M-Pro) of SARS-Cov-2 Through Consensus Docking and Drug Reposition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11 Patent Number: 5,955,504 Wechter Et Al
USOO5955504A United States Patent (19) 11 Patent Number: 5,955,504 Wechter et al. (45) Date of Patent: Sep. 21, 1999 54 COLORECTAL CHEMOPROTECTIVE Marnett, “Aspirin and the Potential Role of Prostaglandins COMPOSITION AND METHOD OF in Colon Cancer, Cancer Research, 1992; 52:5575–89. PREVENTING COLORECTAL CANCER Welberg et al., “Proliferation Rate of Colonic Mucosa in Normal Subjects and Patients with Colonic Neoplasms: A 75 Inventors: William J. Wechter; John D. Refined Immunohistochemical Method.” J. Clin Pathol, McCracken, both of Redlands, Calif. 1990; 43:453-456. Thun et al., “Aspirin Use and Reduced Risk of Fatal Colon 73 Assignee: Loma Linda University Medical Cancer." N Engl J Med 1991; 325:1593-6. Center, Loma Linda, Calif. Peleg, et al., “Aspirin and Nonsteroidal Anti-inflammatory Drug Use and the Risk of Subsequent Colorectal Cancer.” 21 Appl. No.: 08/402,797 Arch Intern Med. 1994, 154:394–399. 22 Filed: Mar 13, 1995 Gridley, et al., “Incidence of Cancer among Patients With Rheumatoid Arthritis J. Natl Cancer Inst 1993 85:307-311. 51) Int. Cl. .......................... A61K 31/19; A61K 31/40; Labayle, et al., “Sulindac Causes Regression Of Rectal A61K 31/42 Polyps. In Familial Adenomatous Polyposis” Gastroenterol 52 U.S. Cl. .......................... 514/568; 514/569; 514/428; ogy 1991 101:635-639. 514/416; 514/375 Rigau, et al., “Effects Of Long-Term Sulindac Therapy On 58 Field of Search ..................................... 514/568, 570, Colonic Polyposis” Annals of Internal Medicine 1991 514/569, 428, 416, 375 11.5:952-954. Giardiello.et al., “Treatment Of Colonic and Rectal 56) References Cited Adenomas With Sulindac In Familial Adenomatous Poly U.S. -
(12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp. -
Multiresidue Determination of Sarafloxacin, Difloxacin, Norfloxacin, and Pefloxacin in Fish Using an Enzyme-Linked Immunosorbent Assay
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Procedia Environmental Sciences 8 (2011) 301 – 306 ICESB 2011: 25-26 November 2011, Maldives Multiresidue Determination of Sarafloxacin, Difloxacin, Norfloxacin, and Pefloxacin in Fish using an Enzyme-Linked Immunosorbent Assay ∗ Jiang Jinqing a, Zhang Haitang a, Wang Ziliang a,b aCollege of Animal Science, Henan Institute of Science and Technology, Xinxiang, 453003, China bHenan Provincial Laboratory for Key Disciplines of Animal Virosis Control and Residues Supervison, Xinxiang 453003, China Abstract An indirect competitive ELISA (icELISA) method for multiresidue determination of Fluoroquinolones (FQs) residues in fish samples has been developed. For this purpose, Sarafloxacin (SAR) was employed to synthesize the immunogen and coating antigen through EDC conjugation method, and cell fusion technology was used to produce anti-SAR monoclonal antiobdy. Based on the square matrix titration, an icELISA method was established. The dynamic range for Sarafloxacin in assay buffer was from 0.004 to 18 ng/mL, with LOD and IC50 value of 0.002 ng/mL and 0.32 ng/mL, respectively. After optimization, the physiological pH (7.4) was selected for the immunoassays, and this assay could tolerate up to 10% acetonitrile. The results of this assay showed a high cross- reactivity to Difloxacin (85.5%), Norfloxacin (61.7%), and Pefloxacin (34.8%). Under the 10-fold dilution in authentic fish samples, the regression curve equations for Sarafloxacin, Difloxacin, Norfloxacin and Pefloxacin were y = 1.0114x - 0.4003, R2= 0.9901; y = 0.9782x + 0.2754, R2= 0.9807; y = 0.9892x +0.0489, R2= 0.9843; and y = 0.9797x +0.8017, R2= 0.9844, respectively. -
Multi-Residual Quantitative Analytical Method for Antibiotics in Sea Food by LC/MS/MS
PO-CON1742E Multi-residual quantitative analytical method for antibiotics in sea food by LC/MS/MS ASMS 2017 TP 198 Anant Lohar, Shailendra Rane, Ashutosh Shelar, Shailesh Damale, Rashi Kochhar, Purushottam Sutar, Deepti Bhandarkar, Ajit Datar, Pratap Rasam and Jitendra Kelkar Shimadzu Analytical (India) Pvt. Ltd., 1 A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai-400059, Maharashtra, India. Multi-residual quantitative analytical method for antibiotics in sea food by LC/MS/MS Introduction Antibiotics are widely used in agriculture as growth LC/MS/MS method has been developed for quantitation of enhancers, disease treatment and control in animal feeding multi-residual antibiotics (Table 1) from sea food sample operations. Concerns for increased antibiotic resistance of using LCMS-8040, a triple quadrupole mass spectrometer microorganisms have prompted research into the from Shimadzu Corporation, Japan. Simultaneous analysis environmental occurrence of these compounds. of multi-residual antibiotics often exhibit peak shape Assessment of the environmental occurrence of antibiotics distortion owing to their different chemical nature. To depends on development of sensitive and selective overcome this, autosampler pre-treatment feature was analytical methods based on new instrumental used [1]. technologies. Table 1. List of antibiotics Sr.No. Name of group Name of compound Number of compounds Flumequine, Oxolinic Acid, Ciprofloxacin, Danofloxacin, Difloxacin.HCl, 1 Fluoroquinolones 8 Enrofloxacin, Sarafloxacin HCl Trihydrate, -
Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object. -
Fluoroquinolones in the Management of Acute Lower Respiratory Infection
Thorax 2000;55:83–85 83 Occasional review Thorax: first published as 10.1136/thorax.55.1.83 on 1 January 2000. Downloaded from The next generation: fluoroquinolones in the management of acute lower respiratory infection in adults Peter J Moss, Roger G Finch Lower respiratory tract infections (LRTI) are ing for up to 40% of isolates in Spain19 and 33% the leading infectious cause of death in most in the United States.20 In England and Wales developed countries; community acquired the prevalence is lower; in the first quarter of pneumonia (CAP) and acute exacerbations of 1999 6.5% of blood/cerebrospinal fluid isolates chronic bronchitis (AECB) are responsible for were reported to the Public Health Laboratory the bulk of the adult morbidity. Until recently Service as showing intermediate sensitivity or quinolone antibiotics were not recommended resistance (D Livermore, personal communi- for the routine treatment of these infections.1–3 cation). Pneumococcal resistance to penicillin Neither ciprofloxacin nor ofloxacin have ad- is not specifically linked to quinolone resist- equate activity against Streptococcus pneumoniae ance and, in general, penicillin resistant in vitro, and life threatening invasive pneumo- pneumococci are sensitive to the newer coccal disease has been reported in patients fluoroquinolones.11 21 treated for respiratory tract infections with Resistance to ciprofloxacin develops rela- these drugs.4–6 The development of new fluoro- tively easily in both S pneumoniae and H influ- quinolone agents with increased activity enzae, requiring only a single mutation in the against Gram positive organisms, combined parC gene.22 23 Other quinolones such as with concerns about increasing microbial sparfloxacin and clinafloxacin require two resistance to â-lactam agents, has prompted a mutations in the parC and gyrA genes.11 23 re-evaluation of the use of quinolones in LRTI. -
FLUOROQUINOLONES: from Structure to Activity and Toxicity
FLUOROQUINOLONES: from structure to activity and toxicity F. Van Bambeke, Pharm. D. & P. M. Tulkens, MD, PhD Unité de Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Brussels, Belgium SBIMC / BVIKM www.sbimc.org - www.bvikm.org www.md.ucl.ac.be/facm www.isap.org soon... Mechanism of action of fluoroquinolones: the basics... PORIN DNA Topo DNA gyrase isomerase Gram (-) Gram (+) 2 key enzymes in DNA replication: DNA gyrase topoisomerase IV bacterial DNA is supercoiled Ternary complex DNA - enzyme - fluoroquinolone DNA GYRASE catalytic subunits COVALENTLY CLOSED CIRCULAR DNA FLUOROQUINOLONES: DNA GYRASE ATP binding subunits 4 stacked molecules (Shen, in Quinolone Antimicrobial Agents, 1993) Resistance to fluoroquinolones: the basics decreased efflux pump permeability DNA mutation of DNA gyrase Topo isomerase the enzymes Gram (-) Gram (+) Fluoroquinolones are the first entirely man-made antibiotics: do we understand our molecule ? R5 O R COOH 6 R7 X8 N R1 Don’t panic, we will travel together…. Chemistry and Activity This is where all begins... The pharmacophore common to all fluoroquinolones BINDING TO DNA R5 O O R C 6 - BINDING TO O BINDING TO THE ENZYME THE ENZYME R7 X8 N R1 AUTO-ASSEMBLING DOMAIN (for stacking) From chloroquine to nalidixic acid... nalidixic acid N CH3 O O HN CH 3 C - O chloroquine CH N N Cl N 3 C2H5 1939 O O C O- 1962 Cl N 1958 C2H5 7-chloroquinoline (synthesis intermediate found to display antibacterial activity) Nalidixic acid * a • typical chemical features of O O fluoroquinolones (a, b, c) BUT a naphthridone C - O- b (N at position 8: ) H C N N 3 • limited usefulness as drug C H 2 5 • narrow antibacterial spectrum c (Enterobacteriaceae only) • short half-life (1.5h) • high protein binding (90%) * Belg. -
AMR in Fisheries and Aquaculture Products
AMR in fisheries and aquaculture products Products, Trade and Marketing Branch Fisheries and Aquaculture Department Food and Agriculture Organization of the United Nations What accelerates the emergence and spread of AMR? Poor infection control, inadequate sanitary conditions and misused of antimicrobials among others Role of modifiable drivers for antimicrobial resistance: a conceptual framework (Alison H Holmes, 2015) EU FISH AND CRUSTACEANS PRODUCT ALERTS Hazard Category 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Microbiological 52 75 11 17 24 68 70 65 52 31 58 38 38 Chemical and 118 177 203 221 108 135 123 149 134 170 221 128 133 residues Histamine 39 22 29 44 39 51 35 32 44 53 40 33 42 Toxins 0 0 0 0 0 0 0 0 0 0 0 2 4 Parasitic infestation 51 21 15 27 38 70 85 96 54 11 18 11 22 Others 33 14 29 35 46 120 123 137 127 73 43 83 88 TOTAL ALERTS 293 309 287 344 255 444 436 479 411 338 380 295 327 Hazard Category 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Microbiological 51 25 6 4 8 8 13 7 9 3 6 10 15 Chemical and 103 128 122 108 111 145 43 40 31 24 57 31 46 residues Others 5 1 10 9 3 23 22 29 20 26 14 17 8 Biotoxins 0 2 1 0 0 0 0 0 0 0 0 0 0 TOTAL ALERTS 159 156 139 121 122 176 78 76 60 53 77 58 69 Source: Rapid Alert System for Food and Feed, European Commission IMPORT REFUSALS DUE TO CHEMICAL HAZARDS IN EU DIOXINS 2% 35 ADDITIVES 4% 30 25 BENZO(a)PYRENE 6% 20 OTHER CHEMICAL HAZARDS 8% 15 10 5 ANTIMICROBIALS 18% 0 HEAVY METALS 62% 2010 2011 2012 2013 2014 2015 2016 JAPAN FISHERY PRODUCTS DETENTION -
NIH Public Access Author Manuscript J Am Chem Soc
NIH Public Access Author Manuscript J Am Chem Soc. Author manuscript; available in PMC 2014 January 09. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Am Chem Soc. 2013 January 9; 135(1): 22–25. doi:10.1021/ja308733u. A binding site for non-steroidal anti-inflammatory drugs in FAAH Laura Bertolacci¶, Elisa Romeo¶, Marina Veronesi, Paola Magotti, Clara Albani, Mauro Dionisi, Chiara Lambruschini, Rita Scarpelli, Andrea Cavalli‡, Marco De Vivo, Daniele Piomelli*,†, and Gianpiero Garau* ‡Department of Pharmaceutical. Sciences, University of Bologna, Italy. †Department of Pharmacology, Univ. of California, Irvine, California, USA. Abstract In addition to inhibiting the cyclooxygenasemediated biosynthesis of prostanoids, various widely used non-steroidal anti-inflammatory drugs (NSAIDs) enhance endocannabinoid signaling by blocking the anandamidedegrading membrane enzyme, fatty acid amide hydrolase (FAAH). The X-ray structure of FAAH in complex with the NSAID carprofen, along with studies of site- directed mutagenesis, enzyme activity assays, and nuclear magnetic resonance, now reveal the molecular details of this interaction, providing information that may guide the design of dual FAAH-cyclooxygenase inhibitors with superior analgesic efficacy. Non-steroidal anti-inflammatory drugs (NSAIDs), one of the most widely used classes of therapeutic agents, alleviate pain and inflammation1 by inhibiting the enzymes cyclooxygenase-1 (COX-1) and COX-2,2 which catalyze the conversion of -
TROVAN® Tablets(Trovafloxacin Mesylate)
TROVAN- trovafloxacin mesylate tablet, film coated TROVAN- trovafloxacin mesylate injection, solution, concentrate Roerig ---------- TROVAN® Tablets (trovafloxacin mesylate) TROVAN® I.V. (alatrofloxacin mesylate injection) For Intravenous Infusion TROVAN® HAS BEEN ASSOCIATED WITH SERIOUS LIVER INJURY LEADING TO LIVER TRANSPLANTATION AND/OR DEATH. TROVAN-ASSOCIATED LIVER INJURY HAS BEEN REPORTED WITH BOTH SHORT-TERM AND LONG-TERM DRUG EXPOSURE. TROVAN USE EXCEEDING 2 WEEKS IN DURATION IS ASSOCIATED WITH A SIGNIFICANTLY INCREASED RISK OF SERIOUS LIVER INJURY. LIVER INJURY HAS ALSO BEEN REPORTED FOLLOWING TROVAN RE- EXPOSURE. TROVAN SHOULD BE RESERVED FOR USE IN PATIENTS WITH SERIOUS, LIFE- OR LIMB-THREATENING INFECTIONS WHO RECEIVE THEIR INITIAL THERAPY IN AN IN-PATIENT HEALTH CARE FACILITY (I.E., HOSPITAL OR LONG-TERM NURSING CARE FACILITY). TROVAN SHOULD NOT BE USED WHEN SAFER, ALTERNATIVE ANTIMICROBIAL THERAPY WILL BE EFFECTIVE. (SEE WARNINGS.) TROVAN is available as TROVAN Tablets (trovafloxacin mesylate) for oral administration and as TROVAN I.V. (alatrofloxacin mesylate injection), a prodrug of trovafloxacin, for intravenous administration. DESCRIPTION TROVAN Tablets TROVAN Tablets contain trovafloxacin mesylate, a synthetic broad-spectrum antibacterial agent for oral administration. Chemically, trovafloxacin mesylate, a fluoronaphthyridone related to the fluoroquinolone antibacterials, is (1α, 5α, 6α)-7-(6-amino-3-azabicyclo[3.1.0]hex-3-yl)-1-(2,4- difluorophenyl)-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid, monomethanesulfonate. Trovafloxacin mesylate differs from other quinolone derivatives by having a 1,8-naphthyridine nucleus. The chemical structure is: Its empirical formula is C20H15F3N4O3•CH3SO3H and its molecular weight is 512.46. Trovafloxacin mesylate is a white to off-white powder. -
Multi-Class Confirmatory Method for Analyzing Trace Levels of Tetracyline
RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2007; 21: 3487–3496 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/rcm.3236 Multi-class confirmatory method for analyzing trace levels of tetracyline and quinolone antibiotics in pig tissues by ultra-performance liquid chromatography coupled with tandem mass spectrometry Bing Shao1,4*, Xiaofei Jia1, Yongning Wu2, Jianying Hu3, Xiaoming Tu1 and Jing Zhang1 1Beijing Center for Disease Control and Prevention, Beijing 100013, China 2Institute of Nutrition and Food Safety, China Center for Disease Control and Prevention, Beijing 100085, China 3College of Environmental Science, Peking University, Beijing 100871, China 4School of Public Health and Family Medicine, Capital Medical University, Beijing 100089, China Received 8 June 2007; Revised 26 August 2007; Accepted 27 August 2007 An ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC/MS/ MS) method was developed to screen and confirm multi-class veterinary drug residues in pig tissues including pig kidney, liver and meat. Twenty-one drugs of two different classes including seven tetracyclines and four types of quinolones (quinoline, naphthyridine, pyridopyrimidine and cino- line) were determined simultaneously in a single run. The homogenized sample tissues were extracted with EDTA–McIlvaine buffer solution and further purified using a polymer-based Oasis TM HLB solid-phase extraction (SPE) cartridge. An ACQUITY UPLC BEH C18 column was used to separate the analytes followed by tandem mass spectrometry using an electrospray ionization source. MS data acquisition was performed in the positive ion multiple reaction monitoring mode, selecting two ion transitions for each target compound. Recovery studies were performed at different fortification levels. -
EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .