study was undertaken to evaluate prostate cancer of Orion Pharma. risk among the users of cholesterol-lowering drugs at the The costs of publication of this article were defrayed in part by the payment of page population level. charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Requests for reprints: Teemu Murtola, University of Tampere, School of Public Health, University of Tampere, Tampere, FIN-33014, Finland. Phone: 358-3-3551-6168; Materials and Methods Fax: 358-3-3551-6057. E-mail: [email protected]. Copyright D 2007 American Association for Cancer Research. Study Design. All newly diagnosed prostate cancer doi:10.1158/1055-9965.EPI-07-0599 cases in Finland during 1995 to 2002 (25,029 men) were Cancer Epidemiol Biomarkers Prev 2007;16(11). November 2007 Downloaded from cebp.aacrjournals.org on September 23, 2021. © 2007 American Association for Cancer Research. Cancer Epidemiology,Biomarkers & Prevention 2227 identified through the Finnish Cancer Registry. Data in Table 2. Prevalence of medication usage among the the Finnish Cancer Registry are collected through man- study population of all newly diagnosed prostate datory notifications of all the cancer diagnoses made by cancer cases in Finland in 1995 to 2002 and their all the Finnish health care units. Thus, it is a population- individually matched controls based, nationwide register with coverage of >99% of all Cholesterol drug use Cases Controls prostate cancer patients in Finland (18). The register information includes the primary site of cancer, histo- n % of total n % of total logy, date, and method of diagnosis. Information on the stage of prostate cancer was available in 55% of the cases Total number 24,723 100 24,723 100 Statin use (13,616 patients). Of these, 73% were localized. There Yes 2,622 10.6 2,439 9.9 were no substantial differences in median age between No 22,101 89.4 22,284 90.1 cases with or without information on stage (Table 1). Fibrate use However, the majority of cases without information on Yes 220 0.9 211 0.9 stage were diagnosed during the latter half of the study No 24,503 99.1 24,512 99.1 Usage of other cholesterol drugs* period, whereas the distribution of years of diagnosis Yes 61 0.2 52 0.2 was more even among the cases with stage (Table 1). The No 24,662 99.8 24,671 99.8 registry does not record differentiation, such as Gleason Antidiabetic medication use score, nor serum prostate-specific antigen (PSA) values. Yes 2,201 8.9 2,406 9.7 Practically all the cases were histologically confirmed No 22,522 91.1 22,317 90.3 (99.3 %). Also, cases with the diagnosis based solely on Antihypertensive drug use Yes 12,648 51.2 11,866 48.0 clinical (0.4 %), radiological (0.3 %), or specific labora- No 12,075 48.8 12,857 52.0 tory findings (0.02% of cases) were included. A total of 185 cases (0.7 %) with an unknown method of diagnosis *Includes users of resins and acipimox. were excluded. The controls were individually matched on the age and geographic area of the cases at the time of the The information on cholesterol-lowering medication diagnosis. The Population Register Center of Finland prescribed to the study population and reimbursed by selected 24,723 male controls, of whom a total of 963 the Social Insurance Institution of Finland (SII) during were subsequently diagnosed with prostate cancer dur- 1995 to 2002 was obtained from the comprehensive ing the study period. Thus, these men appeared twice nationwide prescription database of the SII. All choles- in the analysis, first as a control and later as a case in terol-lowering drugs in use in Finland during the study another matched case control pair. The population size period, with the exception of nicotinic acid, were reim- in Finnish municipalities ranges from <200 to 560,000 bursable and available through a physician’s prescription (19). Thus, matched controls could not be found from only, thus comprehensively documented by the data- the same municipality for 121 cases in the oldest age base. The database provided detailed information on group, resulting in their exclusion from the analyses. the quantity and time of the medication purchases for A total of 24,723 case control pairs were included in the each person in the study population for a maximum of analyses. 8 years. The drugs in clinical use in Finland during the After approval from the ethics committee of the study period were statins (atorvastatin since 1998, Pirkanmaa health care district, Finland (ETL R03290), cerivastatin from 1999 to 2001, fluvastatin since 1996, obtaining informed consent from the study population lovastatin, pravastatin, and simvastatin), fibrates (beza- was not required due to the large size of the population fibrate, clofibrate until 1998, fenofibrate since 2002, and and to the part of the population that is unattainable gemfibrozil), resins (cholestyramin and cholestipol), (deceased or emigrated) by the time of the study.
Recommended publications
  • No Name of Drug Branded/Generic Drug Class 1 Acipimox Capsule 250Mg Olbetam Nicotinic Acid 1.50 2.14 2 Atorvastatin Calcium 10Mg
    MEDICATIONS FOR TREATMENT OF HIGH BLOOD LIPIDS (HYPERLIPIDEMIA) PRICE RANGE (S$) PER NO NAME OF DRUG BRANDED/GENERIC DRUG CLASS TABLET/ CAPSULE/ SACHET 1 ACIPIMOX CAPSULE 250MG OLBETAM NICOTINIC ACID 1.50 - 2.14 STATIN & CALCIUM 4.40 - 4.90 2 ATORVASTATIN CALCIUM 10MG AMLODIPINE BESYLATE 10MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 3.88 - 4.00 3 ATORVASTATIN CALCIUM 10MG AMLODIPINE BESYLATE 5MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 4.33 - 4.90 4 ATORVASTATIN CALCIUM 20MG AMLODIPINE BESYLATE 10MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 4.05 - 4.80 5 ATORVASTATIN CALCIUM 20MG AMLODIPINE BESYLATE 5MG TABLET CADUET CHANNEL BLOCKERS 6 ATORVASTATIN CALCIUM 10MG LIPITOR STATIN 2.60 - 2.60 7 ATORVASTATIN CALCIUM 20MG LIPITOR STATIN 2.99 - 3.00 8 ATORVASTATIN CALCIUM 40MG LIPITOR STATIN 4.10 - 8.20 9 ATORVASTATIN CALCIUM 80MG LIPITOR STATIN 8.45 - 8.95 10 BEZAFIBRATE SR TABLET 400MG BEZALIP FIBRATES 0.00 - 0.00 11 CHOLESTYRAMINE 4G/SACHET GENERIC FIBRATES 1.35 - 2.25 12 CIPROFIBRATE TABLET 100MG MODALIM FIBRATES 1.60 - 1.75 13 FENOFIBRATE CAPSULE 200MG APO-FENO-MICRO FIBRATES 0.71 - 1.07 14 FENOFIBRATE CAPSULE 200MG LIPANTHYL FIBRATES 1.45 - 1.45 15 FENOFIBRATE CAPSULE 145MG LIPANTHYL PENTA 145 FIBRATES 1.75 - 2.05 16 FENOFIBRATE TABLET 160MG LIPANTHYL SUPRA 160 FIBRATES 1.45 - 1.45 17 FLUVASTATIN SODIUM CAPSULE 20MG LESCOL STATIN 1.85 - 1.86 18 FLUVASTATIN SODIUM CAPSULE 40MG LESCOL STATIN 3.29 - 3.39 19 FLUVASTATIN SODIUM CAPSULE 80MG LESCOL XL STATIN 3.60 - 3.93 20 GEMFIBROZIL CAPSULES 300MG GENERIC-IPOLIPID FIBRATES
    [Show full text]
  • Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes?
    Annals of Medicine ISSN: 0785-3890 (Print) 1365-2060 (Online) Journal homepage: http://www.tandfonline.com/loi/iann20 Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes? M. Ruscica, N. Ferri, C. Macchi, A. Corsini & C. R. Sirtori To cite this article: M. Ruscica, N. Ferri, C. Macchi, A. Corsini & C. R. Sirtori (2018): Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes?, Annals of Medicine, DOI: 10.1080/07853890.2018.1498118 To link to this article: https://doi.org/10.1080/07853890.2018.1498118 Accepted author version posted online: 06 Jul 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iann20 LIPID LOWERING DRUGS AND INFLAMMATORY CHANGES: AN IMPACT ON CARDIOVASCULAR OUTCOMES? M. Ruscica1*, N. Ferri2*, C. Macchi1, A. Corsini1 and C. R. Sirtori3 1Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; 2Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy; 3Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy *Both authors contributed equally to this work Corresponding Author: Cesare R. Sirtori [email protected] Abstract Inflammatory changes are responsible for maintenance of the atherosclerotic process and may underlie some of the most feared vascular complications. Among the multiple mechanisms of inflammation, the arterial deposition of lipids and particularly of cholesterol crystals is the one responsible for activation of inflammasome NLRP3, followed by the rise of circulating markers, mainly C-reactive protein (CRP). Elevation of lipoproteins, LDL but also VLDL and remnants, associates with increased inflammatory changes and coronary risk.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • PRAC Recommends Using Acipimox Only As Additional Or Alternative Treatment to Lower High Triglyceride Levels Licensed Uses Should Be Refined to Optimise Benefit-Risk
    08 November 2013 EMA/618574/2013 PRAC recommends using acipimox only as additional or alternative treatment to lower high triglyceride levels Licensed uses should be refined to optimise benefit-risk The European Medicines Agency’s Pharmacovigilance Risk Assessment Committee (PRAC) has recommended that medicines containing acipimox should have their marketing authorisations amended to ensure that they are used across the European Union only as an additional or alternative treatment in type IIb and type IV hyperlipoproteinaemia. These are conditions involving hypertriglyceridaemia (high levels of triglycerides, a type of fat, in the blood), with or without increased cholesterol. Acipimox-containing medicines should be used when changes in lifestyle, including diet and exercise, and treatment with other medicines are not adequate. The available evidence does not support wider use in lipid disorders (abnormal levels of fats in the blood). The original reason for the review of acipimox was HPS2-THRIVE, a large study which looked at the long-term effect of the combination of nicotinic acid (a substance related to acipimox) and another medicine, laropiprant, in treating lipid disorders. The study showed that this combination taken together with statins (another class of medicines used to treat lipid disorders) did not lead to additional benefits in reducing the risk of major vascular events such as heart attack and stroke, but did result in a higher frequency of non-fatal but serious side effects. As a result, the European Medicines Agency recommended the suspension of medicines containing the combination of nicotinic acid and laropiprant across the EU.1 Because acipimox was the only other medicine containing nicotinic acid or a related substance that was currently marketed for lipid disorders in the EU, its benefit-risk balance was reviewed in the light of the latest evidence.
    [Show full text]
  • Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research
    Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Garabedian, Laura Faden. 2013. Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156786 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research A dissertation presented by Laura Faden Garabedian to The Committee on Higher Degrees in Health Policy in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Health Policy Harvard University Cambridge, Massachusetts March 2013 © 2013 – Laura Faden Garabedian All rights reserved. Professor Stephen Soumerai Laura Faden Garabedian Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research Abstract This dissertation consists of two empirical papers and one methods paper. The first two papers use quasi-experimental methods to evaluate the impact of universal health insurance reform in Massachusetts (MA) and Thailand and the third paper evaluates the validity of a quasi- experimental method used in comparative effectiveness research (CER). My first paper uses interrupted time series with data from IMS Health to evaluate the impact of Thailand’s universal health insurance and physician payment reform on utilization of medicines for three non-communicable diseases: cancer, cardiovascular disease and diabetes.
    [Show full text]
  • Reassessment of Reimbursement Status for Lipid-Lowering Medicines, ATC Group C10 Introduction by the End of 20041, the Danish Pa
    Reassessment of reimbursement status for lipid-lowering medicines, ATC Group C10 March, 16 2007 Introduction Journal no: 1 By the end of 2004 , the Danish Parliament decided that decisions on 5315-8 general reimbursement for medicinal products should be subject to periodic Our ref: Lipid Reassessment. reassessment. Decision.b.160307 The reassessment aims at assessing whether the assumptions underlying the original decision on granting or not granting general, including restricted, reimbursement, are still valid. The Danish Medicines Agency is currently reassessing the reimbursement status of all medicinal products over a period of five years, and the below decisions will conclude the reassessment of the reimbursement status of lipid-lowering medicines (ATC Group C10). The decisions and accompanying justifications are directed towards companies with medicinal products in the indicated ATC groups with marketing authorisations in Denmark on 15 March 2007. We enclose an appendix with a list of the medicinal products from your company which the decision concerns. The decisions entail an overall relaxation of the reimbursement status of lipid-lowering medicines and will support treatment with lipid-lowering medicines when the patient suffers from hyperlipidemia requiring medication therapy and will encourage the use of the cheaper statins which are eligible for general reimbursement, where possible, alone or in combination with one of the other lipid-lowering substances. 1 In connection with the adoption of Act no. 1431 of 22 December 2004 on Amendment of the Act on National Health Insurance. The amendment entered into force on 1 January 2005. The Act on National Health Insurance was replaced by the Danish Health Care Act; Act no.
    [Show full text]
  • Effect of Acipimox on Plasma Lipids and Glucose/Insulin in Pregnant Rats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Int. Jnl. Experimental Diab. Res., 3:233–239, 2002 Copyright c 2002 Taylor & Francis 1560-4284/02 $12.00 + .00 DOI: 10.1080/15604280290013973 Effect of Acipimox on Plasma Lipids and Glucose/Insulin in Pregnant Rats I. S´anchez-Vera,1 B. Bonet,1,2 M. Viana,1 E. Herrera,1 and A. Indart1 1Facultad de Ciencias Experimentales y de la Salud, Universidad San Pablo–CEU, Madrid, Spain 2Departamento de Pediatr´ıa y Neonatolog´ıa, Fundacion´ Hospital Alcorcon,´ Madrid, Spain Keywords Acipimox; Fetal Weight; Lipolysis; Pregnancy; To determine how a reduction in maternal hypertriglyceridemia Triglycerides during late pregnancy may affect glucose/insulin relationships, pregnant and virgin rats were orally treated with acipimox, a potent antilipolytic agent. In 20-day pregnant rats receiving 80 mg of acip- imox, plasma triglycerides (TG), free fatty acids (FFA), and glyc- erol decreased more than in virgin rats shortly after the drug (up to The enhanced lipolytic activity present during late gestation 7 hours), when compared with animals treated with distilled water, gives rise to an elevation in plasma free fatty acids (FFA) and whereas plasma glucose level was unaffected by the treatment in triglycerides (TG), both in women and rats [1–3]. Some tissues either group of rats. When acipimox was given every 12 hours from day 17 to day 20 of pregnancy, plasma TG, FFA, and glycerol levels use fatty acids as fuel, sparing glucose for the fast-growing fetus progressively increased, whereas they either decreased or did not and those maternal tissues that can only use glucose as fuel change in virgin rats receiving the same treatment, with no effect in energy [4].
    [Show full text]
  • Anatomical Classification Guidelines V2021 EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021 Anatomical Classification Guidelines V2021 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2021 Anatomical Classification Guidelines V2021 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 36 D DERMATOLOGICALS 51 G GENITO-URINARY SYSTEM AND SEX HORMONES 58 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 68 J GENERAL ANTI-INFECTIVES SYSTEMIC 72 K HOSPITAL SOLUTIONS 88 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 96 M MUSCULO-SKELETAL SYSTEM 106 N NERVOUS SYSTEM 111 P PARASITOLOGY 122 R RESPIRATORY SYSTEM 124 S SENSORY ORGANS 136 T DIAGNOSTIC AGENTS 143 V VARIOUS 145 Anatomical Classification Guidelines V2021 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Anatomical Classification Guidelines V2020 EPHMRA ANATOMICAL
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2020 Anatomical Classification Guidelines V2020 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2020 Anatomical Classification Guidelines V2020 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 35 D DERMATOLOGICALS 50 G GENITO-URINARY SYSTEM AND SEX HORMONES 57 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 65 J GENERAL ANTI-INFECTIVES SYSTEMIC 69 K HOSPITAL SOLUTIONS 84 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 92 M MUSCULO-SKELETAL SYSTEM 102 N NERVOUS SYSTEM 107 P PARASITOLOGY 118 R RESPIRATORY SYSTEM 120 S SENSORY ORGANS 132 T DIAGNOSTIC AGENTS 139 V VARIOUS 141 Anatomical Classification Guidelines V2020 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Rosuvastatin Zinc Salt Rosuvastatin-Zinksalz Sel De Zinc De Rosuvastatine
    (19) TZZ Z_¥__T (11) EP 2 013 188 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 239/42 (2006.01) A61K 31/505 (2006.01) 07.09.2016 Bulletin 2016/36 A61P 3/06 (2006.01) (21) Application number: 07733847.3 (86) International application number: PCT/HU2007/000030 (22) Date of filing: 12.04.2007 (87) International publication number: WO 2007/119085 (25.10.2007 Gazette 2007/43) (54) ROSUVASTATIN ZINC SALT ROSUVASTATIN-ZINKSALZ SEL DE ZINC DE ROSUVASTATINE (84) Designated Contracting States: • TÁPAI, Sándorné AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 2230 Gyömrö (HU) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Stolmár & Partner Designated Extension States: Patentanwälte PartG mbB et al AL BA HR MK RS Blumenstraße 17 80331 München (DE) (30) Priority: 13.04.2006 HU 0600293 (56) References cited: (43) Date of publication of application: EP-A- 1 336 405 WO-A-01/60804 14.01.2009 Bulletin 2009/03 WO-A-03/068739 WO-A-2004/108691 WO-A-2006/017698 (73) Proprietor: Egis Gyógyszergyár Nyilvánosan Múködö • DATABASE WPI Derwent Publications Ltd., Részvénytársaság London, GB; AN 2006-089591 XP002448430 1106 Budapest (HU) ZHAO ZHIQUAN [CN]: "An Anti-hyperlipemia Composition" & WO 2005/123082 A (LUNAN (72) Inventors: PHARMACEUTICAL COMPANY L [CN];) 2005 • VÁGÓ, Pál • GRAUL A ET AL: "ATORVASTATIN CALCIUM" 1173 Budapest (HU) DRUGS OF THE FUTURE, BARCELONA, ES, vol. • SIMIG, Gyula 22, no.
    [Show full text]
  • Acipimox (Olbetam®)
    PATIENT INFORMATION Medicine To Treat: C ardiac Diseases Lipid-Lowering Medicines ❏ Statins ❏ Fibrates ❏ Fat Binding Agents ❏ Nicotinic Acid Group ABOUT YOUR MEDICINE Your doctor has just prescribed for you: Medicine Group Examples of Medicine in the Group Statins • Lovastatin •Pravastatin (Pravachol®) • Simvastatin (Zocor®) •Atorvastatin (Lipitor®) • Fluvastatin (Lescol®) Fibrate • Gemfibrozil (Lopid®) •Bezafibrate (Bezalip®, Bezalip Retard®) • Ciprofibrate (Modalim®) • Clofibrate (Atromid-S®) •Fenofibrate (Lipanthyl®, Lipanthyl Micro®) Fat-Binding Agents • Cholestyramine (Questran Light®) Nicotinic Acid Group • Nicotinic Acid • Acipimox (Olbetam®) WHAT ARE LIPID-LOWERING MEDICINES USED FOR? This group of medicine helps to improve the blood lipid profile and may reduce your risk for heart attack and stroke as well as the need for procedures to improve blood flow to the heart, such as balloon angioplasty or heart bypass surgery. Depending on your health status and lipid level, your doctor will decide when to start treatment. Keep all medication out of reach of children. The medicines lower your blood cholesterol levels by reducing the amount of ‘bad cholesterol’ (low density lipoprotein or LDL-cholesterol) and ‘fat’ (triglyceride) and also raise the amount of ‘good cholesterol’ (high density lipoprotein or HDL-cholesterol). High cholesterol levels can cause coronary heart disease by gradually clogging up the blood vessels that supply the heart muscle. This process, called atherosclerosis, can eventually lead to chest pain (angina), heart attack or stroke. Lastly, the medicines may also help to prolong life. HOW SHOULD I TAKE THE MEDICINE? Except for cholestyramine, the other medicines in this group come in the form of tablets or capsules. They should be taken by mouth with a drink of water.
    [Show full text]
  • ICCB-L Plate (10 Mm / 3.33 Mm) ICCB-L Well Vendor ID Chemical Name
    ICCB-L Plate ICCB-L Therapeutic Absorption Protein FDA Additional info Additional info Vendor_ID Chemical_Name CAS number Therapeutic class Target type Target names (10 mM / 3.33 mM) Well effect tissue binding approved type detail Pharmacological 3712 / 3716 A03 Prestw-1 Azaguanine-8 134-58-7 Oncology Antineoplastic tool 3712 / 3716 A05 Prestw-2 Allantoin 97-59-6 Dermatology Antipsoriatic Carbonic 3712 / 3716 A07 Prestw-3 Acetazolamide 59-66-5 Metabolism Anticonvulsant Enzyme Carbonic anhydrase GI tract Yes anhydrase Potential Plasmatic New therapeutic 3712 / 3716 A09 Prestw-4 Metformin hydrochloride 1115-70-4 Endocrinology Anorectic GI tract Yes anticancer proteins use agent Chemical Plasmatic classification Quaternary 3712 / 3716 A11 Prestw-5 Atracurium besylate 64228-81-5 Neuromuscular Curarizing Yes proteins (according ATC ammonium code) 3712 / 3716 A13 Prestw-6 Isoflupredone acetate 338-98-7 Endocrinology Anti-inflammatory Therapeutic Amiloride-sensitive classification Potassium- 3712 / 3716 A15 Prestw-7 Amiloride hydrochloride dihydrate 17440-83-4 Metabolism Antihypertensive LGIC GI tract Yes sodium channel, ENaC (according ATC sparing agent code) 3712 / 3716 A17 Prestw-8 Amprolium hydrochloride 137-88-2 Infectiology Anticoccidial Veterinary use Poultry Therapeutic Solute carrier family 12 Plasmatic classification Low-ceiling 3712 / 3716 A19 Prestw-9 Hydrochlorothiazide 58-93-5 Metabolism Antihypertensive Carrier GI tract Yes member 3 proteins (according ATC diuretic code) Chemical classification 3712 / 3716 A21 Prestw-10 Sulfaguanidine
    [Show full text]