Reminiscences at Spentafest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
International Advisory Committee R
International Advisory Committee R Balasubramanian, The Institute of Mathematical Sciences, Chennai, India Srikumar Banerjee, Bhabha Atomic Research Centre, Mumbai, India Mustansir Barma, Tata Institute of Fundamental Research, Mumbai, India Carl M Bender, University of Washington, St Louis, USA Emanuela Caliceti, University of Bologna, Italy Deepak Dhar, Tata Institute of Fundamental Research, Mumbai, India Hendrik B Geyer, University of Stellenbosch, South Africa Sanjay Jain, University of Delhi, India S Kailas, Bhabha Atomic Research Centre, Mumbai, India P K Kaw, Institute of Plasma Research, Gandhinagar, India Narendra Kumar, Raman Research Institute, Bangalore, India Ali Mostafazadeh, Koc University, Turkey A Raychaudhuri, Harish-Chandra Research Institute, Jhunsi, India V C Sahni, Bhabha Atomic Research Centre, Mumbai, India Bikash C Sinha, Variable Energy Cyclotron Centre, Kolkata, India J V Yakhmi, Bhabha Atomic Research Centre, Mumbai, India Miloslav Znojil, Nuclear Physics Institute, Czech Republic Organizing Committee R K Choudhury, Bhabha Atomic Research Centre, Mumbai (Chairman) Sudhir R Jain, Bhabha Atomic Research Centre, Mumbai (Convener) Zafar Ahmed, Bhabha Atomic Research Centre, Mumbai (Co-convener) Bijan K Bagchi, Calcutta University, Kolkata Ambar Chatterjee, Bhabha Atomic Research Centre, Mumbai Richard D'Souza, Bhabha Atomic Research Centre, Mumbai Swapan K Ghosh, Bhabha Atomic Research Centre, Mumbai B N Jagatap, Bhabha Atomic Research Centre, Mumbai Avinash Khare, Institute of Physics, Bhubaneswar Ramesh Koul, Bhabha Atomic Research Centre, Mumbai S V G Menon, Bhabha Atomic Research Centre, Mumbai Ajit K Mohanty, Bhabha Atomic Research Centre, Mumbai R R Puri, Bhabha Atomic Research Centre, Mumbai R Roychowdhury, Indian Statistical Institute, Kolkata R Simon, The Institute of Mathematical Sciences, Chennai Vijay A Singh, Homi Bhabha Centre for Science Education, Mumbai A G Wagh, Bhabha Atomic Research Centre, Mumbai. -
Biodata of Professor Ak Sood
BIODATA OF PROFESSOR A.K. SOOD =============================================================== Address : Department of Physics Indian Institute of Science Bangalore-560 012, INDIA Tele: 91-80-23602238, 22932964 E.mail : [email protected], [email protected] Education : M.S. Physics, Punjab University, Chandigarh, India, 1972. Ph.D. Physics, Indian Institute of Science, Bangalore, India 1982. Professional Experience : 8/16 – Present Honorary Professor, Department of Physics, Indian Institute of Science (IISc), Bangalore, India 7/94 - 7/16 Professor, Department of Physics, IISc, Bangalore. 12/98 – 3/08 Divisional Chairman, Division of Physical and Mathematical Sciences, IISc, Bangalore 7/88 - 7/94 Associate Professor, Department of Physics, IISc, Bangalore 1993 - Present Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 8/73 – 7/88 Scientist, Indira Gandhi Centre for Atomic Research, Kalpakkam, India 5/83 – 5/85 Post-doctoral Max Planck Fellow, Max Planck Institute fur FKF, Stuttgart, Germany Service to the Profession: 1. Member, Science, Technology and Innovation Advisory Council to the PM of India (2018- present) 2. Chairman, Governing Council, Raman Research Institute (2016-present) 3. Member, Vision Group on Nanotechnology, Government of Karnataka (2014- ) 4. Chairman, Board of Governers, Indian Institute of Science Education and Research- Bhopal (2020-present) 5. Chairman, Board of Governers, Indian Institute of Science Education and Research- Mohali (2021 onwards) 6. Chairman, DST Committee of VAJRA (2020 onwards) 7. Member, Scientific Advisory Council to the Prime Minister of India (2009-2014) 8. Member, Science and Engineering Research Board (SERB), Oversight Committee, GOI (2012-14, 2017-19) 9. Member, Nanomission Council of Dept. of Science and Technology (DST), Government of India (GOI) 10. -
Nominations for Different “Academy Awards/Lectures/ Medals”
The National Academy of Sciences, India (NASI) 5, Lajpatrai Road, Prayagraj – 211002 Prof. Paramjit Khurana Ph.D., FNA, FASc, FNAAS, FTWAS, FNASc Prof. Satya Deo Ph.D. (Arkansas, USA), F.N.A.Sc. General Secretaries June 15, 2021 Subject : Nominations for different “Academy Awards/Lectures/Medals” Dear Fellows, I request you to kindly send nominations for the following “Academy Awards/Lectures/Medals”– 1. Prof. Meghnad Saha Memorial Lecture Award (2021) 2. Prof. N.R. Dhar Memorial Lecture Award (2021) 3. Prof. Archana Sharma Memorial Lecture Award (2021) 4. Prof. M.G.K. Menon Lecture Award (2021) 5. Prof. M.G.K. Menon Memorial Award (2021) 6. Prof. V. P. Sharma Memorial Lecture Award (2021) 7. Prof. A.K. Sharma Memorial Lecture Award (2021) 8. Prof. Prafulla Chandra Ray Memorial Lecture Award (2021) 9. Prof. S.K. Joshi Memorial Lecture Award (2021) 10. Prof. A.C. Banerji Memorial Lecture Award (2021) 11. Dr. B.P. Pal Memorial Lecture Award (2021) 12. Dr. P. Sheel Memorial (Young Women Scientist) Lecture Award (2021) 13. Prof. B.K. Bachhawat Memorial Lecture Award (2021) 14. Prof. U.S. Srivastava Memorial Lecture Award (2021) 15. Lecture Award in the field of Biodiversity (2021) 16. NASI-Buti Foundation Lecture Award (2021) The nomination papers duly completed in all respect should be emailed to NASI on [email protected] latest by July 15, 2021. No hard copy is required for this year; kindly send the nomination on aforesaid email only (not on any other email id of NASI). The copy of Regulations regarding these Academy Awards/Lectures/Medals and the names of past recipients are enclosed. -
Aim of the Experiment
Dynamics, Entropy Production & Defects in Active Matter Sriram Ramaswamy Centre for Condensed Matter Theory Department of Physics Indian Institute of Science Bengaluru Support: J C Bose Fellowship, SERB, India Homi Bhabha Chair, Tata Education and Development Trust ICTS Entropy School Sep 2018 Outline • Systems & phenomena • Framework • Entropy production • Flocking, condensation, trapping • Defect unbinding: an energy-entropy story • Summary Systems and phenomema Millipede Flock (S Dhara, U of Hyderabad) Persistent motion → condensationwithoutattraction condensation without attraction Low conc High conc nonmotile motile Motility-induced phase separation Non-aligning SPPs: Fily & Marchetti; Redner, Hagan, Baskaran; Tailleur & Cates; SP rods: S Weitz, A Deutsch, F Peruani The trapping phase transition Kumar, Gupta, Soni, Sood, SR Self-propelled defects The symmetry of the field around the strength -1/2 defect will result in no net motion, while the curvature around the +1/2 defect has a well-defined polarity and hence should move in the direction of its “nose” as shown in the figure. V Narayan et al., Science 317 (2007) 105 motile +1/2 defect, static -1/2 defect Defects as particles: +1/2 motile, -1/2 not +1/2 velocity ~ divQ Giomi, Bowick, Ma, Marchetti PRL 2013 Thampi, Golestanian, Yeomans PRL 2014 DeCamp et al NMat 2015 ....... Active matter: definition • Active particles are alive, or “alive” – living systems and their components – each constituent has dissipative Time’s Arrow – steadily transduces free energy to movement – detailed balance homogeneously broken – collectively: active matter – transient information: sensing and signalling – heritable information: self-replication So: SR– mutation:J Stat Mech evolution 2017 motile creatures Marchetti, Joanny, SR, Liverpool, Prost, Rao, Simha, living tissue Rev. -
Newsletter February 2019
EDITORIAL As we sail into the 8th year of our young institute, this newsletter aims to provide a common platform to bring together all the events associated with TIFRH, scientific and otherwise. In this inaugural issue, we bring to you an array of articles along with some creative titbits. We start off the issue with the cover story tracing the marvellous journey of TIFR Hyderabad, right from its conception to the point we stand today, a full-fledged institute bustling with research activities. We feature an article by Prof. Hari Dass, which will make you ponder about the no- cloning theorem in quantum mechanics and its implications, and Shubhadeep Pal, who gives an insight into the importance of reducing carbon emissions. We also feature an exclusive interview with the NMR bigwig, Prof. Shimon Vega, who talks about his foray into NMR, the long-standing relationship with his student, Prof. P.K Madhu, and dealing with hiccups in science. TIFR has a long history of outreach programs and other activities encouraging science education at the roots. At TIFR Hyderabad, we intend to continue this paradigm and to this end, Debashree Sengupta talks more about the active initiatives being taken in this direction. Moreover, amidst a variety of interdisciplinary research at TIFRH, we have highlighted a few in the ‘InFocus’ section of this issue. Lastly, in the non-science end of this issue, we present to you some comic relief, a poem about life and friendship in a research institute, and a photo gallery sporting a few talented shutterbugs at TIFR Hyderabad. -
From 2D Droplets to 2D Yang-Mills Arxiv:2010.11923V1 [Hep-Th]
Prepared for submission to JHEP From 2d Droplets to 2d Yang-Mills Arghya Chattopadhyaya, Suvankar Duttab, Debangshu Mukherjeeb;c, Neetub aInstitute of Mathematical Sciences, Homi Bhaba National Institute (HBNI) IV Cross Road, Taramani, Chennai 600113, Tamil Nadu, India bIndian Institute of Science Education and Research Bhopal Bhopal Bypass, Bhopal 462066, India cIndian Institute of Science Education and Research Thiruvananthapuram Vithura 695551, Kerala, India E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We establish a connection between time evolution of free Fermi droplets and partition function of generalised q-deformed Yang-Mills theories on Riemann surfaces. Classical phases of (0 + 1) dimensional unitary matrix models can be characterised by free Fermi droplets in two dimensions. We quantise these droplets and find that the modes satisfy an abelian Kac-Moody algebra. The Hilbert spaces H+ and H− associated with the upper and lower free Fermi surfaces of a droplet admit a Young diagram basis in which the phase space Hamiltonian is diagonal with eigenvalue, in the large N limit, equal to the quadratic Casimir of u(N). We establish an exact mapping between states in H± and geometries of droplets. In particular, coherent states in H± correspond to classical deformation of upper and lower Fermi surfaces. We prove that correlation between two coherent states in H± is equal to the chiral and anti-chiral partition function of 2d Yang-Mills theory on a cylinder. Using the fact that the full Hilbert space H+ ⊗ H− admits a composite basis, we show that correlation between two classical droplet geometries is equal to the full U(N) Yang-Mills partition function on cylinder. -
Annual Report
THE INSTITUTE OF MATHEMATICAL SCIENCES C. I. T. Campus, Taramani, Chennai - 600 113. ANNUAL REPORT Apr 2003 - Mar 2004 Telegram: MATSCIENCE Fax: +91-44-2254 1586 Telephone: +91-44-2254 2398, 2254 1856, 2254 2588, 2254 1049, 2254 2050 e-mail: offi[email protected] ii Foreword I am pleased to present the progress made by the Institute during 2003-2004 in its many sub-disciplines and note the distinctive achievements of the members of the Institute. As usual, 2003-2004 was an academically productive year in terms of scientific publications and scientific meetings. The Institute conducted the “Fifth SERC School on the Physics of Disordered Systems”; a two day meeting on “Operator Algebras” and the “third IMSc Update Meeting: Automata and Verification”. The Institute co-sponsored the conference on “Geometry Inspired by Physics”; the “Confer- ence in Analytic Number Theory”; the fifth “International Conference on General Relativity and Cosmology” held at Cochin and the discussion meeting on “Field-theoretic aspects of gravity-IV” held at Pelling, Sikkim. The Institute faculty participated in full strength in the AMS conference in Bangalore. The NBHM Nurture Programme, The Subhashis Nag Memorial Lecture and The Institute Seminar Week have become an annual feature. This year’s Nag Memorial Lecture was delivered by Prof. Ashoke Sen from the Harish-Chandra Research Institute, Allahabad. The Institute has also participated in several national and international collaborative projects: the project on “Automata and concurrency: Syntactic methods for verification”, the joint project of IMSc, C-DAC and DST to bring out CD-ROMS on “The life and works of Srini- vasa Ramanujan”, the Xth plan project “Indian Lattice Gauge Theory Initiative (ILGTI)”, the “India-based neutrino observatory” project, the DRDO project on “Novel materials for applications in molecular electronics and energy storage devices” the DFG-INSA project on “The spectral theory of Schr¨odinger operators”, and the Indo-US project on “Studies in quantum statistics”. -
Mechanical Forces in Cell Biology
Mechanical Forces in Cell Biology Program Mechanics &Information at the scale of Cells & Tissues October 4-6, 2016 Venue : National Centre for Biology Science (Dasheri) October 4, 2016, Tuesday 14:00 - 16:50 Registration 16:00 – 16:50 Welcome special snacks Session 1 16:50 – 17:00 Welcome Address Raghu Pandinjat Chair :- Raghu Pandinjat National Centre for Biological Sciences, Bangalore 17:00 – 18:00 Michael Sheetz Rigidity Sensing Contractions Inhibit Transformed Growth 18:00 – 18:30 Discussion 18:30 onwards Special Dinner Mechanical Forces in Cell Biology Program Mechanics &Information at the scale of Cells & Tissues October 4-6, 2016 Venue : National Centre for Biology Science (Dasheri) October 5, 2016, Wednesday Session 2 Chair :- Mukund Thattai National Centre for Biological Sciences, Bangalore 09:00 – 09:45 Frank Julicher Dynamics and mechanics of developing ephithelia 09:45 – 10:15 Vijay kumar K. A mechanism of biological pattern formation through mechanochemical feedback 10:15 – 11:00 Joachim Spatz Mechanotransduction in Collective Cell Migration 11:00 – 11:15 Discussion 11:15 – 11:30 Tea/Coffee Break Session 3 Chair :- Srikanth Sastry, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 11:30 – 12:00 Alexander Bershadsky Self-organization of actomyosin cytoskeleton and cell morphogenesis 12:30 – 12:30 Sriram Ramaswamy Confined active fluids within and without the cell 12:30 – 13:00 Gautam Menon Nuclear Architecture and Active Matter 13:00 - 13:15 Discussion 13:15 – 14:15 Lunch 14:15 – 16:00 Poster Session Mechanical -
Indian Physics Association Awards
NEWS Following day, the participants moved the environment of deposition, litho- 2. Paliwal, B. S., J. Geol. Soc. India, 1998, to Sam, Jaisalmer. On the way they saw facies, structural set-up and microbial 52(1), 81–86. Pokaran Boulder Bed (PBB), considered life in the basin. Palaeontological data 3. Kumar, S. and Pandey, S. K., Curr. Sci., to be the base of MSG. Chauhan et al.5 need support from sedimentological in- 2008, 94, 1081–1085. and Bhatt et al.6 have discussed its origin puts. New macrofossil morpho-forms, 4. Kumar, S. and Pandey, S. K., J. Asian Earth Sci., 2010, 38, 77–85. and lithostratigraphic position. The ori- some of which are enigmatic, can give 5. Chauhan, D. S., Mathur, K. M. and Ram, gin of PBB, i.e. whether it is glacial important clues regarding early multicel- N., J. Geol. Soc. India, 2001, 58(5), 425– deposit or not, is being debated. Partici- lular organisms and their evolution. Fel- 433. pants were unanimous that there is no sic volcanic unit of Chhoti Khatu could 6. Bhatt, D. K., Prasad, S., Jain, R. L. and evidence to consider PBB as a glacial be significant and provide precise age Mathur, A. K., J. Geol. Soc. India, 2005, boulder bed. constraint for the basin. 65, 301–308. During the return journey to Jodhpur All participants appreciated the infor- participants saw the Malani Igneous mative, elegantly prepared field guide Suite in Baukan Section. The valedictory book and the meticulous planning of the session was held at Jodhpur. The oil in- field trip by the scientists from BSIP. -
2019-20-English
The Institute of Mathematical Sciences Annual Report & Audited Statement of Accounts 1 March 2019- April 2020 The Institute of Mathematical Sciences Chennai Annual Report and Audited Statement of Accounts April 2019 - March 2020 Telephone: +91-44-2254 3100, 2254 1856 Website: https://www.imsc.res.in/ Fax: +91-44-2254 1586 DID No.: +91-44-2254 3xxx(xxx=extension) 2 Director’s Note Director’s Note I am happy to present the annual report of the Institute for 2019-2020 and put forth the distinctive achievements of its members during the year along with a perspective for the future. During the period April 2019 - March 2020, there were 144 students pursuing their PhD and 42 scholars pursuing their post-doctoral programme at IMSc. Spread through this period, the Institute organized or co-sponsored several workshops and conferences. The First IMSc discussion meeting on extreme QCD matter held during September 16 - 21, 2019 brought together senior scientists to deliver a set of pedagogic lectures on the current state-of-the-art, open problems and challenges in the area of hot and dense QCD matter. The annual meeting of the International Pulsar Timing Array (IPTA) was organized during June 10 - 21, 2019 by its Indian arm, of which IMSc is a part. An NCM sponsored workshop on Combinatorial Models for Representation Theory was organised in IMSc during November 4 - 16, 2019 and saw active participation from Ph.D students and postdocs from across the country. An ACM-India Summer School on Graphs and Graph Algorithms and a meeting on Recent Trends in Algorithms were both organised during the year. -
Professor Ajay Kumar Sood
BIODATA OF PROFESSOR A.K. SOOD =============================================================== Name : Professor Ajay Kumar Sood Address : Department of Physics Indian Institute of Science Bangalore-560 012, INDIA Tele: 91-80-23602238, 22932964 Fax: 91-80-23602602 E.mail : [email protected] Born : June 26, 1951 Citizenship : Indian Education : B.Sc. Physics, Punjab University, Chandigarh, India, 1971. M.S. Physics, Punjab University, Chandigarh, India, 1972. Ph.D. Physics, Indian Institute of Science, Bangalore, India 1982. Post-doctoral: Max Planck Institute fur FKF, Stuttgart, Germany, 1983-1985. Professional Experience : 7/94- Present Professor Department of Physics, Indian Institute of Science, Bangalore. 12/98 – 3/08 Divisional Chairman Division of Physical and Mathematical Sciences, Indian Institute of Science, Bangalore, India 7/88- 7/94 Associate Professor Department of Physics, Indian Institute of Science, Bangalore. India 1993- Present Honorary Professor Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India 8/73 – 7/88 Scientist Indira Gandhi Centre for Atomic Research, Kalpakkam, India 1 Ajay K. Sood Page 2 ================================================================= Honours and Recognitions: a) Civilian Honours 1) “Padma Shri” by Government of India (2013) b) Fellowships of Academies 1) Fellow of the Royal Society, London (FRS) (2015) 2) Secretary General, The World Academy of Sciences (2013-2015) 3) President, Indian Academy of Sciences (2010-2012) 4) Vice President, Indian National Science -
Arxiv:2102.01527V5 [Physics.Soc-Ph] 8 Apr 2021
Limiting Value of the Kolkata Index for Social Inequality and a Possible Social Constant Asim Ghosh1, ∗ and Bikas K Chakrabarti2, 3, 4, † 1Raghunathpur College, Raghunathpur, Purulia 723133, India. 2Saha Institute of Nuclear Physics, Kolkata 700064, India. 3Economic Research Unit, Indian Statistical Institute, Kolkata 700108, India. 4S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India Based on some analytic structural properties of the Gini and Kolkata indices for social inequality, as obtained from a generic form of the Lorenz function, we make a conjecture that the limiting (effective saturation) value of the above-mentioned indices is about 0.865. This, together with some more new observations on the citation statistics of individual authors (including Nobel laureates), suggests that about 14% of people or papers or social conflicts tend to earn or attract or cause about 86% of wealth or citations or deaths respectively in very competitive situations in markets, universities or wars. This is a modified form of the (more than a) century old 80 − 20 law of Pareto in economy (not visible today because of various welfare and other strategies) and gives an universal value (0.86) of social (inequality) constant or number. I. INTRODUCTION Unlike the universal constants in physical sciences, like the Gravitational Constant of Newton’s Gravity law, Boltzmann Constant of thermodynamics or Planck’s Constant of Quantum Mechanics, there is no established universal constant yet in social sciences. There have of course been suggestion of several possible candidates. Stanley Milgram’s experiment [1] to determine the social ‘contact-distance’ between any two per- sons of the society, by trying to deliver letters from and to random people through personal chains of friends or acquaintances, suggested ‘Six Degrees of Separation’.