Physiological Adaptations Contributing to Stress Survival in the Foodborne

Total Page:16

File Type:pdf, Size:1020Kb

Physiological Adaptations Contributing to Stress Survival in the Foodborne Physiological adaptations contributing to stress survival in the foodborne pathogen Campylobacter jejuni A Thesis Presented to the Faculty of Graduate Studies of Lakehead University, Thunder Bay, Ontario by Brenda Magajna Submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy in Biotechnology December 17, 2014 Brenda Magajna © 2014 PERMISSION TO USE STATEMENT In presenting this thesis in partial fulfillment of the requirements for the Doctor of Philosophy degree at Lakehead University, I agree that the Library shall make it available to use under rules of the Library. Permission for extensive quotation from or reproduction of this thesis may be granted by my major professor, or in his absence, by the Head of Biotechnology department when in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission. Requests for permission to copy or make other use of material in this thesis in whole or in part should be addressed to: Head of the Biotechnology Program, Lakehead University 955 Oliver Road Thunder Bay, Ontario, Canada P7B 5E1 II ABSTRACT In spite of being considered fragile and fastidious, the zoonotic pathogen Campylobacter jejuni remains the leading cause of foodborne bacterial gastroenteritis in the developed world. Lacking many of the stress responses common to other enteric pathogens, C. jejuni employs the survival strategies, biofilm formation and entry into the viable but non-culturable (VBNC) state, which have not been well characterized. Recent studies have indicated that these strategies are likely related at the molecular level. The purpose of this thesis was threefold: 1) to characterize entry into the VBNC state for planktonic and biofilm cells of C. jejuni with starvation at 4°C; 2) to evaluate a novel PMAqPCR method to quantify viable cells (both culturable and viable but non-culturable) in planktonic and biofilm cells of C. jejuni during starvation at 4°C; and 3) to investigate changes in gene expression of selected genes involved in biofilm formation and entry into the VBNC state. The three strains C. jejuni NCTC 11168 V1, C. jejuni NCTC V26 and C. jejuni 16-2R were included in all studies to compare variation based on strains. Cells were considered VBNC when there was no growth with enrichment, but cells scored as viable based on membrane integrity. Biofilm cells which became VBNC in some cases after 10 days of stress were found to enter the VBNC state earlier than planktonic cells by 10 to 50 days. Additionally, no significant reductions occurred in viable cell counts over the course of the experiments, confirming that the loss of culturability was not due to cell death (p<0.05). To date, no methods have been used to quantify viable but non-culturable biofilm cells of C. jejuni. The novel method PMAqPCR which has been successful for the enumeration of planktonic C. jejuni as well as for biofilm cells of other species was validated for quantifying C. jejuni biofilm cells in late log phase (20 h) and once cells had entered the VBNC state. The genes that affect both entry into a VBNC state and the ability to form biofilm in C. jejuni were upregulated during biofilm formation. Gene expression prior to stress treatment was 5 to 37 fold higher in biofilm cells than in their planktonic counterparts for all three strains III (p<0.001). For the planktonic samples, only one of the 3 strains showed significant changes in gene expression during the transition to the VBNC state. In this case, all 4 target genes were significantly upregulated 4-6 fold just prior to cells becoming VBNC (p<0.05). At present food and drinking water safety in Canada continues to be assessed primarily using culture-based methodology. As validated in this thesis, the ability to quantify both culturable and viable but non-culturable C. jejuni cells in both planktonic and biofilm forms will allow for improved evaluation of quality control methods in both research and industries where these pathogens are a concern. Also, the understanding of the interaction between biofilm formation and entry into the VBNC state at the molecular level described herein provides information which can be used to develop appropriate interventions and reduce the incidence of campylobacteriosis. IV Acknowledgements First and foremost I would like to thank my supervisor, Dr. Heidi Schraft for her patient guidance and support. Her mentorship has carried beyond the work presented here and has had a significant positive impact on my life in general (p<0.00001). I would also like to thank Dr. Kam Tin Leung for getting me started in the fascinating field of microbiology and for his enduring interest in my work and the work of all his students. Thank you to Dr. Neelam Khaper for serving on my committee and providing feedback on my work. Thank you also to Marc Habash who agreed to serve as my external and provide a valuable critique of my work. I am also grateful for the help provided by Misung Yim. Her technical expertise and problem solving abilities, along with her encouragement and support have been fundamental to the completion of this dissertation. There have been numerous students in the lab and in the program who have helped in a variety of ways. Thanks to all of you and best wishes on your own journeys. Thank you to all the people in the Lakehead University Instrumentation Lab (LUIL) , Al McKenzie for training on the confocal, Greg Kepka for assistance with all the everyday technical difficulties and to Ain Raitsakas for checking in to make sure I was still alive during many late nights on the confocal. This work would not have been possible without the financial support provided by both NSERC and the Ontario Graduate Scholarship program. Finally, I wish to thank my family and friends; my parents, Frank and Susan Magajna, who have been behind me in all I do in life, my children Aidan and Emily who are a constant source of inspiration and all my friends who have been supportive of my efforts here. V Table of Contents ABSTRACT ..................................................................................................................... III Acknowledgements ........................................................................................................... V Table of Contents ............................................................................................................ VI List of Tables ..................................................................................................................... X List of Figures .................................................................................................................. XI CHAPTER 1: Literature Review .................................................................................... 1 1.1 Introduction .......................................................................................................................................... 1 1.2. Campylobacter in food and water ........................................................................................................ 4 1.2.1. Poultry rearing .............................................................................................................................. 4 1.2.2. Poultry meat processing ................................................................................................................ 8 1.2.3. Campylobacter in drinking water for human consumption ........................................................ 10 1.3. Biofilms .............................................................................................................................................. 11 1.3.1. Biofilm formation on abiotic surfaces ........................................................................................ 12 1.3.2. Stages in biofilm formation ........................................................................................................ 13 1.3.3. Biofilm and epithelial tissue ....................................................................................................... 18 1.3.4. Conditions relevant to biofilm formation ................................................................................... 19 1.3.5. Strain variation ........................................................................................................................... 23 1.3.5.1. Cell surface hydrophobicity ................................................................................................ 23 1.3.5.2. Polysaccharides ................................................................................................................... 23 1.3.5.3. Source .................................................................................................................................. 24 1.3.6. Commonly used C. jejuni strains ................................................................................................ 24 1.3.7. Extended survival and stress protection of C. jejuni within biofilms ......................................... 27 1.4 The viable but non-culturable (VBNC) state ....................................................................................... 29 1.4.1. Induction of VBNC..................................................................................................................... 30 1.4.1.1. Low nutrient stress (starvation) ..........................................................................................
Recommended publications
  • Campylobacteriosis: a Global Threat
    ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.11.002165 Muhammad Hanif Mughal. Biomed J Sci & Tech Res Review Article Open Access Campylobacteriosis: A Global Threat Muhammad Hanif Mughal* Homeopathic Clinic, Rawalpindi, Islamabad, Pakistan Received: : November 30, 2018; Published: : December 10, 2018 *Corresponding author: Muhammad Hanif Mughal, Homeopathic Clinic, Rawalpindi-Islamabad, Pakistan Abstract Campylobacter species account for most cases of human gastrointestinal infections worldwide. In humans, Campylobacter bacteria cause illness called campylobacteriosis. It is a common problem in the developing and industrialized world in human population. Campylobacter species extensive research in many developed countries yielded over 7500 peer reviewed articles. In humans, most frequently isolated species had been Campylobacter jejuni, followed by Campylobactercoli Campylobacterlari, and lastly Campylobacter fetus. C. jejuni colonizes important food animals besides chicken, which also includes cattle. The spread of the disease is allied to a wide range of livestock which include sheep, pigs, birds and turkeys. The organism (5-18.6 has% of been all Campylobacter responsible for cases) diarrhoea, in an estimated 400 - 500 million people globally each year. The most important Campylobacter species associated with human infections are C. jejuni, C. coli, C. lari and C. upsaliensis. Campylobacter colonize the lower intestinal tract, including the jejunum, ileum, and colon. The main sources of these microorganisms have been traced in unpasteurized milk, contaminated drinking water, raw or uncooked meat; especially poultry meat and contact with animals. Keywords: Campylobacteriosis; Gasteritis; Campylobacter jejuni; Developing countries; Emerging infections; Climate change Introduction of which C. jejuni and 12 species of C. coli have been associated with Campylobacter cause an illness known as campylobacteriosis is a common infectious problem of the developing and industrialized world.
    [Show full text]
  • A Campylobacter Integrative and Conjugative Element with a CRISPR-Cas9
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446523; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. van Vliet et al. CRISPR-Cas on Campylobacter mobile elements A Campylobacter integrative and conjugative element with a CRISPR-Cas9 system targeting competing plasmids: a history of plasmid warfare? Arnoud H.M. van Vliet 1,*, Oliver Charity 2, Mark Reuter 2 1. School of Veterinary Medicine, Department of Pathology and Infectious Diseases, University of Surrey, Guildford, United Kingdom. 2. Quadram Institute Bioscience, Microbes in the Food Chain programme, Norwich, United Kingdom. * Corresponding author. Mailing address: School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, United Kingdom. Phone +44-1483-684406, E-mail: [email protected] Running title: CRISPR-Cas on Campylobacter mobile elements Keywords: Campylobacter, mobile genetic elements, plasmids, CRISPR-Cas 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446523; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. van Vliet et al. CRISPR-Cas on Campylobacter mobile elements 1 ABSTRACT 2 Microbial genomes are highly adaptable, with mobile genetic elements (MGEs) such as 3 integrative conjugative elements (ICE) mediating the dissemination of new genetic information 4 throughout bacterial populations.
    [Show full text]
  • The Global View of Campylobacteriosis
    FOOD SAFETY THE GLOBAL VIEW OF CAMPYLOBACTERIOSIS REPORT OF AN EXPERT CONSULTATION UTRECHT, NETHERLANDS, 9-11 JULY 2012 THE GLOBAL VIEW OF CAMPYLOBACTERIOSIS IN COLLABORATION WITH Food and Agriculture of the United Nations THE GLOBAL VIEW OF CAMPYLOBACTERIOSIS REPORT OF EXPERT CONSULTATION UTRECHT, NETHERLANDS, 9-11 JULY 2012 IN COLLABORATION WITH Food and Agriculture of the United Nations The global view of campylobacteriosis: report of an expert consultation, Utrecht, Netherlands, 9-11 July 2012. 1. Campylobacter. 2. Campylobacter infections – epidemiology. 3. Campylobacter infections – prevention and control. 4. Cost of illness I.World Health Organization. II.Food and Agriculture Organization of the United Nations. III.World Organisation for Animal Health. ISBN 978 92 4 156460 1 _____________________________________________________ (NLM classification: WF 220) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO web site (www.who.int/about/licensing/copyright_form/en/index. html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Review Campylobacter As a Major Foodborne Pathogen
    REVIEW CAMPYLOBACTER AS A MAJOR FOODBORNE PATHOGEN: A REVIEW OF ITS CHARACTERISTICS, PATHOGENESIS, ANTIMICROBIAL RESISTANCE AND CONTROL Ahmed M. Ammar1, El-Sayed Y. El-Naenaeey1, Marwa I. Abd El-Hamid1, Attia A. El-Gedawy2 and Rania M. S. El- Malt*3 Address: Rania Mohamed Saied El-Malt 1 Zagazig University, Faculty of Veterinary Medicine, Department of Microbiology, 19th Saleh Abo Rahil Street, El-Nahal, 44519, Zagazig, Sharkia, Egypt 2 Animal health Research Institute, Department of Bacteriology, Tuberculosis unit, Nadi El-Seid Street,12618 Dokki, Giza, Egypt 3 Animal health Research Institute, Department of Microbiology, El-Mohafza Street, 44516, Zagazig, Sharkia, Egypt, +201061463064 *Corresponding author: [email protected] ABSTRACT Campylobacter, mainly Campylobacter jejuni is viewed as one of the most well-known reasons of foodborne bacterial diarrheal sickness in people around the globe. The genus Campylobacter contains 39 species (spp.) and 16 sub spp. Campylobacter is microaerophilic, Gram negative, spiral- shaped rod with characteristic cork screw motility. It is colonizing the digestive system of numerous wild and household animals and birds, particularly chickens. Intestinal colonization brings about transporter/carrier healthy animals. Consequently, the utilization of contaminated meat, especially chicken meat is the primary source of campylobacteriosis in humans and chickens are responsible for an expected 80% of human campylobacter infection. Interestingly, in contrast with the most recent published reviews that cover specific aspects of campylobacter/campylobacteriosis, this review targets the taxonomy, biological characteristics, identification and habitat of Campylobacter spp. Moreover, it discusses the pathogenesis, resistance to antimicrobial agents and public health significance of Campylobacter spp. Finally, it focuses on the phytochemicals as intervention strategies used to reduce Campylobacter spp.in poultry production.
    [Show full text]
  • MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
    BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ...........................................................................................................
    [Show full text]
  • CAMPYLOBACTER JEJUNI FOODBORNE GASTROENTERITIS by ! ! James I
    California Association for Medical Laboratory Technology ! Distance Learning Program ! ! ! ! ! CAMPYLOBACTER JEJUNI FOODBORNE GASTROENTERITIS by ! ! James I. Mangels, MA, CLS, MT (ASCP), F(AAM) Microbiology Consulting Services Santa Rosa, CA ! Course Number: DL-994 3.0 CE (CA Accreditation) Level of Difficulty: Intermediate ! © California Association for Medical Laboratory Technology. Permission to reprint any part of these materials, other than for credit from CAMLT, must be obtained in writing from the CAMLT Executive Office. ! CAMLT is approved by the California Department of Public Health as a CA CLS Accrediting Agency (#0021) and this course is is approved by ASCLS for the P.A.C.E. ® Program (#519) ! 1895 Mowry Ave, Suite 112 Fremont, CA 94538-1766 Phone: 510-792-4441 FAX: 510-792-3045 ! Notification of Distance Learning Deadline All continuing education units required to renew your license must be earned no later than the expiration date printed on your license. If some of your units are made up of Distance Learning courses, please allow yourself enough time to retake the test in the event you do not pass on the first attempt. CAMLT urges you to earn your CE units early!.!! ! 1! CAMLT Distance Learning Course DL-994 © California Association for Medical Laboratory Technology ! ! CAMPYLOBACTER JEJUNI - FOODBORNE GASTROENTERITIS ! OUTLINE A. Introduction B. History of Campylobacter jejuni Gastroenteritis C. Transmission of Campylobacter jejuni D. Illness/Symptoms E. Complications of Campylobacter Gastroenteritis F. Microbiology of Campylobacter jejuni G. Pathogenic Mechanisms of Campylobacter jejuni H. Diagnosis and Identification of Campylobacter Infection I. Treatment J. Prevention of Campylobacter Infection K. Conclusion ! COURSE OBJECTIVES After completing this course the participant will be able to: 1.
    [Show full text]
  • Campylobacter Jejuni from Canine and Bovine Cases of Campylobacteriosis Express High Antimicrobial Resistance Rates Against (Fluoro)Quinolones and Tetracyclines
    pathogens Communication Campylobacter jejuni from Canine and Bovine Cases of Campylobacteriosis Express High Antimicrobial Resistance Rates against (Fluoro)quinolones and Tetracyclines Sarah Moser 1, Helena Seth-Smith 2,3, Adrian Egli 2,3, Sonja Kittl 1 and Gudrun Overesch 1,* 1 Institute of Veterinary Bacteriology, University of Bern, 3001 Bern, Switzerland; [email protected] (S.M.); [email protected] (S.K.) 2 Applied Microbiology Research, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; [email protected] (H.S.-S.); [email protected] (A.E.) 3 Division of Clinical Bacteriology and Mycology, University Hospital Basel, 4001 Basel, Switzerland * Correspondence: [email protected]; Tel.: +41-(0)31-631-2438 Received: 30 June 2020; Accepted: 18 August 2020; Published: 23 August 2020 Abstract: Campylobacter (C.) spp. from poultry is the main source of foodborne human campylobacteriosis, but diseased pets and cattle shedding Campylobacter spp. may contribute sporadically as a source of human infection. As fluoroquinolones are one of the drugs of choice for the treatment of severe human campylobacteriosis, the resistance rates of C. jejuni and C. coli from poultry against antibiotics, including fluoroquinolones, are monitored within the European program on antimicrobial resistance (AMR) in livestock. However, much less is published on the AMR rates of C. jejuni and C. coli from pets and cattle. Therefore, C. jejuni and C. coli isolated from diseased animals were tested phenotypically for AMR, and associated AMR genes or mutations were identified by whole genome sequencing. High rates of resistance to (fluoro)quinolones (41%) and tetracyclines (61.1%) were found in C.
    [Show full text]
  • Campylobacter Information and Guidance
    CAMPYLOBACTER INFORMATION AND GUIDANCE 2019 1 1. Key campylobacter information ........................................ 2 2. Campylobacter spp ............................................................. 3 3. Growth and survival characteristics ................................. 3 4. Sources and routes of transmission ................................. 4 5. Human disease symptoms ................................................. 4 Human disease incidence .................................................................................... 5 6. Foodborne outbreaks ......................................................... 5 7. Legislation ........................................................................... 5 8. Control in the food chain .................................................... 6 Farm ....................................................................................................................... 6 Abattoir .................................................................................................................. 6 Food handlers ....................................................................................................... 7 9. References ........................................................................... 8 1 1. Key campylobacter Information Undercooked poultry, unpasteurised dairy products, contaminated drinking Common sources water, fresh produce Transmission mode Ingestion of contaminated foods, water or direct contact with animals All people can become ill from , however infection rates are
    [Show full text]
  • A Rapid Culture Method for the Detection of Campylobacter from Water Environments
    International Journal of Environmental Research and Public Health Article A Rapid Culture Method for the Detection of Campylobacter from Water Environments Nicol Strakova *, Kristyna Korena, Tereza Gelbicova, Pavel Kulich and Renata Karpiskova Veterinary Research Institute, 621 00 Brno-Medlánky, Czech Republic; [email protected] (K.K.); [email protected] (T.G.); [email protected] (P.K.); [email protected] (R.K.) * Correspondence: [email protected] Abstract: The natural environment and water are among the sources of Campylobacter jejuni and Campylobacter coli. A limited number of protocols exist for the isolation of campylobacters in poorly filterable water. Therefore, the goal of our work was to find a more efficient method of Campylobacter isolation and detection from wastewater and surface water than the ISO standard. In the novel rapid culture method presented here, samples are centrifuged at high speed, and the resuspended pellet is inoculated on a filter, which is placed on Campylobacter selective mCCDA agar. The motile bacteria pass through the filter pores, and mCCDA agar suppresses the growth of background microbiota on behalf of campylobacters. This culture-based method is more efficient for the detection and isolation of Campylobacter jejuni and Campylobacter coli from poorly filterable water than the ISO 17995 standard. It also is less time-consuming, taking only 72 h and comprising three steps, while the ISO standard method requires five or six steps and 144–192 h. This novel culture method, based on high-speed Citation: Strakova, N.; Korena, K.; centrifugation, bacterial motility, and selective cultivation conditions, can be used for the detection Gelbicova, T.; Kulich, P.; Karpiskova, and isolation of various bacteria from water samples.
    [Show full text]
  • Viable but Nonculturable Gastrointestinal Bacteria and Their Resuscitation
    https://www.scientificarchives.com/journal/archives-of-gastroenterology-research Archives of Gastroenterology Research Commentary Viable but Nonculturable Gastrointestinal Bacteria and Their Resuscitation Stephanie Göing, Kirsten Jung* Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany *Correspondence should be addressed to Kirsten Jung; [email protected] Received date: March 18, 2021, Accepted date: April 02, 2021 Copyright: © 2021 Göing S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The human gastrointestinal tract is colonized by a large diversity of health-associated bacteria, which comprise the gut microbiota. Sequence-based, culture-independent approaches have revolutionized our view of this microbial ecosystem. However, many of its members are nonculturable under laboratory conditions. Some bacteria can enter the viable but nonculturable (VBNC) state. VBNC bacteria do not form colonies in standard medium, although they exhibit – albeit very low – metabolic activity, and can even produce toxic proteins. The VBNC state can be regarded as strategy that permits bacteria to cope with stressful environments. In this commentary, we discuss factors that promote the resuscitation of VBNC bacteria, and highlight the role of extracellular pyruvate, based on our own work on the significance of pyruvate sensing
    [Show full text]
  • Ecology of Campylobacter Colonization in Poultry
    ECOLOGY OF CAMPYLOBACTER COLONIZATION IN POULTRY: ROLE OF MATERNAL ANTIBODIES IN PROTECTION AND SOURCES OF FLOCK INFECTION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Orhan Sahin, D.V.M., M.S. ***** The Ohio State University 2003 Dissertation Committee: Professor Qijing Zhang, Advisor Approved by Professor Teresa Y. Morishita ________________________ Professor Linda J. Saif Advisor Professor Yehia M. Saif Department of Veterinary Preventive Medicine ABSTRACT Campylobacter jejuni, a gram-negative organism, is a leading bacterial cause of human foodborne enterocolitis worldwide. Although poultry are considered the major reservoir for this human pathogen, the ecology of Campylobacter in chicken flocks is poorly understood, hampering the design of effective intervention strategies at the preharvest stage. In the first part of this project, the prevalence, antigenic specificity, and bactericidal activity of poultry Campylobacter maternal antibodies were investigated. High levels of specific antibodies were detected in egg yolks, sera of broiler breeders, and young broiler chicks, as maternally-derived antibodies. These antibodies were against multiple outer membrane components of Campylobacter, and active in antibody- dependent complement-mediated killing of C. jejuni. These findings indicated the widespread presence of functional Campylobacter antibodies in the poultry production system, and prompted us to conduct the second part of the project to determine the effect of Campylobacter maternal antibodies on the colonization of young chickens by C. jejuni using challenge studies. Laboratory inoculation of commercial broilers of different ages showed that the onset of colonization occurred much sooner in birds challenged at the age of 21-days (which are naturally negative for Campylobacter antibody) than it did in the birds inoculated at 3-days of age (which are naturally positive for Campylobacter maternal antibody).
    [Show full text]
  • Modernization of Control of Pathogenic Micro-Organisms in the Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection Methodology—A Review
    foods Review Modernization of Control of Pathogenic Micro-Organisms in the Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection Methodology—A Review Aldert A. Bergwerff * and Sylvia B. Debast Laboratory of Clinical Microbiology and Infectious Diseases, Isala Hospital, Dr. van Heesweg 2, NL-8025 AB Zwolle, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Food microbiology is deluged by a vastly growing plethora of analytical methods. This review endeavors to color the context into which methodology has to fit and underlines the impor- tance of sampling and sample treatment. The context is that the highest risk of food contamination is through the animal and human fecal route with a majority of foodborne infections originating from sources in mass and domestic kitchens at the end of the food-chain. Containment requires easy-to-use, failsafe, single-use tests giving an overall risk score in situ. Conversely, progressive food-safety systems are relying increasingly on early assessment of batches and groups involving risk-based sampling, monitoring environment and herd/flock health status, and (historic) food- chain information. Accordingly, responsible field laboratories prefer specificity, multi-analyte, and high-throughput procedures. Under certain etiological and epidemiological circumstances, indirect antigen immunoaffinity assays outperform the diagnostic sensitivity and diagnostic specificity of Citation: Bergwerff, A.A.; Debast, e.g., nucleic acid sequence-based assays. The current bulk of testing involves therefore ante- and S.B. Modernization of Control of post-mortem probing of humoral response to several pathogens. In this review, the inclusion of Pathogenic Micro-Organisms in the immunoglobulins against additional invasive micro-organisms indicating the level of hygiene and Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection ergo public health risks in tests is advocated.
    [Show full text]