Hidden Entropy Production and Work Fluctuations in an Ideal Active

Total Page:16

File Type:pdf, Size:1020Kb

Hidden Entropy Production and Work Fluctuations in an Ideal Active Hidden entropy production and work fluctuations in an ideal active gas Suraj Shankara,b∗ and M. Cristina Marchettia,b† aPhysics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, NY 13244, USA. bKavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA. (Dated: September 5, 2018) Collections of self-propelled particles that move persistently by continuously consuming free energy are a paradigmatic example of active matter. In these systems, unlike Brownian “hot colloids”, the breakdown of detailed balance yields a continuous production of entropy at steady state, even for an ideal active gas. We quantify the irreversibility for a non-interacting active particle in two dimensions by treating both conjugated and time-reversed dynamics. By starting with underdamped dynamics, we identify a hidden rate of entropy production required to maintain persistence and prevent the rapidly relaxing momenta from thermalizing, even in the limit of very large friction. Additionally, comparing two popular models of self-propulsion with identical dissipation on average, we find that the fluctuations and large deviations in work done are markedly different, providing thermodynamic insight into the varying extents to which macroscopically similar active matter systems may depart from equilibrium. Introduction. What is irreversible in active matter? ∆s ˙ Overdamped Underdamped These systems are driven out of equilibrium by the con- h i 2 tinuous and sustained consumption of free energy at the v0 γDR TRS odd propulsion 0 microscopic scale [1–3], but quantifying such irreversibil- T (γ + DR) 2 2 2 ity is challenging. The persistent motion of E. coli per- v0 γ v0 γ TRS even propulsion forming run and tumble [4, 5] or of synthetic active col- T T (γ + DR) loids propelled by auto-phoresis [6, 7] are classic exam- ples of motion that breaks microscopic detailed balance TABLE I: A summary of the average entropy production rate by virtue of self-propulsion [8], yet is diffusive on large ∆s ˙ for various cases, applicable to both non-interacting h i 2 scales. The detailed balance violations due to persistence ABP and AOUP (using Ta = v0 γ/2DR). The difference often do not survive coarse-graining (even in the presence between the results obtained with underdamped and over- of weak external fields). This restores an effective equi- damped dynamics represents the hidden entropy production. librium picture on large scales, thereby allowing a dilute gas of self-propelled particles to be essentially treated as a gas of “hot colloids” [9] with an effective temperature unit, or as odd under TRS [19–21], corresponding to the [10–13]. In characterizing detailed balance violations on so-called conjugated dynamics [22]. Previous work has a coarse-grained scale, even manifestly non-equilibrium used both prescriptions, as well as techniques that leave phenomena, such as condensation in the absence of at- the sign under TRS unspecified [23–26], all with differing traction [14, 15], may then be understood by comparing and sometimes conflicting notions of dissipated heat and them to the “nearest” equilibrium like model at the same its relation to entropy production. Additionally, a single scale [16]. active particle has often been found to have vanishing en- tropy production [21, 23–26], seemingly suggesting equi- To quantify irreversibility of an ideal active gas, we librium behavior. We show that some of these issues can examine here the microscopic dynamics of an individual be clarified by using underdamped dynamics along with active particle and evaluate the entropy production rate thermal noise and taking the large friction limit only at arXiv:1804.03099v3 [cond-mat.soft] 2 Sep 2018 ∆s ˙ in two popular simple models of self-propelled par- the end, because for both TRS prescriptions the fast mo- ticlesh i in two dimensions (2d): Active Brownian particles menta degrees of freedom are responsible for a finite hid- (ABPs) where the propulsive force has fixed magnitude den entropy production [27–30], thereby demonstrating and its direction is randomized by rotational noise, and that a single active particle is thermodynamically irre- active Ornstein-Uhlenbeck particles (AOUPs) where self- versible. This is most evident for the case of conjugated propulsion is modeled as a Gaussian colored noise. En- dynamics where the hidden ∆s ˙ is the only contribution, tropy production provides a direct measure of the break- while it is subdominant ath largei friction for TRS even down of time-reversal symmetry (TRS) at steady state. propulsive forces (see Table I). If, in contrast, inertia is We show below that it crucially hinges on whether the neglected from the outset, a single active particle behaves propulsive force is treated as even under TRS [17, 18], as a passive colloid pulled by an external force (TRS even appropriate for active phoretic colloids, vibrated rods, propulsion) or as a colloid moving at the velocity of the or swimming bacteria, where the direction of motility solvent in a sheared fluid [21, 31] (propulsion here is the encodes a physical asymmetry of the microscopic active solvent velocity, which is TRS odd), with ∆s ˙ = 0. This h i 2 −A t result holds for both ABP and AOUP, thereby not dis- written as P [x(t) x(0)] e τ=0 δ(∂τ r p), where tinguishing the two models on the average. [x(τ)] is the Onsager| Machlup∝ functional [−41] (neglect- We then show that the non-equilibrium nature of ac- ingA unimportant additive constantsQ [55]), given by tive particles becomes evident in the fluctuations of ther- t modynamic quantities. By comparing the ABP and the 1 2 = dτ [∂τ p + γp fp] . (3) AOUP models, we find that even though they have the A 4Tγ ˆ0 − same long-time dynamics and dissipate identically on av- erage, their work fluctuations are vastly different. We For non-interacting particles, the Hamiltonian of the sys- tem only involves the kinetic energy ( = p2/2) and the demonstrate in a precise fashion that the AOUP gas is H always further away from equilibrium compared to the first law takes the form (in Stratanovich convention) [42] ABP gas, for the same motility and persistence. Specif- d = p dp = d¯w d¯q , (4) ically, the variance of the cumulative work done to pro- H · − pel the particles, corresponding to the Fano factor, is where d¯w is the propulsive work done and d¯q is the strongly enhanced by activity over its linear response heat dissipated into the reservoir. The sign convention value for the AOUP, but not for the ABP. Our work used is that both heat dissipated into the bath and work can be extended to thermodynamic quantities of inter- done by the environment on the system are taken to acting active systems along with their fluctuations that be positive. Requiring the Clausius relation, we equate are beginning to be accessible experimentally [32–36]. d¯q(t)= T ∆s(t), which as we will see below is consistent The models. We consider an underdamped active par- with Sekimoto’s [42] definition of heat only for the TRS ticle and set the mass and Boltzmann factor to unity. The even case. It is clear from Eq. 2 that, as discussed in the r p particle velocity ˙ = obeys a Langevin equation, Introduction, entropy production depends on whether the propulsion is treated as a force (hence TRS even) p˙ = γp + fp + 2Tγ ξ(t) , (1) − or as a velocity (hence TRS odd). We discuss both cases where γ is the friction, T thep temperature of the en- here, although the TRS even prescription is more directly vironment providing a heat bath, and ξ(t) a delta- relevant to physical realizations. Also, the calculation of correlated Gaussian white noise. For ABP the propulsive the mean entropy production is outlined here for ABP. force fp = γv0eˆ has fixed magnitude, with v0 the self- The result turns out to be the same for AOUP. propulsion speed, and direction randomized by rotational TRS odd propulsion. The prescription of conjugated noise, eˆ(t) eˆ(0) = e−|t|DR . For AOUP the propul- dynamics (r†(τ) = r(t τ), p†(τ) = p(t τ) and − − − sive forceh is· an Ornstein-Uhlenbecki process, D−1f˙ = f †(τ) = f (t τ) on a time interval τ [0,t], see R p p − p − ∈ fp + √2γTaη(t)[η(t) white noise and Ta an active tem- Fig. 1(a)) most clearly illustrates the importance of re- − −|t|DR perature], so that fp(t) fp(0) =2γTaDRe . Both taining the fast momenta degrees of freedom and the types of particles areh diffusive· i at long times, with diffu- associated hidden entropy production. Considering from 2 sivity D = (T + Ta)/γ, where for ABP, Ta = v0 γ/(2DR). the outset overdamped dynamics and treating motility as It has been shown that the large-scale phenomenology of a TRS odd velocity seems to lead identically to ∆s ˙ = 0, the two models is similar even in the presence of strong in the absence of interactions [21, 23], wrongly suggesting interactions [37, 38] where they both exhibit motility- that the system is in equilibrium [56]. Working instead induced phase separation. Yet, as we shall show below, with the underdamped equations, we obtain the entropy their thermodynamic fluctuations are markedly different production rate to be ∆s ˙ = p˙ (p v0eˆ)/T . Averaging − · − even at the single particle level. over noise, in steady state, we get Mean entropy production. Irreversibility can be quan- v2γD v2 D tified through dissipation and entropy production, which ∆s ˙ = 0 R = 0 D + R . (5) h i T (γ + D ) T R O γ can be calculated within the framework of stochastic R thermodynamics [22]. At steady state, the total en- This demonstrates a hidden entropy production in ac- tropy production of the system equals the entropy flux to the environment (also called entropy production of the tive matter arising from the entropic cost to maintain a finite persistence and evade thermalization of the fast medium [39]).
Recommended publications
  • Biodata of Professor Ak Sood
    BIODATA OF PROFESSOR A.K. SOOD =============================================================== Address : Department of Physics Indian Institute of Science Bangalore-560 012, INDIA Tele: 91-80-23602238, 22932964 E.mail : [email protected], [email protected] Education : M.S. Physics, Punjab University, Chandigarh, India, 1972. Ph.D. Physics, Indian Institute of Science, Bangalore, India 1982. Professional Experience : 8/16 – Present Honorary Professor, Department of Physics, Indian Institute of Science (IISc), Bangalore, India 7/94 - 7/16 Professor, Department of Physics, IISc, Bangalore. 12/98 – 3/08 Divisional Chairman, Division of Physical and Mathematical Sciences, IISc, Bangalore 7/88 - 7/94 Associate Professor, Department of Physics, IISc, Bangalore 1993 - Present Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 8/73 – 7/88 Scientist, Indira Gandhi Centre for Atomic Research, Kalpakkam, India 5/83 – 5/85 Post-doctoral Max Planck Fellow, Max Planck Institute fur FKF, Stuttgart, Germany Service to the Profession: 1. Member, Science, Technology and Innovation Advisory Council to the PM of India (2018- present) 2. Chairman, Governing Council, Raman Research Institute (2016-present) 3. Member, Vision Group on Nanotechnology, Government of Karnataka (2014- ) 4. Chairman, Board of Governers, Indian Institute of Science Education and Research- Bhopal (2020-present) 5. Chairman, Board of Governers, Indian Institute of Science Education and Research- Mohali (2021 onwards) 6. Chairman, DST Committee of VAJRA (2020 onwards) 7. Member, Scientific Advisory Council to the Prime Minister of India (2009-2014) 8. Member, Science and Engineering Research Board (SERB), Oversight Committee, GOI (2012-14, 2017-19) 9. Member, Nanomission Council of Dept. of Science and Technology (DST), Government of India (GOI) 10.
    [Show full text]
  • Aim of the Experiment
    Dynamics, Entropy Production & Defects in Active Matter Sriram Ramaswamy Centre for Condensed Matter Theory Department of Physics Indian Institute of Science Bengaluru Support: J C Bose Fellowship, SERB, India Homi Bhabha Chair, Tata Education and Development Trust ICTS Entropy School Sep 2018 Outline • Systems & phenomena • Framework • Entropy production • Flocking, condensation, trapping • Defect unbinding: an energy-entropy story • Summary Systems and phenomema Millipede Flock (S Dhara, U of Hyderabad) Persistent motion → condensationwithoutattraction condensation without attraction Low conc High conc nonmotile motile Motility-induced phase separation Non-aligning SPPs: Fily & Marchetti; Redner, Hagan, Baskaran; Tailleur & Cates; SP rods: S Weitz, A Deutsch, F Peruani The trapping phase transition Kumar, Gupta, Soni, Sood, SR Self-propelled defects The symmetry of the field around the strength -1/2 defect will result in no net motion, while the curvature around the +1/2 defect has a well-defined polarity and hence should move in the direction of its “nose” as shown in the figure. V Narayan et al., Science 317 (2007) 105 motile +1/2 defect, static -1/2 defect Defects as particles: +1/2 motile, -1/2 not +1/2 velocity ~ divQ Giomi, Bowick, Ma, Marchetti PRL 2013 Thampi, Golestanian, Yeomans PRL 2014 DeCamp et al NMat 2015 ....... Active matter: definition • Active particles are alive, or “alive” – living systems and their components – each constituent has dissipative Time’s Arrow – steadily transduces free energy to movement – detailed balance homogeneously broken – collectively: active matter – transient information: sensing and signalling – heritable information: self-replication So: SR– mutation:J Stat Mech evolution 2017 motile creatures Marchetti, Joanny, SR, Liverpool, Prost, Rao, Simha, living tissue Rev.
    [Show full text]
  • Newsletter February 2019
    EDITORIAL As we sail into the 8th year of our young institute, this newsletter aims to provide a common platform to bring together all the events associated with TIFRH, scientific and otherwise. In this inaugural issue, we bring to you an array of articles along with some creative titbits. We start off the issue with the cover story tracing the marvellous journey of TIFR Hyderabad, right from its conception to the point we stand today, a full-fledged institute bustling with research activities. We feature an article by Prof. Hari Dass, which will make you ponder about the no- cloning theorem in quantum mechanics and its implications, and Shubhadeep Pal, who gives an insight into the importance of reducing carbon emissions. We also feature an exclusive interview with the NMR bigwig, Prof. Shimon Vega, who talks about his foray into NMR, the long-standing relationship with his student, Prof. P.K Madhu, and dealing with hiccups in science. TIFR has a long history of outreach programs and other activities encouraging science education at the roots. At TIFR Hyderabad, we intend to continue this paradigm and to this end, Debashree Sengupta talks more about the active initiatives being taken in this direction. Moreover, amidst a variety of interdisciplinary research at TIFRH, we have highlighted a few in the ‘InFocus’ section of this issue. Lastly, in the non-science end of this issue, we present to you some comic relief, a poem about life and friendship in a research institute, and a photo gallery sporting a few talented shutterbugs at TIFR Hyderabad.
    [Show full text]
  • Mechanical Forces in Cell Biology
    Mechanical Forces in Cell Biology Program Mechanics &Information at the scale of Cells & Tissues October 4-6, 2016 Venue : National Centre for Biology Science (Dasheri) October 4, 2016, Tuesday 14:00 - 16:50 Registration 16:00 – 16:50 Welcome special snacks Session 1 16:50 – 17:00 Welcome Address Raghu Pandinjat Chair :- Raghu Pandinjat National Centre for Biological Sciences, Bangalore 17:00 – 18:00 Michael Sheetz Rigidity Sensing Contractions Inhibit Transformed Growth 18:00 – 18:30 Discussion 18:30 onwards Special Dinner Mechanical Forces in Cell Biology Program Mechanics &Information at the scale of Cells & Tissues October 4-6, 2016 Venue : National Centre for Biology Science (Dasheri) October 5, 2016, Wednesday Session 2 Chair :- Mukund Thattai National Centre for Biological Sciences, Bangalore 09:00 – 09:45 Frank Julicher Dynamics and mechanics of developing ephithelia 09:45 – 10:15 Vijay kumar K. A mechanism of biological pattern formation through mechanochemical feedback 10:15 – 11:00 Joachim Spatz Mechanotransduction in Collective Cell Migration 11:00 – 11:15 Discussion 11:15 – 11:30 Tea/Coffee Break Session 3 Chair :- Srikanth Sastry, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 11:30 – 12:00 Alexander Bershadsky Self-organization of actomyosin cytoskeleton and cell morphogenesis 12:30 – 12:30 Sriram Ramaswamy Confined active fluids within and without the cell 12:30 – 13:00 Gautam Menon Nuclear Architecture and Active Matter 13:00 - 13:15 Discussion 13:15 – 14:15 Lunch 14:15 – 16:00 Poster Session Mechanical
    [Show full text]
  • Professor Ajay Kumar Sood
    BIODATA OF PROFESSOR A.K. SOOD =============================================================== Name : Professor Ajay Kumar Sood Address : Department of Physics Indian Institute of Science Bangalore-560 012, INDIA Tele: 91-80-23602238, 22932964 Fax: 91-80-23602602 E.mail : [email protected] Born : June 26, 1951 Citizenship : Indian Education : B.Sc. Physics, Punjab University, Chandigarh, India, 1971. M.S. Physics, Punjab University, Chandigarh, India, 1972. Ph.D. Physics, Indian Institute of Science, Bangalore, India 1982. Post-doctoral: Max Planck Institute fur FKF, Stuttgart, Germany, 1983-1985. Professional Experience : 7/94- Present Professor Department of Physics, Indian Institute of Science, Bangalore. 12/98 – 3/08 Divisional Chairman Division of Physical and Mathematical Sciences, Indian Institute of Science, Bangalore, India 7/88- 7/94 Associate Professor Department of Physics, Indian Institute of Science, Bangalore. India 1993- Present Honorary Professor Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India 8/73 – 7/88 Scientist Indira Gandhi Centre for Atomic Research, Kalpakkam, India 1 Ajay K. Sood Page 2 ================================================================= Honours and Recognitions: a) Civilian Honours 1) “Padma Shri” by Government of India (2013) b) Fellowships of Academies 1) Fellow of the Royal Society, London (FRS) (2015) 2) Secretary General, The World Academy of Sciences (2013-2015) 3) President, Indian Academy of Sciences (2010-2012) 4) Vice President, Indian National Science
    [Show full text]
  • Arxiv:2102.01527V5 [Physics.Soc-Ph] 8 Apr 2021
    Limiting Value of the Kolkata Index for Social Inequality and a Possible Social Constant Asim Ghosh1, ∗ and Bikas K Chakrabarti2, 3, 4, † 1Raghunathpur College, Raghunathpur, Purulia 723133, India. 2Saha Institute of Nuclear Physics, Kolkata 700064, India. 3Economic Research Unit, Indian Statistical Institute, Kolkata 700108, India. 4S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India Based on some analytic structural properties of the Gini and Kolkata indices for social inequality, as obtained from a generic form of the Lorenz function, we make a conjecture that the limiting (effective saturation) value of the above-mentioned indices is about 0.865. This, together with some more new observations on the citation statistics of individual authors (including Nobel laureates), suggests that about 14% of people or papers or social conflicts tend to earn or attract or cause about 86% of wealth or citations or deaths respectively in very competitive situations in markets, universities or wars. This is a modified form of the (more than a) century old 80 − 20 law of Pareto in economy (not visible today because of various welfare and other strategies) and gives an universal value (0.86) of social (inequality) constant or number. I. INTRODUCTION Unlike the universal constants in physical sciences, like the Gravitational Constant of Newton’s Gravity law, Boltzmann Constant of thermodynamics or Planck’s Constant of Quantum Mechanics, there is no established universal constant yet in social sciences. There have of course been suggestion of several possible candidates. Stanley Milgram’s experiment [1] to determine the social ‘contact-distance’ between any two per- sons of the society, by trying to deliver letters from and to random people through personal chains of friends or acquaintances, suggested ‘Six Degrees of Separation’.
    [Show full text]
  • PROGRAM Summary ICTS Program on NON-EQUILIBRIUM
    PROGRAM Summary ICTS Program on NON-EQUILIBRIUM STATISTICAL PHYSICS 30 January – 08 February, 2010 Venue: Indian Institute of Technology, Kanpur This event is a part of the Golden Jubilee celebration of IIT Kanpur : celebrating 50 years of excellence in education and research 30 JAN (Saturday) ICTS NESP workshop Inaug. Session 9:00-9:30 Director, ICTS & Director, IITK SiISession I Cha ir: StSpenta R. WdiWadia 9:30-10:30 Udo Seifert, University of Stuttgart, Germany (NESP2010 Lars Onsager Lecture): “Stochastic thermodynamics: Theory and experiments”. 10:30-11:00 TEA (Special) SiIISession II Cha ir: Udo SiftSeifert 11:00-12:00 Pierre Gaspard, Free University of Brussels, Belgium (NESP2010 Ilya Prigogine Lecture): "Microreversibility and time asymmetry in nonequilibrium statistical mechanics and thermodynamics” 12:00-13:00 Gunter M. Schütz, Research Center Jülich, Germany (NESP2010 Distinguished Colloquium): “Statistical mechanics of extreme events” 13:00-14:00 LUNCH (Only for registered participants) Session III Chair: Pierre Gaspard 14:00-15:00 Jayanta K. Bhattacharjee, SN Bose National Centre for Basic Sciences, Kolkata, India (NESP2010 J. C. Bose Lecture): “Centre or limit cycle? RG as a probe“ 15:00-16:00 Robin B. Stinchcombe, University of Oxford, UK (NESP2010 Rudolf Peierls Lecture): ``Universality, and Non-universal Dynamics in Non-equilibrium Systems´´ 16:00-16:30 TEA Session IV Chair: Jayanta K. Bhattacharjee 16:30-17:30 Spenta R. Wadia (NESP2010 Subrahmanyan Chandrasekhar Lecture): “The Maldacena duality conjecture and applications” 17:30-18:00 Discussion Session V Chair: Amalendu Chandra 18:00-19:00 H. Eugene Stanley, Boston University, USA (NESP2010 John Kirkwood Lecture): “Puzzling Physics, Chemistry and Biology of Liquid water”.
    [Show full text]
  • Presentation on the Division of Biological
    INDIAN INSTITUTE OF SCIENCE (IISc) Bangalore IISc: THE DIVISIONAL STRUCTURE Biological Chemical Sciences Sciences Physical and Interdisciplinary Mathematical Sciences IISc Research Mechanical Electrical Sciences Sciences Division of Biological Sciences (76 Serving faculty members) (>250 publications/year) Molecular Biochemistry Microbiology and Cell Biology Biophysics Unit (1921) (1941) (1971) Prof. C. Jayabaskaran Prof. U. Vijayraghavan Prof. N. Srinivasan Centre for Molecular Reproduction, Centre for Development and Ecological Sciences Genetics Neuroscience (1983) (1989) (2009) Prof. R. Balakrishnan Prof. S. Visweswariah Prof. A. Murthy ~60 PhDs Central Animal Centre for Infectious graduate Facility Disease Research each year (1971) (2014) Prof. K. Somasundaram Prof. D. Nandi Other Centres for Interdisciplinary Research 1. Centre for Biosystems Science and Engineering (BSSE) 2. Centre for Nano Science and Engineering (CeNSE) 3. National Mathematics Initiative (IISc node; Math- Bio@IISc) 4. Centre for Brain Research (CBR) Funding generated by the Departments/Centres in the Division of Biological Sciences (2014-18) Total: INR ~402 crores (US$~57 million) (Excludes IISc and DBT-IISc Funds) CAF CIDR BC MRDG CES MBU CNS DBT-IISc Funds MCB 2012-2018: ~70 crores 2019-2021: ~78 crores Funding sources Indo-Swedish grant Indo-Australia grant Indo-Israel grant Indo-Russian grant 1. Disease Biology 1.1 Infectious disease biology (Viruses, bacteria and fungi) Principal Investigators from DBS: Dipshikha Chakravortty, S. Vijaya, K. N. Balaji, P. Ajitkumar, Amit Singh, S. Mahadevan, N. Ganesh, Dipankar Nandi, Saibal Chatterjee, and Utpal Tatu. Co-investigators from other divisions: Jagadeesh Gopalan (Aerospace Engineering), Ashok Raichur (Materials Engineering), G. Mugesh (Inorganic Physical Chemistry), and S. Umapathy (Inorganic Physical Chemistry). 1.
    [Show full text]
  • Abstracts of Talks
    ABSTRACTS OF TALKS Active matter: spreading, sticks, stripes, sheets and cells Sriram Ramaswamy Department of Physics, Indian Institute of Science, Bangalore 560 012 India Abstract: I will summarize recent progress from our group on liquid drops and lamellar phases of active particles, applications to dynamics at the scale of the membrane and the nucleus of a living cell, and the physics of macroscopic, activated rodlike particles. Investigations of Hot Dense Materials using Laser Heated Diamond Anvil Cells N. Subramanian Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 India Laser heating of materials in diamond anvil cells (LHDAC) has emerged in the recent years as a preferred route for subjecting them to extremely high temperatures, ~ thousands of kelvin, and pressures ~ megabars that can mimic planetary interiors. At such extreme conditions, the nature of the chemical bonding in elements changes and the chemical reactivity generally increase such that direct elemental reaction between even inert species becomes possible leading to the formation of novel and exotic phases. Exploration of these and establishing the high P-T phase diagrams of several substances has been made possible by coupling in situ diagnostic techniques such as synchrotron-based x-ray diffraction and Raman/IR spectroscopy to the LHDAC. This talk will focus on LHDAC-Raman spectroscopy’s unique advantages to probe P-T induced behavior of materials. Examples will include our recent work on dense hydrogen in which by monitoring the vibron changes in the LHDAC we see clear evidence of changes in bonding in the hot fluid state above a maximum in the melting curve 1 and an experiment in which we demonstrate chemical bond formation by direct reaction between Ge and Sn, both belonging to Group-IV and normally non- reactive, at ~ 9 GPa and 2000 K 2.
    [Show full text]
  • Physical and Mathematical Sciences
    Physical and Mathematical Sciences One of the six Divisions at IISc Chair: Rahul Pandit Three Departments Physics Mathematics Instrumentation and Applied Physics (IAP) Two Centres Cryogenic Technology (CCT) High Energy Physics (CHEP) Physical and Mathematical Sciences Grants from major national and international agencies: Department of Science and Technology Council for Scientific and Industrial Research Department of Biotechnology Defence Research and Development Organization Indian Space Research Organization University Grants Commission CEFIPRA, Max Planck, IUSSTF, UKIERI, AISRF and CNRS. Physics Founded in 1933 by Professor CV Raman. State of the art research programs in cutting edge areas Teaching Programmes Post-M.Sc. Integrated Ph.D. Programmes Undergraduate Programme. Interactions with industry. UGC Centre for Advanced Study for more than two decades. Major Research Areas .Condensed Matter Physics, .Soft Matter, Complex Systems .Biology Inspired Physics, .Quantum Computing, .Atomic and Optical Physics, .Plasma Physics, .Astronomy and Astrophysics. Faculty at Physics Condensed Matter (Experiment) Condensed Matter (Theory) A.K. Sood Prasad Vishnu Bhotla H.R. Krishnamurthy V. Venkataraman Aveek Bid Chandan Dasgupta Reghu Menon R. C. Mallik Rahul Pandit K. Rajan Anindya Das Sriram Ramaswamy K.S.R. Rao Prerna Sharma Vijay Shenoy Jaydeep Basu Victor Muthu Prabal Maiti P.S. Anil Kumar K. Ramesh Subroto Mukerjee Arindam Ghosh R. Ganesan Manish Jain K.P. Ramesh Ambarish Ghosh Tanmoy Das Suja Elizabeth Srimanta Middey Sumilan Banerjee Atomic and Optical Physics Astronomy and Astrophysics Vasant Natarajan Chanda Jog Arnab Rai Choudhuri Quantum Computing Banibrata Mukhopadhyay Tarun Deep Saini Vibhor Singh Prateek Sharma Plasma Physics Nirupam Roy Rajeev Kumar Jain Animesh Kuley Target to have 15 new members in the next 5 years Faculty at Physics Condensed Matter (Experiment) Condensed Matter (Theory) A.K.
    [Show full text]
  • Infosys Prize 2011 the Infosys Science Foundation
    Prof. Kalyanmoy Deb Engineering and Computer Science Prof. Kannan Dr. Imran Siddiqi Soundararajan Life Sciences Mathematical Sciences Prof. Sriram Prof. Raghuram Ramaswamy G. Rajan Physical Sciences Social Sciences – Economics Dr. Pratap Bhanu Mehta Social Sciences – Political Science and International Relations INFOSYS SCIENCE FOUNDATION INFOSYS SCIENCE FOUNDATION Infosys Campus, Electronics City, Hosur Road, Bangalore 560 100 Tel: 91 80 2852 0261 Fax: 91 80 2852 0362 Email: [email protected] www.infosys-science-foundation.com Infosys Prize 2011 The Infosys Science Foundation Securing India's scientific future The Infosys Science Foundation, a not-for-profit trust, was set up in February 2009 by Infosys and some members of its Board. The Foundation instituted the Infosys Prize, an annual award, to honor outstanding achievements of researchers and scientists across five categories: Engineering and Computer Science, Life Sciences, Mathematical Sciences, Physical Sciences and Social Sciences, each carrying a prize of R50 Lakh. The award intends to celebrate success and stand as a marker of excellence in scientific research. A jury comprising eminent leaders in each of these fields comes together to evaluate the achievements of the nominees against the standards of international research, placing the winners on par with the finest researchers in the world. In keeping with its mission of spreading the culture of science, the Foundation has instituted the Infosys Science Foundation Lectures – a series of public talks by jurors and laureates of the Infosys Prize on their work that will help inspire young researchers and students. “Science is a way of thinking much more than it is a body of knowledge.” Carl Edward Sagan 1934 – 1996 Astronomer, Astrophysicist, Author, Science Evangelist Prof.
    [Show full text]
  • Annual Report 2007 – 2008
    RAMAN RESEARCH INSTITUTE C.V.Raman Avenue, Sadashivanagar Bangalore 560 080, India Annual Report 2007 – 2008 Correct citation: Raman Research Institute, 2008. Annual Report : 2007 – 2008 Bangalore, RRI, v 97p. For further information, please write to: The Director Raman Research Institute C. V. Raman Avenue Sadashivanagar Bangalore 560 080, India Phone : +91 (80) 2361 0122 – 2361 0129 Fax : +91 (80) 2361 0492 Telegram : RAMANINST, BANGALORE e-mail : [email protected] [email protected] URL : http://www.rri.res.in ISSN : 0972-4117 September, 2008 C O N T E N T S Page Introduction 1 Astronomy & Astrophysics 9 Light & Matter Physics 20 Soft Condensed Matter 24 Theoretical Physics 30 Computers 39 Library 40 Other activities 43 Council and Finance Committee 46 Staff 47 Visitors 54 Publications 63 Conferences attended 83 Colloquia 105 Journal Club 115 Abbreviations used 119 P R E A M B L E The Annual report of the Raman Research Institute for the year 2007-2008 is a summary of the research and academic activities of the Institute during the year. The Annual Report presents synopses of the ongoing knowledge creation activities in the different research groups, many of which have outcomes in the form of publications in refereed scientific journals. Included are lists of research publications, PhD degrees awarded during the period 01 April 2007 to 31 March 2008, as well as seminars and review meetings focused on current research, which were held at the Institute. The report also lists the scientists who have visited the Institute from within India and from overseas during the period.
    [Show full text]