AMR in Fisheries and Aquaculture Products
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1. -
Multiresidue Determination of Sarafloxacin, Difloxacin, Norfloxacin, and Pefloxacin in Fish Using an Enzyme-Linked Immunosorbent Assay
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Procedia Environmental Sciences 8 (2011) 301 – 306 ICESB 2011: 25-26 November 2011, Maldives Multiresidue Determination of Sarafloxacin, Difloxacin, Norfloxacin, and Pefloxacin in Fish using an Enzyme-Linked Immunosorbent Assay ∗ Jiang Jinqing a, Zhang Haitang a, Wang Ziliang a,b aCollege of Animal Science, Henan Institute of Science and Technology, Xinxiang, 453003, China bHenan Provincial Laboratory for Key Disciplines of Animal Virosis Control and Residues Supervison, Xinxiang 453003, China Abstract An indirect competitive ELISA (icELISA) method for multiresidue determination of Fluoroquinolones (FQs) residues in fish samples has been developed. For this purpose, Sarafloxacin (SAR) was employed to synthesize the immunogen and coating antigen through EDC conjugation method, and cell fusion technology was used to produce anti-SAR monoclonal antiobdy. Based on the square matrix titration, an icELISA method was established. The dynamic range for Sarafloxacin in assay buffer was from 0.004 to 18 ng/mL, with LOD and IC50 value of 0.002 ng/mL and 0.32 ng/mL, respectively. After optimization, the physiological pH (7.4) was selected for the immunoassays, and this assay could tolerate up to 10% acetonitrile. The results of this assay showed a high cross- reactivity to Difloxacin (85.5%), Norfloxacin (61.7%), and Pefloxacin (34.8%). Under the 10-fold dilution in authentic fish samples, the regression curve equations for Sarafloxacin, Difloxacin, Norfloxacin and Pefloxacin were y = 1.0114x - 0.4003, R2= 0.9901; y = 0.9782x + 0.2754, R2= 0.9807; y = 0.9892x +0.0489, R2= 0.9843; and y = 0.9797x +0.8017, R2= 0.9844, respectively. -
Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks
processes Review Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks Manuel Conde-Cid 1, Avelino Núñez-Delgado 2 , María José Fernández-Sanjurjo 2 , Esperanza Álvarez-Rodríguez 2, David Fernández-Calviño 1,* and Manuel Arias-Estévez 1 1 Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; [email protected] (M.C.-C.); [email protected] (M.A.-E.) 2 Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; [email protected] (A.N.-D.); [email protected] (M.J.F.-S.); [email protected] (E.Á.-R.) * Correspondence: [email protected] Received: 30 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health. -
Multi-Residual Quantitative Analytical Method for Antibiotics in Sea Food by LC/MS/MS
PO-CON1742E Multi-residual quantitative analytical method for antibiotics in sea food by LC/MS/MS ASMS 2017 TP 198 Anant Lohar, Shailendra Rane, Ashutosh Shelar, Shailesh Damale, Rashi Kochhar, Purushottam Sutar, Deepti Bhandarkar, Ajit Datar, Pratap Rasam and Jitendra Kelkar Shimadzu Analytical (India) Pvt. Ltd., 1 A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai-400059, Maharashtra, India. Multi-residual quantitative analytical method for antibiotics in sea food by LC/MS/MS Introduction Antibiotics are widely used in agriculture as growth LC/MS/MS method has been developed for quantitation of enhancers, disease treatment and control in animal feeding multi-residual antibiotics (Table 1) from sea food sample operations. Concerns for increased antibiotic resistance of using LCMS-8040, a triple quadrupole mass spectrometer microorganisms have prompted research into the from Shimadzu Corporation, Japan. Simultaneous analysis environmental occurrence of these compounds. of multi-residual antibiotics often exhibit peak shape Assessment of the environmental occurrence of antibiotics distortion owing to their different chemical nature. To depends on development of sensitive and selective overcome this, autosampler pre-treatment feature was analytical methods based on new instrumental used [1]. technologies. Table 1. List of antibiotics Sr.No. Name of group Name of compound Number of compounds Flumequine, Oxolinic Acid, Ciprofloxacin, Danofloxacin, Difloxacin.HCl, 1 Fluoroquinolones 8 Enrofloxacin, Sarafloxacin HCl Trihydrate, -
Transdermal Drug Delivery Device Including An
(19) TZZ_ZZ¥¥_T (11) EP 1 807 033 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61F 13/02 (2006.01) A61L 15/16 (2006.01) 20.07.2016 Bulletin 2016/29 (86) International application number: (21) Application number: 05815555.7 PCT/US2005/035806 (22) Date of filing: 07.10.2005 (87) International publication number: WO 2006/044206 (27.04.2006 Gazette 2006/17) (54) TRANSDERMAL DRUG DELIVERY DEVICE INCLUDING AN OCCLUSIVE BACKING VORRICHTUNG ZUR TRANSDERMALEN VERABREICHUNG VON ARZNEIMITTELN EINSCHLIESSLICH EINER VERSTOPFUNGSSICHERUNG DISPOSITIF D’ADMINISTRATION TRANSDERMIQUE DE MEDICAMENTS AVEC COUCHE SUPPORT OCCLUSIVE (84) Designated Contracting States: • MANTELLE, Juan AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Miami, FL 33186 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • NGUYEN, Viet SK TR Miami, FL 33176 (US) (30) Priority: 08.10.2004 US 616861 P (74) Representative: Awapatent AB P.O. Box 5117 (43) Date of publication of application: 200 71 Malmö (SE) 18.07.2007 Bulletin 2007/29 (56) References cited: (73) Proprietor: NOVEN PHARMACEUTICALS, INC. WO-A-02/36103 WO-A-97/23205 Miami, FL 33186 (US) WO-A-2005/046600 WO-A-2006/028863 US-A- 4 994 278 US-A- 4 994 278 (72) Inventors: US-A- 5 246 705 US-A- 5 474 783 • KANIOS, David US-A- 5 474 783 US-A1- 2001 051 180 Miami, FL 33196 (US) US-A1- 2002 128 345 US-A1- 2006 034 905 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. -
A Case Report of Fatal Dapsone-Induced Agranulocytosis in an Indian Mid-Borderline Leprosy Patient
Lepr Rev <2003) 74, 167±170 CASE REPORT A case report of fatal dapsone-induced agranulocytosis in an Indian mid-borderline leprosy patient RAMESH M. BHAT & K. RADHAKRISHNAN Department of Dermatology, Venereology & Leprosy, Fr. Muller Medical College, Kankanady, Mangalore, Karnataka 575 002, India Accepted for publication 11 February 2003 Summary Fatal agranulocytosis in an Indian male receiving 100 mg of dapsone daily, hospitalized for mid-borderline leprosy in type I reaction with triple nerve paralysis is reported. Various case reports concerning dapsone-induced agranulocytosis are reviewed. Introduction For the last 60 years, dapsone has been used successfully as both an antibacterial and anti- in¯ammatory agent in leprosy and a range of dermatological disorders. Various haematolo- gical adverse effects, including methaemoglobinaemia, haemolysis and fatal agranulocytosis, have been reported.1 Other rare adverse effects such as pulmonary eosinophilia without cutaneous allergic manifestations have also been reported.2 We have also reported dapsone- induced eosinophilia without pulmonary and cutaneous allergic manifestations.3 The ®rst case of dapsone-induced agranulocytosis was reported in 1958 in a patient receiving dapsone for dermatitis herpetiformis.4 In 1970, a report was published concerning 16 US soldiers in Vietnam who developed agranulocytosis after receiving 25 mg of dapsone daily for malaria prophylaxis with a 50% fatality rate.5 Agranulocytosis has also been reported as a complication of weekly maloprim, a combination of -
Multi-Class Confirmatory Method for Analyzing Trace Levels of Tetracyline
RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2007; 21: 3487–3496 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/rcm.3236 Multi-class confirmatory method for analyzing trace levels of tetracyline and quinolone antibiotics in pig tissues by ultra-performance liquid chromatography coupled with tandem mass spectrometry Bing Shao1,4*, Xiaofei Jia1, Yongning Wu2, Jianying Hu3, Xiaoming Tu1 and Jing Zhang1 1Beijing Center for Disease Control and Prevention, Beijing 100013, China 2Institute of Nutrition and Food Safety, China Center for Disease Control and Prevention, Beijing 100085, China 3College of Environmental Science, Peking University, Beijing 100871, China 4School of Public Health and Family Medicine, Capital Medical University, Beijing 100089, China Received 8 June 2007; Revised 26 August 2007; Accepted 27 August 2007 An ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC/MS/ MS) method was developed to screen and confirm multi-class veterinary drug residues in pig tissues including pig kidney, liver and meat. Twenty-one drugs of two different classes including seven tetracyclines and four types of quinolones (quinoline, naphthyridine, pyridopyrimidine and cino- line) were determined simultaneously in a single run. The homogenized sample tissues were extracted with EDTA–McIlvaine buffer solution and further purified using a polymer-based Oasis TM HLB solid-phase extraction (SPE) cartridge. An ACQUITY UPLC BEH C18 column was used to separate the analytes followed by tandem mass spectrometry using an electrospray ionization source. MS data acquisition was performed in the positive ion multiple reaction monitoring mode, selecting two ion transitions for each target compound. Recovery studies were performed at different fortification levels. -
EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance . -
Sulfonamides and Sulfonamide Combinations*
Sulfonamides and Sulfonamide Combinations* Overview Due to low cost and relative efficacy against many common bacterial infections, sulfonamides and sulfonamide combinations with diaminopyrimidines are some of the most common antibacterial agents utilized in veterinary medicine. The sulfonamides are derived from sulfanilamide. These chemicals are structural analogues of ρ-aminobenzoic acid (PABA). All sulfonamides are characterized by the same chemical nucleus. Functional groups are added to the amino group or substitutions made on the amino group to facilitate varying chemical, physical and pharmacologic properties and antibacterial spectra. Most sulfonamides are too alkaline for routine parenteral use. Therefore the drug is most commonly administered orally except in life threatening systemic infections. However, sulfonamide preparations can be administered orally, intramuscularly, intravenously, intraperitoneally, intrauterally and topically. Sulfonamides are effective against Gram-positive and Gram-negative bacteria. Some protozoa, such as coccidians, Toxoplasma species and plasmodia, are generally sensitive. Chlamydia, Nocardia and Actinomyces species are also sensitive. Veterinary diseases commonly treated by sulfonamides are actinobacillosis, coccidioidosis, mastitis, metritis, colibacillosis, pododermatitis, polyarthritis, respiratory infections and toxo- plasmosis. Strains of rickettsiae, Pseudomonas, Klebsiella, Proteus, Clostridium and Leptospira species are often highly resistant. Sulfonamides are bacteriostatic antimicrobials -
On the Extraction of Antibiotics from Shrimps Prior to Chromatographic Analysis
separations Review On the Extraction of Antibiotics from Shrimps Prior to Chromatographic Analysis Victoria Samanidou *, Dimitrios Bitas, Stamatia Charitonos and Ioannis Papadoyannis Laboratory of Analytical Chemistry, University of Thessaloniki, GR 54124 Thessaloniki, Greece; [email protected] (D.B.); [email protected] (S.C.); [email protected] (I.P.) * Correspondence: [email protected]; Tel.: +30-2310-997698; Fax: +30-2310-997719 Academic Editor: Frank L. Dorman Received: 2 February 2016; Accepted: 26 February 2016; Published: 4 March 2016 Abstract: The widespread use of antibiotics in veterinary practice and aquaculture has led to the increase of antimicrobial resistance in food-borne pathogens that may be transferred to humans. Global concern is reflected in the regulations from different agencies that have set maximum permitted residue limits on antibiotics in different food matrices of animal origin. Sensitive and selective methods are required to monitor residue levels in aquaculture species for routine regulatory analysis. Since sample preparation is the most important step, several extraction methods have been developed. In this review, we aim to summarize the trends in extraction of several antibiotics classes from shrimps and give a comparison of performance characteristics in the different approaches. Keywords: sample preparation; extraction; aquaculture; shrimps; chromatography; antibiotics 1. Introduction According to FAO (CWP Handbook of Fishery Statistical Standards, Section J: AQUACULTURE), “aquaculture is the farming of aquatic organisms: fish, mollusks, crustaceans, aquatic plants, crocodiles, alligators, turtles, and amphibians. Farming implies some form of intervention in the rearing process to enhance production, such as regular stocking, feeding, protection from predators, etc.”[1]. Since 1960, aquaculture practice and production has increased as a result of the improved conditions in the aquaculture facilities. -
Sales of Veterinary Antimicrobial Agents in 29 European Countries in 2014
Sales of veterinary antimicrobial agents in 29 European countries in 2014 Trends across 2011 to 2014 Sixth ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role • publishes impartial and comprehensible information about medicines and their use; The European Medicines Agency is the European Union body responsible for coordinating the existing scientific resources • develops best practice for medicines evaluation and put at its disposal by Member States for the evaluation, supervision in Europe, and contributes alongside the supervision and pharmacovigilance of medicinal products. Member States and the European Commission to the harmonisation of regulatory standards at the international The Agency provides the Member States and the institutions level. of the European Union (EU) and the European Economic Area (EEA) countries with the best-possible scientific advice Guiding principles on any questions relating to the evaluation of the quality, safety and efficacy of medicinal products for human or • We are strongly committed to public and animal health. veterinary use referred to it in accordance with the provisions of EU legislation relating to medicinal products. • We make independent recommendations based on scien- tific evidence, using state-of-the-art knowledge and The founding legislation of the Agency is Regulation (EC) expertise in our field. No 726/2004. • We support research and innovation to stimulate the Principal activities development of better medicines. Working with the Member States and the European Commission as partners in a European medicines network, the European • We value the contribution of our partners and stakeholders Medicines Agency: to our work. -
Intestinal Targeting of Drugs: Rational Design Approaches and Challenges
Send Orders of Reprints at [email protected] 776 Current Topics in Medicinal Chemistry, 2013, 13, 776-802 Intestinal Targeting of Drugs: Rational Design Approaches and Challenges Kevin J. Filipski1,*, Manthena V. Varma2, Ayman F. El-Kattan2, Catherine M. Ambler3, Roger B. Ruggeri1, Theunis C. Goosen2 and Kimberly O. Cameron1 1Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development, Cam- bridge, MA, USA; 2Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA; 3Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA Abstract: Targeting drugs to the gastrointestinal tract has been and continues to be an active area of research. Gut- targeting is an effective means of increasing the local concentration of active substance at the desired site of action while minimizing concentrations elsewhere in the body that could lead to unwanted side-effects. Several approaches to intestinal targeting exist. Physicochemical property manipulation can drive molecules to large, polar, low absorption space or alter- natively to lipophilic, high clearance space in order to minimize systemic exposure. Design of compounds that are sub- strates for transporters within the gastrointestinal tract, either uptake or efflux, or at the hepato-biliary interface, may help to increase intestinal concentration. Prodrug strategies have been shown to be effective particularly for colon targeting, and several different technology formulation approaches are currently being researched. This review provides examples of various approaches to intestinal targeting, and discusses challenges and areas in need of future scientific advances. Keywords: Drug, Gut, Intestine, Non-systemic, Prodrug, Soft drug, Targeting, Transporter. 1. INTRODUCTION significant distribution into the body.