Combined Microfacies-Log-Analysis of Cambrian and Ordovician Carbonate Rocks (Upper Cambrian, Western Hills, Bejing; TZ-162 Well, Tarim Basin, Western China)

Total Page:16

File Type:pdf, Size:1020Kb

Combined Microfacies-Log-Analysis of Cambrian and Ordovician Carbonate Rocks (Upper Cambrian, Western Hills, Bejing; TZ-162 Well, Tarim Basin, Western China) Combined microfacies-log-analysis of Cambrian and Ordovician carbonate rocks (Upper Cambrian, Western Hills, Bejing; TZ-162 well, Tarim Basin, Western China) Kombinierte Mikrofazies-Log-Analyse kambrischer und ordovizischer Karbonatgesteine (Ober Kambrischen, Western Hills, Peking; Bohrung TZ-162, Tarim Basin, West-China) Der Naturwissenschaftlichen Fakultät Dem Fachbereich GeoZentrum Der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. Nat. vorgelegt von Anjia Wang aus Heilongjiang, China Erlangen 2014 Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät vom Fachbereich GeoZentrum Der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 28.07.2014 Vorsitzender des Promotionsorgans: Prof. Dr. Johannes Barth Gutachter: Prof. Dr. Roman Koch Prof. Dr. Joachim Rohn i Acknowledgements With the financial support of the China Scholarship Council, I was given the opportunity to start my PhD research at the Friedrich-Alexander University of Erlangen-Nuremberg in 2009. This 5- year experience has provided me with an open-minded, professional knowledge of sedimentology, and countless friends who offered me their support along the way. It improved me significantly and will influence my future most positively. First and foremost, I am deeply grateful to my supervisor Prof. Dr. Roman Koch from the Institute of Paleontology at the University of Erlangen, who constantly kept my PhD study on track. From the day I decided to study abroad in Germany, he gave me the greatest possible help with all aspects, including the application, research proposal, completion guidance, and dissertation corrections. Along with this professional assistance, I would like to thank him for his help in daily life as well, especially the work situation and financial support during the last year. I must give special thanks to Prof. Dr. Wenhui Huang from the China University of Geosciences (Beijing). He helped me to contact and apply for the position at the University of Erlangen- Nuremberg, which was the first and most important step in experiencing a new and different world. His 2 years of specific guidance during my Master’s study prepared me thoroughly for further in-depth research. During my PhD study, he also assisted me with precious advice on both research as well my further career. I would like to thank Prof. Dr. Maosheng Jiang from the Chinese Academy of Sciences. He provided me with very valuable material from boreholes in the Tarim Basin and geologic reports for reference. His interests and critical remarks supported my research with important and creative ideas. PD Dr. Axel Munnecke from the Institute of Paleontology deserves a special mention for his sound suggestions and correction of my dissertation and research. Prof. Dr. Wolfgang Kießling provided critical review of my work as well. Petra Wenninger, Birgit Leipner-Mata and Dipl.- Geol. Christian Schulbert helped me on countless occasions with preparing and conducting experiments. I would also like to express my thanks to my colleagues Christian Weiss, Kilian Beichel, Martin Nowak, Qijian Li, Ying Tian, Yuanyuan Zhang, Jin Luo and Jilei Li, for their cooperation and help in discussions in pushing the research forward. My most heartfelt gratitude goes to my wife Xiaoxiao for her constant encouragement and sometimes quite hilarious attempts to cheer me up, which was and still is the best method for relaxing. She provided invaluable aid for the writing of the dissertation as well. She never complained about my longish absences from home. I am also indebted to my parents for their unbounded moral support and the greatest of confidence in me. Last but not least, I sincerely thank all the people not mentioned here who helped me directly and indirectly with the dissertation. ii Summary The Tarim Basin in northwestern China is the second largest petroleum field in China. The reservoirs are predominantly Palaeozoic (Devonian, Ordovician, and Cambrian) carbonate rocks buried at a depth of 5000 m – 6000 m. Ordovician carbonate rocks are one of the main topics in recent hydrocarbon drilling projects. This great depth and a complex inhomogeneous geological and tectonic development result in many problems in hydrocarbon exploration and production. The Ordovician sequence is dominated by limestone, whereas Cambrian beds are predominantly composed of dolostones. These lithologic differences result in different exploration and production plays. Cambrian dolomites have been intensively studied during the last few decades. By contrast, Ordovician limestones in the subsurface were rarely analyzed. The TZ-162 well in the Tazhong region in the central Tarim Basin offers an excellent opportunity to study Lower and Upper Ordovician strata occurring at a thickness of 1700 m. Because of a marked unconformity the Middle Ordovician strata are probably absent in the region. The main aim of this study was the facies analysis of Middle and Upper Ordovician carbonate rocks. Because of the common occurrence of stylolites, these pressure solution characteristics in relation to different primary facies types were another subject of the recent study. Furthermore, Upper Cambrian limestones and dolomites in the Fengshan Formation, which are about 100 m thick, were studied in the Western Hills, in regard to intensive pressure solution and the formation of stylolites. These are predominantly related to mudstones with only traces of biogenic allochems and with common flat pebble conglomerates. The aim of this part of the study was to analyze the influence of the primary amount of noncarbonates (insoluble residue; clay, silt, organic matter) in Upper Cambrian limestones buried at depths of about 4000 m and deposited primarily in low energy environments in comparison to reefal limestones present in the Uppermost Ordovician of the TZ-162 well buried at depths of about 6000 m. The microscopic analysis of 150 petrographic thin sections was the main method used in both studies. Macroscopic description of sedimentological characteristics in the outcrop was carried out in the Upper Cambrian beds in the Western Hills. Furthermore, the amount of insoluble residue was analyzed by gasometrical measurements. Selected samples were analyzed by XRD in order to determine the mineralogical composition of noncarbonates in general and the clay mineral composition in detail. Data of wireline logs (gamma ray, resistivity) were evaluated for the determination of large scale lithologic units in comparison to the facies and results of the mineralogical analysis. The combination of these data led to a combined facies-log analysis of the Ordovician sequence in the TZ-162 well. The influence of stylolites on the gamma ray readings was also evaluated by these combined data (macroscopic analysis, thin section, insoluble residue, gamma counts in API). The calculation of the amount of clay from the gamma ray and from the resistivity log were carried out and compared to the laboratory data, particularly in regard to the amount of the insoluble residue analyzed quantitatively. The Lower and upper Ordovician strata of the TZ-162 well can be subdivided into two lithologic Units I - IX based on gamma ray log-shape analysis calibrated by local drilling cores and microfacies analysis. iii The lowermost Unit IX (96 m thick) is predominantly composed of mudstones and intraclastic wacke-packstone. It overlies a thin sequence of Upper Cambrian dolostones. The overlying Unit VIII (310 m thick) consists of pure mudstones and peloidal grainstones. Unit VII (240 m thick) and Unit VI (365 m thick) show a similar lithology, but lower gamma ray readings and less intercalation of thin dolomite beds. In general, a coarsening upwards development from mudstones to more packstones and grainstones is obvious. Unit V (95 m thick; no core available) might represent the weathered Middle Ordovician rocks also containing a diabase intercalation in comparison to the gamma log shape of the adjacent Zhong-1 well Biogenic constituents of the Lower Ordovician are minor amounts of brachiopods, ostracods, and fragments of echinoderms and dasycladaceans. The amount of dolomite intercalations and dolomitic limestones in general decreases upwards, reflecting a slight sea level rise resulting in normal marine conditions, as also indicated by the increasing amount and diversity of marine organisms. Locally even thin layers of oolitic limestones are intercalated, reflecting episodic deposition of high energy sediments. The Upper Ordovician strata of the TZ-162 well can be subdivided into two parts. The lower part (Units II to IV; 504 m thick) is similar to the Lower Ordovician and also reflects restricted environmental conditions. Unit V consists of grey brown microbial mudstones with some laminations and minor amounts of intercalated coarser grained calcarenites. Unit III (234 m thick) is characterized by mudstones, bioclastic wackestones and packstones with minor fossils including ostracods, gastropods and algal debris. Local birdseye structures indicate local peritidal environments. Unit II (136 m thick) reveals more biogenic allochems, such as foraminifera and mollusc debris, crinoids, echinoids, ostracods, and local bryozoans and corals. This indicates increasing full marine conditions resulting in higher diversity and increasing higher energy conditions. The topmost Unit I (103 m thick) was completely cored (core Nos 3-7). It is composed of grey, brownish grey and light grey limestones of moderate thickness (dm to 2 m;
Recommended publications
  • Carbonate-Hosted Zn-Pb Mineralization in the Lower
    Carbonate-hosted Zn-Pb mineralization in the Lower Cambrian Sekwi Formation, Mackenzie Mountains, NWT: Stratigraphic, structural, and lithologic controls, and constraints on ore fluid characteristics by Beth J. Fischer Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) in Geology School of Graduate Studies Laurentian University Sudbury, Ontario © Beth Fischer, 2012 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-87713-5 Our file Notre reference ISBN: 978-0-494-87713-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Insights Into the Role of Redox State in Burgess 1 Shale-Type Taphonomic
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences 2018-09 On the edge of exceptional preservation: insights into the role of redox state in Burgess Shale-type taphonomic windows from the Mural Formation, Alberta, Canada Sperling, EA http://hdl.handle.net/10026.1/11604 10.1042/ETLS20170163 Emerging Topics in Life Sciences All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. 1 On the edge of exceptional preservation: insights into the role of redox state in Burgess 2 Shale-type taphonomic windows from the Mural Formation, Alberta, Canada 3 4 5 6 Erik A. Sperling1*, Uwe Balthasar2, Christian B. Skovsted3 7 8 1 Department of Geological Sciences, Stanford University, Stanford, CA, USA 94305 9 10 2 School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, 11 Plymouth, United Kingdom 12 13 3 Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-104 05 14 Stockholm, Sweden 15 16 17 18 19 20 21 22 23 * Corresponding author: 24 Dr. Erik A. Sperling 25 Department of Geological Sciences 26 Stanford University 27 Stanford, CA, USA 94305 28 650-736-0852 (v) 29 [email protected] 30 31 32 Keywords: Cambrian; Mural Formation; Burgess Shale-type preservation; Oxygen; 33 taphonomy; iron reduction 34 35 36 1 37 Abstract 38 39 Animals originated in the Neoproterozoic and ‘exploded’ into the fossil record in the 40 Cambrian.
    [Show full text]
  • Guidebookguidebook A.L
    ROCKSLIDESROCKSLIDES ANDAND ROCKROCK AVALANCHESAVALANCHES OFOF THETHE KOKOMERENKOKOMEREN RIVERRIVER BASINBASIN (CENTRAL(CENTRAL TIENTIEN SHAN)SHAN) ICL SUMMER SCHOOL ON ROCKSLIDES AND RELATED PHENOMENA GUIDEBOOKGUIDEBOOK A.L. Strom & K.E. Abdrakhmatov Moscow–Bishkek, 2009 2 CONTENT 1 INTRODUCTION...............................................................................................................................................................11 2 GEOLOGICAL BACKGROUND (FACTORS GOVERNING BEDROCK SLOPE FAILURES)............................13 2.1 GEOLOGY........................................................................................................................................................................13 2.2 GEOMORPHOLOGY AND NEOTECTONICS.................................................................................................................................13 2.3 SEISMICITY ......................................................................................................................................................................20 2.4 HYDROGEOLOGICAL CONDITIONS..........................................................................................................................................26 3 ROCKSLIDE CASE STUDIES.........................................................................................................................................26 3.1 THE SNAKE-HEAD ROCK AVALANCHE...................................................................................................................................26
    [Show full text]
  • 1 Rrh: Middle Cambrian Coprolites Lrh: J. Kimmig And
    RRH: MIDDLE CAMBRIAN COPROLITES LRH: J. KIMMIG AND B.R. PRATT Research Article DOI: http://dx.doi.org/10.2110/palo.2017.038 COPROLITES IN THE RAVENS THROAT RIVER LAGERSTÄTTE OF NORTHWESTERN CANADA: IMPLICATIONS FOR THE MIDDLE CAMBRIAN FOOD WEB 1 2 JULIEN KIMMIG AND BRIAN R. PRATT 1Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USA 2Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada e-mail: [email protected] ABSTRACT: The Rockslide Formation (middle Cambrian, Drumian, Bolaspidella Zone) of the Mackenzie Mountains, northwestern Canada, hosts the Ravens Throat River Lagerstätte, which consists of two, 1-m thick intervals of greenish, thinly laminated, locally burrowed, slightly calcareous mudstone yielding a low-diversity and low-abundance fauna of bivalved arthropods, ‘worms’, hyoliths, and trilobites. Also present are flattened, circular, black carbonaceous objects averaging 15 mm in diameter, interpreted as coprolites preserved in either dorsal or ventral view. Many consist of aggregates of ovate carbonaceous flakes 0.5–2 mm long, which are probably compacted fecal pellets. Two-thirds contain a variably disarticulated pair of arthropod valves, and many also contain coiled to fragmented, corrugated ‘worm’ cuticle, either alone or together with valves. A few contain an enrolled agnostoid. In rare cases a ptychoparioid cranidium, agnostoid shield, bradoriid valve, or hyolith conch or operculum is present; these are taken to be due to capture and ingestion of bioclasts from the adjacent seafloor. Many of the coprolites are associated with semi-circular spreiten produced by movement of the worm-like predator while it occupied a vertical burrow. Its identity is unknown but it clearly exhibited prey selectivity.
    [Show full text]
  • The Letters F and T Refer to Figures Or Tables Respectively
    INDEX The letters f and t refer to figures or tables respectively "A" Marker, 312f, 313f Amherstberg Formation, 664f, 728f, 733,736f, Ashville Formation, 368f, 397, 400f, 412, 416, Abitibi River, 680,683, 706 741f, 765, 796 685 Acadian Orogeny, 686, 725, 727, 727f, 728, Amica-Bear Rock Formation, 544 Asiak Thrust Belt, 60, 82f 767, 771, 807 Amisk lowlands, 604 Askin Group, 259f Active Formation, 128f, 132f, 133, 139, 140f, ammolite see aragonite Assiniboia valley system, 393 145 Amsden Group, 244 Assiniboine Member, 412, 418 Adam Creek, Ont., 693,705f Amundsen Basin, 60, 69, 70f Assiniboine River, 44, 609, 637 Adam Till, 690f, 691, 6911,693 Amundsen Gulf, 476, 477, 478 Athabasca, Alta., 17,18,20f, 387,442,551,552 Adanac Mines, 339 ancestral North America miogeocline, 259f Athabasca Basin, 70f, 494 Adel Mountains, 415 Ancient Innuitian Margin, 51 Athabasca mobile zone see Athabasca Adel Mountains Volcanics, 455 Ancient Wall Complex, 184 polymetamorphic terrane Adirondack Dome, 714, 765 Anderdon Formation, 736f Athabasca oil sands see also oil and gas fields, Adirondack Inlier, 711 Anderdon Member, 664f 19, 21, 22, 386, 392, 507, 553, 606, 607 Adirondack Mountains, 719, 729,743 Anderson Basin, 50f, 52f, 359f, 360, 374, 381, Athabasca Plain, 617f Aftonian Interglacial, 773 382, 398, 399, 400, 401, 417, 477f, 478 Athabasca polymetamorphic terrane, 70f, Aguathuna Formation, 735f, 738f, 743 Anderson Member, 765 71-72,73 Aida Formation, 84,104, 614 Anderson Plain, 38, 106, 116, 122, 146, 325, Athabasca River, 15, 20f, 35, 43, 273f, 287f, Aklak
    [Show full text]
  • Early Cambrian Tidal Sedimentary Environments, Western Victoria Island, Arctic Canada
    Early Cambrian tidal sedimentary environments, western Victoria Island, Arctic Canada By Andrew Michael Durbano A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Geological Sciences University of Saskatchewan Saskatoon © Andrew Michael Durbano, April 2014. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 OR Dean College of Graduate Studies and Research University of Saskatchewan 107 Administration Place Saskatoon, Saskatchewan Canada S7N 5A2 i ABSTRACT The currently unnamed early Cambrian (Series 2, Stage 4) sandstone unit is exposed in the Minto Inlier of western Victoria Island, Canadian Arctic Islands, and forms the base of the Phanerozoic succession.
    [Show full text]
  • Kimmigj CV 20210106.Pdf
    Julien Karl Franck Kimmig Curriculum vitae Earth and Mineral Sciences Museum & Art Gallery Pennsylvania State University 116 Deike Building University Park, PA, 16802 Phone: 785-766-2386 Email: [email protected] Education Ph.D. in Geology 2014 University of Saskatchewan (Canada) Thesis title: Taxonomy, taphonomy and paleocology of a new Burgess Shale-type Lagerstätte from the Mackenzie Mountains, Northwest Territories, Canada. M.Sc. in Biology 2009 Topic: Advanced Methods in Taxonomy and Biodiversity Imperial College London & Natural History Museum London (United Kingdom) B.Sc. in Geosciences 2008 Georg-August-Universität Göttingen (Germany) Professional experience Collections Manager since August 2020 Earth and Mineral Sciences Museum & Art Gallery Pennsylvania State University Research Affiliate since August 2019 Division of Invertebrate Paleontology University of Kansas Collections Manager June 2016 – July 2019 Division of Invertebrate Paleontology University of Kansas Research Associate July 2015 – June 2019 University of Saskatchewan Postdoctoral Researcher October 2014 – June 2015 Supervisor: Brian Pratt University of Saskatchewan Teaching Assistant September 2011 – September 2014 University of Saskatchewan Adjunct Researcher September 2009 – May 2011 Supervisor: Alison Longbottom Kimmig | CV 1 The Natural History Museum London Museum and Research Assistant December 2007 – September 2008 Supervisor: Mike Reich Geowissenschaftliches Museum Göttingen Selected fieldwork (Total ~ 160 days) Cambrian, Utah and Idaho, 2019 10 days Spence
    [Show full text]
  • Cnidaria: Hydrozoa) Or Eldonids from the Early Cambrian (Series 2: Stage 4) of Western U.S.A
    A peer-reviewed version of this preprint was published in PeerJ on 6 June 2017. View the peer-reviewed version (peerj.com/articles/3312), which is the preferred citable publication unless you specifically need to cite this preprint. Lieberman BS, Kurkewicz R, Shinogle H, Kimmig J, MacGabhann BA. 2017. Disc-shaped fossils resembling porpitids or eldonids from the early Cambrian (Series 2: Stage 4) of western USA. PeerJ 5:e3312 https://doi.org/10.7717/peerj.3312 Disc-shaped fossils resembling porpitids (Cnidaria: Hydrozoa) or eldonids from the early Cambrian (Series 2: Stage 4) of western U.S.A. Bruce S Lieberman Corresp., 1, 2 , Richard Kurkewicz 3 , Heather Shinogle 4 , Julien Kimmig 2 , Breandán Anraoi MacGabhann 5 1 Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States 2 Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States 3 Pangaea Fossils, San Francisco, California, United States 4 Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, Kansas, United States 5 Department of Geography, Edge Hill University, Ormskirk, United Kingdom Corresponding Author: Bruce S Lieberman Email address: [email protected] The morphology and affinities of newly discovered disc-shaped soft-bodied fossils from the early Cambrian (Series 2: Stage 4, Dyeran) Carrara Formation are discussed. These specimens show some similarity to the Ordovician Discophyllum Hall, 1847; traditionally this taxon had been treated as a fossil porpitid. However, recently it has instead been referred to another clade, the eldonids, which includes the enigmatic Eldonia Walcott, 1911 that was originally described from the Cambrian Burgess Shale. The status of various Proterozoic and Phanerozoic taxa previously referred to porpitids and eldonids is also briefly considered.
    [Show full text]
  • Kimmigj CV 20190317
    Kimmig Julien Karl Franck Kimmig Curriculum vitae Collections Manager Division of Invertebrate Paleontology Biodiversity Institute University of Kansas Lawrence, KS 66045 Phone: 785-864-2747 Email: [email protected] Education Ph.D. in “Geology” 2014 University of Saskatchewan (Canada) Thesis title: Taxonomy, taphonomy and paleocology of a new Burgess Shale-type Lagerstätte from the Mackenzie Mountains, Northwest Territories, Canada. M.Sc. in “Biology” 2009 Topic: Advanced Methods in Taxonomy and Biodiversity Imperial College London & Natural History Museum London (United Kingdom) B.Sc. in “Geosciences” 2008 Georg-August-Universität Göttingen (Germany) Professional experience Collections Manager (Assistant Researcher) since June 2016 Division of Invertebrate Paleontology University of Kansas Research Associate since July 2015 Supervisor: Brian Pratt University of Saskatchewan Postdoctoral Researcher October 2014–June 2015 Supervisor: Brian Pratt University of Saskatchewan Teaching Assistant September 2011–September 2014 University of Saskatchewan Adjunct Researcher September 2009 – May 2011 Supervisor: Alison Longbottom The Natural History Museum London Museum and Research Assistant December 2007 – September 2008 Supervisor: Mike Reich Geowissenschaftliches Museum Göttingen 1 Kimmig Selected fieldwork (Total ~ 150 days) Spence Shale, Wellsville Mountains, Utah, 2018 5 days Spence Shale, Wellsville Mountains, Utah, 2017 15 days Ravens Throat River, Mackenzie Mountains, Canada, 2012 28 days PhD fieldwork Geology and Biology of the Great Barrier
    [Show full text]
  • Annual Meeting 2012
    The Palaeontological Association 56th Annual Meeting 16th–18th December 2012 University College Dublin PROGRAMME and ABSTRACTS Palaeontological Association 2 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 56th Annual Meeting 16th–18th December 2012 UCD School of Geological Sciences, University College Dublin The programme and abstracts for the 56th Annual Meeting of the Palaeontological Association are provided after the following summary of the meeting. Venue The meeting will take place on the Belfield campus of University College Dublin, which is approximately 4km south of the city centre. Directions to the University and a campus map can be found at <http://www.ucd.ie/visitors/>. Two pdf versions of the campus map, one annotated with information relevant to the Annual Meeting, can be downloaded from the homepage of the Palaeontological Association website (www.palass.org). Accommodation Delegates should book their own accommodation unless advised otherwise. The recommended accommodation is based in the Smithfield area of Dublin city centre, as this is where our evening social activities, including the Annual Dinner, will be held; a map of this area can be downloaded from the homepage of the Palaeontological Association website (www.palass.org). If you would prefer to stay in the vicinity of the UCD campus there are a number of guesthouses and two (moderately expensive) hotels nearby: (a) Radisson Blu St Helen’s Hotel, Dublin Stillorgan Road, Blackrock, Dublin 4 (003531 218 6000) (b) Stillorgan Park Hotel, Stillorgan Rd, Mount Merrion, Stillorgan, Dublin 18 (003531 200 1800) We have reserved a limited number of rooms at preferential rates at the following two hotels and one hostel; these are available on a first-come-first-served basis.
    [Show full text]
  • The Spence Shale Lagerstätte: an Important Window Into Cambrian Biodiversity
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 23, 2021 Review Focus Journal of the Geological Society Published online March 29, 2019 https://doi.org/10.1144/jgs2018-195 | Vol. 176 | 2019 | pp. 609–619 The Spence Shale Lagerstätte: an important window into Cambrian biodiversity Julien Kimmig1*, Luke C. Strotz1,2, Sara R. Kimmig1,3, Sven O. Egenhoff4 & Bruce S. Lieberman1,2 1 Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA 2 Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA 3 Pacific Northwest National Laboratory, Richland, WA 99354, USA 4 Department of Geosciences, Colorado State University, Fort Collins, CO 80523, USA JK, 0000-0001-8032-4272; SOE, 0000-0002-3072-286X; BSL, 0000-0002-4353-7874 * Correspondence: [email protected] Abstract: The Spence Shale Member of the Langston Formation is a Cambrian (Miaolingian: Wuliuan) Lagerstätte in northeastern Utah and southeastern Idaho. It is older than the more well-known Wheeler and Marjum Lagerstätten from western Utah, and the Burgess Shale from Canada. The Spence Shale shares several species with these younger deposits, yet it also contains a remarkable number of unique species. Because of its relatively broad geographical distribution, and the variety of palaeoenvironments and taphonomy, the fossil composition and likelihood of recovering weakly skeletonized (or soft-bodied) taxa varies across localities. The Spence Shale is widely acknowledged not only for its soft-bodied taxa, but also for its abundant trilobites and hyoliths. Recent discoveries from the Spence Shale include problematic taxa and provide insights about the nature of palaeoenvironmental and taphonomic variation between different localities.
    [Show full text]
  • Anthropologically Introduced Biases in Natural History Collections, with a Case Study on the Invertebrate Paleontology Collectio
    Palaeontologia Electronica palaeo-electronica.org Anthropologically introduced biases in natural history collections, with a case study on the invertebrate paleontology collections from the middle Cambrian Spence Shale Lagerstätte Anna F. Whitaker and Julien Kimmig ABSTRACT Natural history collections are critical for modern scientific investigations, which are greatly expanding on the potential data applications of historic specimens. How- ever, using these specimens outside their original intent introduces biases and poten- tial misinterpretations. Anthropogenic biases can be introduced at any point during the life of museum specimens, from collection, preparation, and accession, to digitization. These biases can cause significant effects when the user is unaware of the collection context, as specific collection biases are often known anecdotally, but not ubiquitously. In this case study, the University of Kansas collection of Spence Shale Lagerstätte material was examined for anthropogenic biases using a collections inventory, inter- views with stakeholders, and a literature review. Biases were found related to collector interest, locality preference, and researcher interest and specialization. These biases create a distorted view on the diversity and ecology of the Spence Shale, and need to be considered in future research. Anna F. Whitaker. Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada. [email protected] Julien Kimmig. Earth and Mineral Sciences Museum & Art Gallery, Pennsylvania State University, University Park, Pennsylvania, 16802, USA. [email protected] Keywords: Natural history collections; invertebrate paleontology; collections bias; soft-bodied preservation; Cambrian Submission: 25 June 2020. Acceptance: 20 November 2020. Whitaker, Anna F. and Kimmig, Julien. 2020. Anthropologically introduced biases in natural history collections, with a case study on the invertebrate paleontology collections from the middle Cambrian Spence Shale Lagerstätte.
    [Show full text]