Risk of Cataract in Patients Treated with Statins

Total Page:16

File Type:pdf, Size:1020Kb

Risk of Cataract in Patients Treated with Statins ORIGINAL INVESTIGATION Risk of Cataract in Patients Treated With Statins Raymond G. Schlienger, PhD; Walter E. Haefeli, MD; Hershel Jick, MD; Christoph R. Meier, PhD, MSc Background: Studies in dogs showed that some hy- Results: We identified 7405 cases and 28327 controls. droxymethylglutaryl coenzyme A reductase inhibitors Long-term use of statins (eg, $30 prescriptions) was not (statins) are associated with cataract when adminis- associated with an increased cataract risk (adjusted odds tered in excessive doses. Clinical safety data of statins re- ratio [OR], 0.9; 95% confidence interval [CI], 0.5-1.6), garding cataract development in humans have been of nor was use of fibrates or of other lipid-lowering drugs limited value so far. (adjusted OR, 0.5; 95% CI, 0.3-1.1; and OR, 0.7; 95% CI, 0.1-5.6, respectively). We found evidence that concomi- Objective: To determine whether long-term use of stat- tant use of simvastatin and erythromycin, a potent in- ins is associated with an increased risk of cataract. hibitor of simvastatin metabolism, is associated with an increased cataract risk (adjusted odds ratio, 2.2; 95% con- Methods: We conducted a case-control analysis using data fidence interval, 1.2-4.1). from the United Kingdom–based General Practice Re- search Database. The main outcome was a first-time diag- Conclusions: Our study provides evidence that long- nosis of cataract and/or cataract extraction in patients aged term use of therapeutic statin doses does not increase the 40 to 79 years. Controls were matched to cases on age, sex, risk of developing cataract. Concomitant use of eryth- practice, calendar time, and duration of medical history in romycin and simvastatin may increase the cataract risk. the database. Use of statins, fibrates, or other lipid- lowering drugs was compared with nonuse of any lipid- lowering drug, stratified by exposure duration and dose. Arch Intern Med. 2001;161:2021-2026 NHIBITORS OF hydroxymethylglu- other lipid-lowering drugs, or no lipid- taryl coenzyme A reductase (stat- lowering drug. In animal models, a direct ins) are effective drugs to de- relationship between systemic statin ex- crease morbidity and mortality in posure (plasma drug levels) and cataract patients with hypercholesterol- was demonstrated.5 Therefore, we hypoth- From the Basel Iemia.1-3 Although the overall safety pro- esized that increased systemic availabil- Pharmacoepidemiology Unit, file of the marketed statins has been shown ity of statins, potentially resulting from Division of Clinical to be favorable in humans,4 concerns have concomitant administration of inhibitors Pharmacology, Department of arisen on the basis of long-term animal of cytochrome P-450 with statins show- Internal Medicine, University studies showing that some statins (eg, sim- ing extensive cytochrome P-450 metabo- Hospital of Basel, Basel, vastatin, fluvastatin) are cataractogenic lism, may modify the risk of cataract. Switzerland (Drs Schlienger 5,6 and Meier); Institute of Clinical when administered at excessive doses. Pharmacy, Department of Although isolated case reports have RESULTS Pharmacy, University of Basel related the use of simvastatin with the de- (Dr Schlienger); Department of velopment of cataract in humans,7 clini- We included 7405 case patients and 28327 Internal Medicine VI, Clinical cal examination of patients treated with matched control patients in the analysis. Pharmacology and statins has not demonstrated any catarac- The distributions of age, sex, body mass Pharmacoepidemiology, togenic risk.8-15 However, most previous index, smoking status, use of corticoste- University Hospital of studies reporting on statin effects on the roids, and number of practice visits pre- Heidelberg, Heidelberg, human lens have been of limited value for ceding the index date of case and control Germany (Dr Haefeli); and Table 1 Boston Collaborative Drug a variety of reasons. patients are shown in . In the case Surveillance Program, Boston We conducted a case-control analy- group, 3445 patients (46.5%) had a di- University, School of Medicine, sis to explore the risk of developing cata- agnosis of cataract only; the remaining Lexington, Mass ract in patients treated with statins, com- 3960 had cataract removal. The mean re- (Drs Jick and Meier). pared with those treated with fibrates, corded medical history in the database be- (REPRINTED) ARCH INTERN MED/ VOL 161, SEP 10, 2001 WWW.ARCHINTERNMED.COM 2021 ©2001 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/27/2021 PATIENTS AND METHODS excluded all patients with a history of diabetes (ICD-8 code 250.x), because diabetic patients have a high prevalence of various eye diseases and are therefore more likely than other This study is based on data derived from the General Prac- patients to have ophthalmologic examinations on a regular tice Research Database (GPRD), which was previously de- basis.23 scribed in detail elsewhere.16-18 Since 1987, more than 3 mil- To each case patient we randomly identified and lion residents in the United Kingdom have been enrolled matched 4 control patients from the base population on age with selected general practitioners who have agreed to pro- (±2 years), sex, practice, calendar time (by using the same vide data for research purposes to the GPRD. The age and index date), and number of years of recorded medical his- sex distribution of the patients enrolled is representative tory in the GPRD before the index date. The same exclu- of the entire United Kingdom population. The general prac- sion criteria were applied to control as to case patients. titioners received 12 months of instruction on the stan- For each case and control patient, we assessed the ex- dardized data recording on computer of anonymous infor- posure history for lipid-lowering drugs from the comput- mation, which they agreed to supply continuously to erized patient profile. Patients were categorized as users of academic researchers. The information recorded includes (1) statins (ie, atorvastatin calcium, cerivastatin sodium, patient demographics and characteristics (eg, height, weight, fluvastatin sodium, pravastatin sodium, or simvastatin [lo- and smoking status), symptoms, medical diagnoses, re- vastatin was not included in our analysis because it was not ferrals to consultants, hospital admissions, and drug available in the United Kingdom]), (2) fibrates (ie, beza- prescriptions, including the specific preparation, route of fibrate, ciprofibrate, clofibrate, fenofibrate, or gemfibro- administration, dose, and number of tablets for each pre- zil), (3) users of other lipid-lowering drugs (ie, acipimox, scription. On request, hospital discharge and referral cholestyramine resin, or colestipol hydrochloride), or (4) letters are available for review to validate the diagnoses re- “mixed users” (ie, patients who switched between differ- corded in the computer record. The GPRD currently en- ent lipid-lowering drug classes or concomitant users of 2 compasses some 30 million person-years of follow-up. It or more lipid-lowering drug classes). Patients with a has been the source for numerous epidemiologic studies history of lipid-lowering drug therapy were further char- in recent years, including studies on statins19 or cataract20; acterized according to the number of prescriptions for the accuracy and completeness of GPRD data have been lipid-lowering drugs before the index date (ie, 1-9, 10-19, well documented and validated.17,21,22 20-29, or $30 prescriptions). We further assessed a cu- mulative dose based on the number of prescriptions, num- CASES AND CONTROLS ber of doses per prescription, and dose per tablet. We also explored relative risk estimates of statin use We identified all patients who had a first-time diagnosis of when given concomitantly with erythromycin, clarithro- cataract (International Classification of Diseases, Eighth Revi- mycin, verapamil hydrochloride, cyclosporine, flucona- sion [ICD-8] codes 374.x) followed by a referral to a special- zole, ketoconazole, or itraconazole, drugs known to sig- ist or by a hospitalization because of cataract diagnosis, sur- nificantly increase simvastatin availability to the systemic gical cataract extraction (Oxford Medical Information System circulation.24-26 procedure code 156), or both, between January 1, 1994, and September 30, 1998. We included case patients who were 40 ANALYSIS to 79 years old at the time of a first-time diagnosis of cata- ract (subsequently referred to as index date), and who had a We conducted a matched analysis (conditional logistic recorded medical history in the GPRD of at least 3 years be- regression) to explore the association between type of fore the index date. Cases were identified in the absence of exposure (statins, fibrates, other lipid-lowering drugs, or any exposure information. From previous experience, we none), exposure duration or cumulative dose, and the risk knew that a high percentage of computer-recorded cataract of developing cataract. In addition to controlling for age, diagnoses (.95%) in the GPRD are correct and can be vali- sex, practice attended, and calendar time (by matching), dated by surgery reports and/or documented ophthal- we controlled the analysis for the potential confounders mologic assessments.20 Patients with ophthalmologic smoking status, body mass index, exposure to corticoste- disorders defined as cataract (ICD-8 code 374.x), corneal roids, and number of general practitioner visits before the opacities (ICD-8 code 371.x), uveitis (ICD-8 code 366.x), eye index date (as a marker for the degree of medical attention). inflammation (ICD-8 code 369.x), glaucoma (ICD-8 code All analyses were performed with the statistical soft- 375.x), retina detachment (ICD-8 code 376.x), retinal dis- ware SAS, version 6.12 (SAS Institute Inc, Cary, NC). Odds eases (ICD-8 code 377.x), or uveal disease (ICD-8 code 378.x) ratios (ORs) are presented with 95% confidence intervals before the index date were excluded. Furthermore, we (CIs); P values are 2-tailed. fore the index date was 6.2 years in both the case and all, long-term use of statins (eg, $30 prescriptions) was control groups.
Recommended publications
  • No Name of Drug Branded/Generic Drug Class 1 Acipimox Capsule 250Mg Olbetam Nicotinic Acid 1.50 2.14 2 Atorvastatin Calcium 10Mg
    MEDICATIONS FOR TREATMENT OF HIGH BLOOD LIPIDS (HYPERLIPIDEMIA) PRICE RANGE (S$) PER NO NAME OF DRUG BRANDED/GENERIC DRUG CLASS TABLET/ CAPSULE/ SACHET 1 ACIPIMOX CAPSULE 250MG OLBETAM NICOTINIC ACID 1.50 - 2.14 STATIN & CALCIUM 4.40 - 4.90 2 ATORVASTATIN CALCIUM 10MG AMLODIPINE BESYLATE 10MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 3.88 - 4.00 3 ATORVASTATIN CALCIUM 10MG AMLODIPINE BESYLATE 5MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 4.33 - 4.90 4 ATORVASTATIN CALCIUM 20MG AMLODIPINE BESYLATE 10MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 4.05 - 4.80 5 ATORVASTATIN CALCIUM 20MG AMLODIPINE BESYLATE 5MG TABLET CADUET CHANNEL BLOCKERS 6 ATORVASTATIN CALCIUM 10MG LIPITOR STATIN 2.60 - 2.60 7 ATORVASTATIN CALCIUM 20MG LIPITOR STATIN 2.99 - 3.00 8 ATORVASTATIN CALCIUM 40MG LIPITOR STATIN 4.10 - 8.20 9 ATORVASTATIN CALCIUM 80MG LIPITOR STATIN 8.45 - 8.95 10 BEZAFIBRATE SR TABLET 400MG BEZALIP FIBRATES 0.00 - 0.00 11 CHOLESTYRAMINE 4G/SACHET GENERIC FIBRATES 1.35 - 2.25 12 CIPROFIBRATE TABLET 100MG MODALIM FIBRATES 1.60 - 1.75 13 FENOFIBRATE CAPSULE 200MG APO-FENO-MICRO FIBRATES 0.71 - 1.07 14 FENOFIBRATE CAPSULE 200MG LIPANTHYL FIBRATES 1.45 - 1.45 15 FENOFIBRATE CAPSULE 145MG LIPANTHYL PENTA 145 FIBRATES 1.75 - 2.05 16 FENOFIBRATE TABLET 160MG LIPANTHYL SUPRA 160 FIBRATES 1.45 - 1.45 17 FLUVASTATIN SODIUM CAPSULE 20MG LESCOL STATIN 1.85 - 1.86 18 FLUVASTATIN SODIUM CAPSULE 40MG LESCOL STATIN 3.29 - 3.39 19 FLUVASTATIN SODIUM CAPSULE 80MG LESCOL XL STATIN 3.60 - 3.93 20 GEMFIBROZIL CAPSULES 300MG GENERIC-IPOLIPID FIBRATES
    [Show full text]
  • Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes?
    Annals of Medicine ISSN: 0785-3890 (Print) 1365-2060 (Online) Journal homepage: http://www.tandfonline.com/loi/iann20 Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes? M. Ruscica, N. Ferri, C. Macchi, A. Corsini & C. R. Sirtori To cite this article: M. Ruscica, N. Ferri, C. Macchi, A. Corsini & C. R. Sirtori (2018): Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes?, Annals of Medicine, DOI: 10.1080/07853890.2018.1498118 To link to this article: https://doi.org/10.1080/07853890.2018.1498118 Accepted author version posted online: 06 Jul 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iann20 LIPID LOWERING DRUGS AND INFLAMMATORY CHANGES: AN IMPACT ON CARDIOVASCULAR OUTCOMES? M. Ruscica1*, N. Ferri2*, C. Macchi1, A. Corsini1 and C. R. Sirtori3 1Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; 2Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy; 3Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy *Both authors contributed equally to this work Corresponding Author: Cesare R. Sirtori [email protected] Abstract Inflammatory changes are responsible for maintenance of the atherosclerotic process and may underlie some of the most feared vascular complications. Among the multiple mechanisms of inflammation, the arterial deposition of lipids and particularly of cholesterol crystals is the one responsible for activation of inflammasome NLRP3, followed by the rise of circulating markers, mainly C-reactive protein (CRP). Elevation of lipoproteins, LDL but also VLDL and remnants, associates with increased inflammatory changes and coronary risk.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • PRAC Recommends Using Acipimox Only As Additional Or Alternative Treatment to Lower High Triglyceride Levels Licensed Uses Should Be Refined to Optimise Benefit-Risk
    08 November 2013 EMA/618574/2013 PRAC recommends using acipimox only as additional or alternative treatment to lower high triglyceride levels Licensed uses should be refined to optimise benefit-risk The European Medicines Agency’s Pharmacovigilance Risk Assessment Committee (PRAC) has recommended that medicines containing acipimox should have their marketing authorisations amended to ensure that they are used across the European Union only as an additional or alternative treatment in type IIb and type IV hyperlipoproteinaemia. These are conditions involving hypertriglyceridaemia (high levels of triglycerides, a type of fat, in the blood), with or without increased cholesterol. Acipimox-containing medicines should be used when changes in lifestyle, including diet and exercise, and treatment with other medicines are not adequate. The available evidence does not support wider use in lipid disorders (abnormal levels of fats in the blood). The original reason for the review of acipimox was HPS2-THRIVE, a large study which looked at the long-term effect of the combination of nicotinic acid (a substance related to acipimox) and another medicine, laropiprant, in treating lipid disorders. The study showed that this combination taken together with statins (another class of medicines used to treat lipid disorders) did not lead to additional benefits in reducing the risk of major vascular events such as heart attack and stroke, but did result in a higher frequency of non-fatal but serious side effects. As a result, the European Medicines Agency recommended the suspension of medicines containing the combination of nicotinic acid and laropiprant across the EU.1 Because acipimox was the only other medicine containing nicotinic acid or a related substance that was currently marketed for lipid disorders in the EU, its benefit-risk balance was reviewed in the light of the latest evidence.
    [Show full text]
  • Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research
    Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Garabedian, Laura Faden. 2013. Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156786 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research A dissertation presented by Laura Faden Garabedian to The Committee on Higher Degrees in Health Policy in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Health Policy Harvard University Cambridge, Massachusetts March 2013 © 2013 – Laura Faden Garabedian All rights reserved. Professor Stephen Soumerai Laura Faden Garabedian Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research Abstract This dissertation consists of two empirical papers and one methods paper. The first two papers use quasi-experimental methods to evaluate the impact of universal health insurance reform in Massachusetts (MA) and Thailand and the third paper evaluates the validity of a quasi- experimental method used in comparative effectiveness research (CER). My first paper uses interrupted time series with data from IMS Health to evaluate the impact of Thailand’s universal health insurance and physician payment reform on utilization of medicines for three non-communicable diseases: cancer, cardiovascular disease and diabetes.
    [Show full text]
  • Reassessment of Reimbursement Status for Lipid-Lowering Medicines, ATC Group C10 Introduction by the End of 20041, the Danish Pa
    Reassessment of reimbursement status for lipid-lowering medicines, ATC Group C10 March, 16 2007 Introduction Journal no: 1 By the end of 2004 , the Danish Parliament decided that decisions on 5315-8 general reimbursement for medicinal products should be subject to periodic Our ref: Lipid Reassessment. reassessment. Decision.b.160307 The reassessment aims at assessing whether the assumptions underlying the original decision on granting or not granting general, including restricted, reimbursement, are still valid. The Danish Medicines Agency is currently reassessing the reimbursement status of all medicinal products over a period of five years, and the below decisions will conclude the reassessment of the reimbursement status of lipid-lowering medicines (ATC Group C10). The decisions and accompanying justifications are directed towards companies with medicinal products in the indicated ATC groups with marketing authorisations in Denmark on 15 March 2007. We enclose an appendix with a list of the medicinal products from your company which the decision concerns. The decisions entail an overall relaxation of the reimbursement status of lipid-lowering medicines and will support treatment with lipid-lowering medicines when the patient suffers from hyperlipidemia requiring medication therapy and will encourage the use of the cheaper statins which are eligible for general reimbursement, where possible, alone or in combination with one of the other lipid-lowering substances. 1 In connection with the adoption of Act no. 1431 of 22 December 2004 on Amendment of the Act on National Health Insurance. The amendment entered into force on 1 January 2005. The Act on National Health Insurance was replaced by the Danish Health Care Act; Act no.
    [Show full text]
  • Effect of Acipimox on Plasma Lipids and Glucose/Insulin in Pregnant Rats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Int. Jnl. Experimental Diab. Res., 3:233–239, 2002 Copyright c 2002 Taylor & Francis 1560-4284/02 $12.00 + .00 DOI: 10.1080/15604280290013973 Effect of Acipimox on Plasma Lipids and Glucose/Insulin in Pregnant Rats I. S´anchez-Vera,1 B. Bonet,1,2 M. Viana,1 E. Herrera,1 and A. Indart1 1Facultad de Ciencias Experimentales y de la Salud, Universidad San Pablo–CEU, Madrid, Spain 2Departamento de Pediatr´ıa y Neonatolog´ıa, Fundacion´ Hospital Alcorcon,´ Madrid, Spain Keywords Acipimox; Fetal Weight; Lipolysis; Pregnancy; To determine how a reduction in maternal hypertriglyceridemia Triglycerides during late pregnancy may affect glucose/insulin relationships, pregnant and virgin rats were orally treated with acipimox, a potent antilipolytic agent. In 20-day pregnant rats receiving 80 mg of acip- imox, plasma triglycerides (TG), free fatty acids (FFA), and glyc- erol decreased more than in virgin rats shortly after the drug (up to The enhanced lipolytic activity present during late gestation 7 hours), when compared with animals treated with distilled water, gives rise to an elevation in plasma free fatty acids (FFA) and whereas plasma glucose level was unaffected by the treatment in triglycerides (TG), both in women and rats [1–3]. Some tissues either group of rats. When acipimox was given every 12 hours from day 17 to day 20 of pregnancy, plasma TG, FFA, and glycerol levels use fatty acids as fuel, sparing glucose for the fast-growing fetus progressively increased, whereas they either decreased or did not and those maternal tissues that can only use glucose as fuel change in virgin rats receiving the same treatment, with no effect in energy [4].
    [Show full text]
  • Anatomical Classification Guidelines V2021 EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021 Anatomical Classification Guidelines V2021 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2021 Anatomical Classification Guidelines V2021 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 36 D DERMATOLOGICALS 51 G GENITO-URINARY SYSTEM AND SEX HORMONES 58 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 68 J GENERAL ANTI-INFECTIVES SYSTEMIC 72 K HOSPITAL SOLUTIONS 88 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 96 M MUSCULO-SKELETAL SYSTEM 106 N NERVOUS SYSTEM 111 P PARASITOLOGY 122 R RESPIRATORY SYSTEM 124 S SENSORY ORGANS 136 T DIAGNOSTIC AGENTS 143 V VARIOUS 145 Anatomical Classification Guidelines V2021 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Anatomical Classification Guidelines V2020 EPHMRA ANATOMICAL
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2020 Anatomical Classification Guidelines V2020 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2020 Anatomical Classification Guidelines V2020 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 35 D DERMATOLOGICALS 50 G GENITO-URINARY SYSTEM AND SEX HORMONES 57 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 65 J GENERAL ANTI-INFECTIVES SYSTEMIC 69 K HOSPITAL SOLUTIONS 84 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 92 M MUSCULO-SKELETAL SYSTEM 102 N NERVOUS SYSTEM 107 P PARASITOLOGY 118 R RESPIRATORY SYSTEM 120 S SENSORY ORGANS 132 T DIAGNOSTIC AGENTS 139 V VARIOUS 141 Anatomical Classification Guidelines V2020 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Rosuvastatin Zinc Salt Rosuvastatin-Zinksalz Sel De Zinc De Rosuvastatine
    (19) TZZ Z_¥__T (11) EP 2 013 188 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 239/42 (2006.01) A61K 31/505 (2006.01) 07.09.2016 Bulletin 2016/36 A61P 3/06 (2006.01) (21) Application number: 07733847.3 (86) International application number: PCT/HU2007/000030 (22) Date of filing: 12.04.2007 (87) International publication number: WO 2007/119085 (25.10.2007 Gazette 2007/43) (54) ROSUVASTATIN ZINC SALT ROSUVASTATIN-ZINKSALZ SEL DE ZINC DE ROSUVASTATINE (84) Designated Contracting States: • TÁPAI, Sándorné AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 2230 Gyömrö (HU) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Stolmár & Partner Designated Extension States: Patentanwälte PartG mbB et al AL BA HR MK RS Blumenstraße 17 80331 München (DE) (30) Priority: 13.04.2006 HU 0600293 (56) References cited: (43) Date of publication of application: EP-A- 1 336 405 WO-A-01/60804 14.01.2009 Bulletin 2009/03 WO-A-03/068739 WO-A-2004/108691 WO-A-2006/017698 (73) Proprietor: Egis Gyógyszergyár Nyilvánosan Múködö • DATABASE WPI Derwent Publications Ltd., Részvénytársaság London, GB; AN 2006-089591 XP002448430 1106 Budapest (HU) ZHAO ZHIQUAN [CN]: "An Anti-hyperlipemia Composition" & WO 2005/123082 A (LUNAN (72) Inventors: PHARMACEUTICAL COMPANY L [CN];) 2005 • VÁGÓ, Pál • GRAUL A ET AL: "ATORVASTATIN CALCIUM" 1173 Budapest (HU) DRUGS OF THE FUTURE, BARCELONA, ES, vol. • SIMIG, Gyula 22, no.
    [Show full text]
  • Acipimox (Olbetam®)
    PATIENT INFORMATION Medicine To Treat: C ardiac Diseases Lipid-Lowering Medicines ❏ Statins ❏ Fibrates ❏ Fat Binding Agents ❏ Nicotinic Acid Group ABOUT YOUR MEDICINE Your doctor has just prescribed for you: Medicine Group Examples of Medicine in the Group Statins • Lovastatin •Pravastatin (Pravachol®) • Simvastatin (Zocor®) •Atorvastatin (Lipitor®) • Fluvastatin (Lescol®) Fibrate • Gemfibrozil (Lopid®) •Bezafibrate (Bezalip®, Bezalip Retard®) • Ciprofibrate (Modalim®) • Clofibrate (Atromid-S®) •Fenofibrate (Lipanthyl®, Lipanthyl Micro®) Fat-Binding Agents • Cholestyramine (Questran Light®) Nicotinic Acid Group • Nicotinic Acid • Acipimox (Olbetam®) WHAT ARE LIPID-LOWERING MEDICINES USED FOR? This group of medicine helps to improve the blood lipid profile and may reduce your risk for heart attack and stroke as well as the need for procedures to improve blood flow to the heart, such as balloon angioplasty or heart bypass surgery. Depending on your health status and lipid level, your doctor will decide when to start treatment. Keep all medication out of reach of children. The medicines lower your blood cholesterol levels by reducing the amount of ‘bad cholesterol’ (low density lipoprotein or LDL-cholesterol) and ‘fat’ (triglyceride) and also raise the amount of ‘good cholesterol’ (high density lipoprotein or HDL-cholesterol). High cholesterol levels can cause coronary heart disease by gradually clogging up the blood vessels that supply the heart muscle. This process, called atherosclerosis, can eventually lead to chest pain (angina), heart attack or stroke. Lastly, the medicines may also help to prolong life. HOW SHOULD I TAKE THE MEDICINE? Except for cholestyramine, the other medicines in this group come in the form of tablets or capsules. They should be taken by mouth with a drink of water.
    [Show full text]
  • ICCB-L Plate (10 Mm / 3.33 Mm) ICCB-L Well Vendor ID Chemical Name
    ICCB-L Plate ICCB-L Therapeutic Absorption Protein FDA Additional info Additional info Vendor_ID Chemical_Name CAS number Therapeutic class Target type Target names (10 mM / 3.33 mM) Well effect tissue binding approved type detail Pharmacological 3712 / 3716 A03 Prestw-1 Azaguanine-8 134-58-7 Oncology Antineoplastic tool 3712 / 3716 A05 Prestw-2 Allantoin 97-59-6 Dermatology Antipsoriatic Carbonic 3712 / 3716 A07 Prestw-3 Acetazolamide 59-66-5 Metabolism Anticonvulsant Enzyme Carbonic anhydrase GI tract Yes anhydrase Potential Plasmatic New therapeutic 3712 / 3716 A09 Prestw-4 Metformin hydrochloride 1115-70-4 Endocrinology Anorectic GI tract Yes anticancer proteins use agent Chemical Plasmatic classification Quaternary 3712 / 3716 A11 Prestw-5 Atracurium besylate 64228-81-5 Neuromuscular Curarizing Yes proteins (according ATC ammonium code) 3712 / 3716 A13 Prestw-6 Isoflupredone acetate 338-98-7 Endocrinology Anti-inflammatory Therapeutic Amiloride-sensitive classification Potassium- 3712 / 3716 A15 Prestw-7 Amiloride hydrochloride dihydrate 17440-83-4 Metabolism Antihypertensive LGIC GI tract Yes sodium channel, ENaC (according ATC sparing agent code) 3712 / 3716 A17 Prestw-8 Amprolium hydrochloride 137-88-2 Infectiology Anticoccidial Veterinary use Poultry Therapeutic Solute carrier family 12 Plasmatic classification Low-ceiling 3712 / 3716 A19 Prestw-9 Hydrochlorothiazide 58-93-5 Metabolism Antihypertensive Carrier GI tract Yes member 3 proteins (according ATC diuretic code) Chemical classification 3712 / 3716 A21 Prestw-10 Sulfaguanidine
    [Show full text]