UNDERSTANDING SPACE-TIME: the Philosophical Development Of

Total Page:16

File Type:pdf, Size:1020Kb

UNDERSTANDING SPACE-TIME: the Philosophical Development Of This page intentionally left blank UNDERSTANDING SPACE-TIME This book presents the history of space-time physics, from Newton to Einstein, as a philosophical development reflecting our increasing understanding of the connections between ideas of space and time and our physical knowledge. It suggests that philosophy’s greatest impact on physics has come about, less by the influence of philosophical hypotheses, than by the philosophical analysis of concepts of space, time, and motion and the roles they play in our assumptions about physical objects and physical measurements. This way of thinking leads to new interpretations of the work of Newton and Einstein and the connections between them. It also offers new ways of looking at old questions about a-priori knowledge, the physical interpretation of mathematics, and the nature of conceptual change. Understanding Space-Time will interest readers in philosophy, history and philosophy of science, and physics, as well as readers interested in the relations between physics and philosophy. robert disalle is Associate Professor in the Department of Philosophy, University of Western Ontario. His publications include a contribution to The Cambridge Companion to Newton (2002). UNDERSTANDING SPACE-TIME The Philosophical Development of Physics from Newton to Einstein ROBERT DISALLE University of Western Ontario cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521857901 © Robert DiSalle 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2006 isbn-13 978-0-511-16834-5 eBook (EBL) isbn-10 0-511-16834-9 eBook (EBL) isbn-13 978-0-521-85790-1 hardback isbn-10 0-521-85790-2 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. For my parents, Richard DiSalle and Joan Malinowski DiSalle ...L’amor del bene, scemo del suo dover, quiritta si ristora Contents List of figures page ix Preface x 1 Introduction 1 2 Absolute motion and the emergence of classical mechanics 13 2.1 Newton and the history of the philosophy of science 13 2.2 The revisionist view 15 2.3 The scientific and philosophical context of Newton’s theory 17 2.4 The definition of absolute time 20 2.5 Absolute space and motion 25 2.6 Newton’s De Gravitatione et aequipondio fluidorum 36 2.7 The Newtonian program 39 2.8 “To exhibit the system of the world” 47 2.9 Newton’s accomplishment 52 3 Empiricism and a priorism from Kant to Poincare55´ 3.1 A new approach to the metaphysics of nature 56 3.2 Kant’s turn from Leibniz to Newton 60 3.3 Kant, Leibniz, and the conceptual foundations of science 64 3.4 Kant on absolute space 66 3.5 Helmholtz and the empiricist critique of Kant 72 3.6 The conventionalist critique of Helmholtz’s empiricism 79 3.7 The limits of Poincare’s´ conventionalism 86 3.8 The nineteenth-century achievement 94 4 The origins and significance of relativity theory 98 4.1 The philosophical background to special relativity 99 4.2 Einstein’s analysis of simultaneity 103 4.3 From special relativity to the “postulate of the absolute world” 112 4.4 The philosophical motivations for general relativity 120 4.5 The construction of curved space-time 131 4.6 General relativity and “world-structure” 137 4.7 The philosophical significance of general relativity 149 vii viii Contents 5 Conclusion 153 5.1 Space and time in the history of physics 153 5.2 On physical theory and interpretation 158 References 163 Index 171 Figures 1 Newtonian absolute time page 21 2 The definition of equal time intervals 24 3 Absolute motion in absolute space 26 4 Galilean relativity 29 5 The causal structure of Minkowski space-time 113 6 Newton’s Corollary VI 128 7 Free-fall as an indicator of space-time curvature 130 8 Coordinates in homaloidal and non-homaloidal spaces 145 ix Preface This book concerns the philosophy of space and time, and its connection with the evolution of modern physics. As these are already the subjects of many excellent books and papers – the literature of the “absolute versus relational” debate – the production of yet another book may seem to require some excuse. I don’t claim to defend a novel position in that controversy, or to defend one of the standard positions in a novel way. Still less do I pretend to offer a comprehensive survey of such positions and how they stand up in light of the latest developments in physics. My excuse is, rather, that I hope to address an entirely different set of philosophical problems. The problems I have in mind certainly have deep connections with the problems of absolute and relative space, time, and motion, and the roles that they play, or might play, in the history and future of physics. But they can’t be glossed by the standard questions on space-time metaphysics: is motion absolute or relative? Are space and time substantival or relational? Rather, they are problems concerning how any knowledge of space, time, and motion – or spatio-temporal relations – is possible in the first place. How do we come to identify aspects of our physical knowledge as knowledge of space and time? How do we come to understand features of our experience as indicating spatio-temporal relations? How do the laws of physics reveal something to us about the nature of space and time? I see two compelling reasons to focus on these questions. On the one hand, I believe it will give us a more illuminating picture of the connection between the metaphysics of space and time and the development of philos- ophy in general. Historically, there have been two significant attempts to integrate the physics and the philosophy of space and time with a general theory of knowledge: Kant’s critical philosophy, in its attempt to compre- hend Euclid and Newton within a theory of the synthetic a priori; and logical positivism, in its attempt to comprehend Einstein within a conven- tionalist view. These attempts are widely recognized as failures, and I don’t intend to try to rehabilitate them. But I believe that there is some insight to x Preface xi be gained from a better understanding of why they failed; more important, I hope to show that the task in which they failed – to explain the peculiar character of theories of space and time, and the peculiar role that they have played as presuppositions for the empirical theories of physics – is no less important for us than it was for them, and, moreover, is more nearly within our grasp. On the other hand, I believe that focusing on these questions will give us a clearer picture of the history of physics. For, as I hope to show in the following chapters, the moments when such questions have become most urgent are precisely the most revolutionary moments in the history of space-time physics. The great conceptual transformations brought about by Newton, Einstein, and their fellows simply could not have happened as they did without profound reflection on these very questions. And our sense that these transformations were crucial steps forward – that, apart from increasingly useful theories, they actually yielded deeper understand- ing of the nature and structure of space-time – has everything to do with the success of their philosophical work. This is not an entirely novel idea. Something like it was at the heart of the positivists’ interpretation of relativity theory: Einstein introduced spe- cial and general relativity by some “philosophical analysis” of the concepts of space and time. But this interpretation was based on a rather simplistic picture of relativity, as well as simplistic notions of what a “philosophical analysis” could be. Given the inadequacies of the positivists’ attempt to put relativity into philosophical perspective, it has since appeared easier to see the relevance of philosophy to physics in simpler terms: as a source of philo- sophical motivations for physicists, and even of theoretical hypotheses, but not as a method of scientific analysis. For such motivations and hypotheses, it would seem, are inescapably subjective, and their objective worth can only be judged by the empirical success of the theories that they produce. Einstein thought that anyone who followed the philosophical steps that he had taken, whatever their scientific background, would be convinced of the basic principles of special and general relativity. By the later twentieth century, however, philosophers came to think of those steps as somewhat arbitrary, and as not very clearly related to the theories that Einstein actu- ally produced. They had a heuristic value for Einstein, and may have again for a future theory of space-time. To believe again that such philosophical arguments could be crucial – not only to the motivation for a theory, but also to its real significance in our scientific understanding of the world – we need a more philosophically subtle and historically realistic account of those arguments, and the peculiar roles that philosophy and physics have played in them. xii Preface That is what this book aims to provide. It is not distinguished by any technical arguments or results; it benefits, in that regard, from the tradition of important works on absolute and relational space-time, such as Sklar (1977), Friedman (1983), and Earman (1989), that have done so much to make space-time geometry a familiar part of philosophical discourse.
Recommended publications
  • Arxiv:2103.15570V2 [Physics.Hist-Ph] 22 Jun 2021 to This Article in Its Purpose and Content
    An Analysis of the Concept of Inertial Frame Boris Čulina Department of Mathematics University of Applied Sciences Velika Gorica Zagrebačka cesta 5, 10410 Velika Gorica, Croatia e-mail: [email protected] Abstract. The concept of inertial frame of reference is analysed. It has been shown that this fundamental concept of physics is not clear enough. A definition of inertial frame of reference is proposed which expresses its key inherent property. The definition is operational and powerful. Many other properties of inertial frames follow from the definition or it makes them plausible. In particular, the definition shows why physical laws obey space and time symmetries and the principle of relativity, it resolves the problem of clock synchronization and the role of light in it, as well as the problem of the geometry of inertial frames. keywords: inertial frame of reference, space and time symmetries, the principle of relativity, clock synchronization, physical geometry The concept of inertial frame is a fundamental concept of physics. The opinion of the author is that not enough attention has been paid to such a significant concept, not only in textbooks, but also in the scientific literature. In the scientific literature, many particular issues related to the concept of inertial frame have been addressed, but, as far as the author is aware, a sys- tematic analysis of this concept has not been made. DiSalle’s article [DiS20] in the Stanford Encyclopedia of Philosophy gives an overview of the histori- cal development of the concept of an inertial frame as an essential part of the historical development of physics.
    [Show full text]
  • Existence in Physics
    Existence in Physics Armin Nikkhah Shirazi ∗ University of Michigan, Department of Physics, Ann Arbor January 24, 2019 Abstract This is the second in a two-part series of papers which re-interprets relativistic length contraction and time dilation in terms of concepts argued to be more fundamental, broadly construed to mean: concepts which point to the next paradigm. After refining the concept of existence to duration of existence in spacetime, this paper introduces a criterion for physi- cal existence in spacetime and then re-interprets time dilation in terms of the concept of the abatement of an object’s duration of existence in a given time interval, denoted as ontochronic abatement. Ontochronic abatement (1) focuses attention on two fundamental spacetime prin- ciples the significance of which is unappreciated under the current paradigm, (2) clarifies the state of existence of speed-of-light objects, and (3) leads to the recognition that physical existence is an equivalence relation by absolute dimensionality. These results may be used to justify the incorporation of the physics-based study of existence into physics as physical ontology. Keywords: Existence criterion, spacetime ontic function, ontochronic abatement, invariance of ontic value, isodimensionality, ontic equivalence class, areatime, physical ontology 1 Introduction This is the second in a two-part series of papers which re-interprets relativistic length contraction and time dilation in terms of concepts argued to be more fundamental, broadly construed to mean: concepts which point to the next paradigm. The first paper re-conceptualized relativistic length contraction in terms of dimensional abatement [1], and this paper will re-conceptualize relativistic time dilation in terms of what I will call ontochronic abatement, to be defined as the abatement of an object’s duration of existence within a given time interval.
    [Show full text]
  • Relativity: the Special and General Theory Albert Einstein Relativity the Special and General Theory
    Relativity: The Special and General Theory Albert Einstein Relativity The Special and General Theory Written: 1916 (this revised edition: 1924) Source: Relativity: The Special and General Theory © 1920 Publisher: Methuen & Co Ltd First Published: December, 1916 Translated: Robert W. Lawson (Authorised translation) Transcription/Markup: Brian Basgen Offline Version: Einstein Reference Archive (marxists.org) 1999 file:///C|/Documents%20and%20Settings/sverrmoe/...he%20Special%20and%20General%20Theory/index.htm (1 of 5) [18.08.2001 19:55:23] Relativity: The Special and General Theory Preface Part I: The Special Theory of Relativity 01. Physical Meaning of Geometrical Propositions 02. The System of Co-ordinates 03. Space and Time in Classical Mechanics 04. The Galileian System of Co-ordinates 05. The Principle of Relativity (in the Restricted Sense) 06. The Theorem of the Addition of Velocities employed in Classical Mechanics 07. The Apparent Incompatability of the Law of Propagation of Light with the Principle of Relativity 08. On the Idea of Time in Physics 09. The Relativity of Simultaneity 10. On the Relativity of the Conception of Distance 11. The Lorentz Transformation 12. The Behaviour of Measuring-Rods and Clocks in file:///C|/Documents%20and%20Settings/sverrmoe/...he%20Special%20and%20General%20Theory/index.htm (2 of 5) [18.08.2001 19:55:23] Relativity: The Special and General Theory Motion 13. Theorem of the Addition of Velocities. The Experiment of Fizeau 14. The Hueristic Value of the Theory of Relativity 15. General Results of the Theory 16. Expereince and the Special Theory of Relativity 17. Minkowski's Four-dimensial Space Part II: The General Theory of Relativity 18.
    [Show full text]
  • Short-Term Housing Resource List
    University of Minnesota Relocation Assistance Program (RAP) Short-term Housing Resource List Welcome to the Twin Cities community. The following list provides a sampling of housing resources that are available for short-term rental (i.e., one week to three months). Many of these units are located within two miles of campus. University of Minnesota Housing Resources • Institute for Mathematics and Its Applications www.ima.umn.edu/visiting/housing/index This list contains many options, including apartment complexes that offer one year leases or less. • Relocation Assistance Program www.humanresources.umn.edu/relocation-assistance-program/housing • Sabbatical and University-affiliated homes for rent or sale www.relocation-today.com/propertyportal • Summer guest housing www.housing.umn.edu/guest-housing Guest housing is available to any person with University-related business. Accommodations are available June 1- August 15. University of Minnesota off-campus housing www.housing.umn.edu/offcampus • University Village www.housing.umn.edu/uv 2515 University Ave. SE Minneapolis, MN 55414 612-625-3909 Contact: Nkayo Drepaul ([email protected]) The University Village apartment complex is a five minute bus ride and 20-minute walk from the University. The complex offers below-market rental rates for international fellows and scholars and competitive rates for others. Apartments are furnished with basic furniture and kitchen utensils. Includes high speed internet, in-unit washers/dryers and access to the fitness center, tanning room, community room, indoor bike storage, and study room. Heated garage parking available for $75 per month. Prepared by the Office of Human Resources 12-5-17 1 Hotels Near Campus University of Minnesota contract hotels www.uwidecontracts.umn.edu Search for hotels under the “Lodging” category.
    [Show full text]
  • Rules of the Appellate Term Second Department
    RULES OF THE APPELLATE TERM SECOND DEPARTMENT Courtesy of: DICK BAILEY SERVICE, INC. APPELLATE PRINTING SPECIALISTS 25 Chapel Street• 6th Floor•Brooklyn•New York 11201 (718) 522-4363 (516) 222-2470 (212) 608-7666 (914) 682-0848 1-800-531-2028 22 NYCRR Part 730, 731 and 732* *Rules include latest revisions made effective, September 17, 2008. TABLE OF CONTENTS Page(s) Part 730. - Establishment and Jurisdiction of Appellate Terms § 730.1 - Establishment and Jurisdiction of Appellate Terms .................1 § 730.3 - General Provisions and Definitions............................................4 Part 731. - Rules of Practice for the Second and Eleventh Judicial Districts § 731.1 - Record on Appeal .........................................................................6 § 731.2 - Briefs ............................................................................................7 § 731.3 - Court Sessions .............................................................................8 § 731.4 - Calendar of Appeals ....................................................................9 § 731.5 - Preferences; Consolidation........................................................10 § 731.6 - Oral Argument or Submission ..................................................11 § 731.7 - Motions.......................................................................................12 § 731.8 - Dismissals on The Court’s Own Motion; Enlargements of Time ...............................................................13 § 731.9 - Appeals in Criminal Cases; Adjournments;
    [Show full text]
  • XT511 Manual (Reve)
    www.midlandradio.com Model XT511 Series ® TABLE OF CONTENTS 3 Introduction 4 Important Notice, FCC Licensing 5 LCD Display 6 Controls 7 Battery Installation 8 Installing the Shoulder Strap 8 Charging the Battery Pack 9 Low Battery Level Indicator 9 Selecting the Power Source 9 Operating Your Radio 10 - 17 External Speaker/Microphone Jack 17 USB Jack 17 Troubleshooting Guide 18 Use and Care 18 Specifications and Frequency Charts 19 - 20 Warranty Information 21 MIDLAND Family Products 22 Accessories 22 - 24 Accessories Order Form 25 Page 3 www.midlandradio.com Model XT511 Series ® Welcome to the world of Midland electronics Congratulations on your purchase of a high quality MIDLAND product. Your 2-way radio represents the state-of-the-art in high-tech engineering. Designed for GMRS (General Mobile Radio Service) operation, this compact package is big in performance. It is a quality piece of electronic equipment, skillfully constructed with the finest components. The circuitry is all solid-state and mounted on a rugged printed circuit board. Your two-way radio is designed for reliable and trouble-free performance for years to come. Features - 22 GMRS/FRS Channel - 121 Privacy Codes (38 CTCSS / 83 DCS) - AM/FM Receiver - VOX - Selectable Call Alert - NOAA Weather Radio - NOAA Weather Alert - Scan Function - MONITOR Function - Dual Watch Function - Roger Beep Tone - Silent Operation - Keypad Lock - Power HI/LO Settings - Flashlight - Clock/Alarm Clock Function - Dynamo Crank Battery Charge Capability - USB Jack (For Mobile Phone Charging) - Speaker / Microphone Jacks - Battery Meter / Battery Low Indicator This device complies with Part 15 of the FCC Rules.
    [Show full text]
  • Principle of Relativity in Physics and in Epistemology Guang-Jiong
    Principle of Relativity in Physics and in Epistemology Guang-jiong Ni Department of Physics, Fudan University, Shanghai 200433,China Department of Physics , Portland State University, Portland,OR97207,USA (Email: [email protected]) Abstract: The conceptual evolution of principle of relativity in the theory of special relativity is discussed in detail . It is intimately related to a series of difficulties in quantum mechanics, relativistic quantum mechanics and quantum field theory as well as to new predictions about antigravity and tachyonic neutrinos etc. I. Introduction: Two Postulates of Einstein As is well known, the theory of special relativity(SR) was established by Einstein in 1905 on two postulates (see,e.g.,[1]): Postulate 1: All inertial frames are equivalent with respect to all the laws of physics. Postulate 2: The speed of light in empty space always has the same value c. The postulate 1 , usually called as the “principle of relativity” , was accepted by all physicists in 1905 without suspicion whereas the postulate 2 aroused a great surprise among many physicists at that time. The surprise was inevitable and even necessary since SR is a totally new theory out broken from the classical physics. Both postulates are relativistic in essence and intimately related. This is because a law of physics is expressed by certain equation. When we compare its form from one inertial frame to another, a coordinate transformation is needed to check if its form remains invariant. And this Lorentz transformation must be established by the postulate 2 before postulate 1 can have quantitative meaning. Hence, as a metaphor, to propose postulate 1 was just like “ to paint a dragon on the wall” and Einstein brought it to life “by putting in the pupils of its eyes”(before the dragon could fly out of the wall) via the postulate 2[2].
    [Show full text]
  • The Theory of Relativity and a Priori Knowledge
    // The Theory ofRelativity -:::=-- and A Priori I(nowledg~ By llA S REICHE BACH./ / Translated and edited, wi.th an introduction, by Maria Reichenbach UNIVERSITY OF CALIFOR IA PRESS Berkeley and Los Angeles 1965 (~C Dedicated to ALBERT EINSTEIN <0 , R3\~~! UNIVERSITY OF CALIFOR IA PRESS BERKELEY AND Los ANGELES, CAu.FORNlA CAMBRIDGE UNIVERSITY PREss, LoNDON, E 'GLAND First published in German under the title Relativitiitsthem-je und Erkenntnis Apriori THIS TRANSLATION © 1965 BY THE RECENTS OF THE UNIVERSITY OF CALIFORNIA Library of Congress Catalog Card Number: 65-28456 DESIGNED BY DAVID PAULY PRINTED IN THE UNITED STATES OF AMERICA Contents Introduction to the English Edition Xl I. Introduction 1 II. The Contradictions Asserted by the Spe- cial Theory of Relativity 6 III. The Contradictions Asserted by the Gen- eral Theory of Relativity 22 IV. Knowledge as Coordination 34 V. Two Meanings of "A priori" and Kant's Implicit Presupposition 48 VI. The Refutation of Kant's Presupposition by the Theory of Relativity 61 VII. The Answer to the Critical Question by the Method of Logical Analysis 74 VIII. The Concept of Knowledge of the The- ory of Relativity as an Example of the Development of the Concept of Object 93 Reference Notes 109 I ., Introduction* Einstein's theory of relativity has greatly affected the fundamental principles of epistemology. It will not serve any purpose to deny this fact or to pretend that the physical theory changed only the concepts of physics while the philosophical truths remained in­ violate. Even though the theory of relativity concerns only relations of physical measurability and physical magnitudes, it must be admitted that these physical assertions contradict general philosophical principle.
    [Show full text]
  • Reconstructing William Craig Explanation of Absolute Time Based on Islamic Philosophy
    Reconstructing William Craig Explanation of Absolute Time Based on Islamic Philosophy M. S. Kavyani (1), H. Parsania (2), and H. Razmi (3) Department of Philosophy of Physics, Baqir al Olum University, 37185-787, Qom, I. R. Iran. (2) Permanent Address: Department of Social Sciences, Tehran University, Tehran, I. R. Iran. (3) Permanent Address: Department of Physics, University of Qom, Qom, I. R. Iran. (1) [email protected] (2) [email protected] (3) [email protected] Abstract After the advent of the theory of special relativity, the existence of an absolute time in nature was rejected in physics society. In recent decades, William Craig has endeavored to offer an interpretation of empirical evidences corresponding to theory of relativity with the preservation of an absolute time. His strategy is based on two viewpoints including dynamical theory of time and the Eminent God’s temporal being. After considering and criticizing these two viewpoints, using the well-known overall substantial motion of nature in Islamic philosophy and thus the realization of a general time for all the nature, we have tried to reconstruct Craig argument for an absolute time. Although Craig has considered some evidences from modern physics reasoning on an absolute time, the special advantage of the approach considered here is in this fact that it connects better the existing gap between the metaphysics and the physics of the argument. Keywords: Absolute time; Theory of relativity; William Craig; The dynamical time theory; Islamic Philosophy; Nature overall substantial motion; General time Introduction In classical mechanics, the absolute universal time was considered as the measure of the events chronology and a parameter for determining their priority, posteriority, and simultaneity.
    [Show full text]
  • Using the 24 Hour Clock Lesson by Gene Williamson Whitford Intermdiate School, Beaverton, Oregon\
    TEACHER BACKGROUND Unit 3 - Tides and the Rocky Shore Using the 24 Hour Clock Lesson by Gene Williamson Whitford Intermdiate School, Beaverton, Oregon\ Key Concepts 1. There are several time systems in use worldwide. 2. The 24 hour, or military clock, is widely used among scientists to avoid the confusion of the standard AM-PM system. 3. Mathematical manipulations are easier when using the 24 hour system. Background We tend to take time and our A.M.-P.M. system of marking time for granted. A look at any dictionary quickly dispels the notion that time is a simple concept. While our commonly used system of time is based on the 24 hour solar day, astronomers use a sidereal time system based on the rotation of the earth in relation to any star; a sidereal day is about 4 minutes shorter than a solar day. The division of the 24 hour day into A.M. (ante meridiem - before noon) and P.M. (post meridiem - after noon) is sometimes confusing (just when is 12 P.M.?); did you mean 8:00 at night or 8:00 in the morning?). To avoid this confusion, scientists often record time using a 24 hour clock. This system has obvious advantages under the surface of the ocean or in space away from the surface of the earth where the concept of morning has little meaning. Materials For the class: • a large clock with 24 hour designations is helpful, but not required For each student: • “Using the 24 Hour Clock” student pages Teaching Hints It is especially important that students be thoroughly trained and practiced in the use of military time or the 24-hour time system before instruction in the use of the Tide Tables is given.
    [Show full text]
  • Terminology of Geological Time: Establishment of a Community Standard
    Terminology of geological time: Establishment of a community standard Marie-Pierre Aubry1, John A. Van Couvering2, Nicholas Christie-Blick3, Ed Landing4, Brian R. Pratt5, Donald E. Owen6 and Ismael Ferrusquía-Villafranca7 1Department of Earth and Planetary Sciences, Rutgers University, Piscataway NJ 08854, USA; email: [email protected] 2Micropaleontology Press, New York, NY 10001, USA email: [email protected] 3Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades NY 10964, USA email: [email protected] 4New York State Museum, Madison Avenue, Albany NY 12230, USA email: [email protected] 5Department of Geological Sciences, University of Saskatchewan, Saskatoon SK7N 5E2, Canada; email: [email protected] 6Department of Earth and Space Sciences, Lamar University, Beaumont TX 77710 USA email: [email protected] 7Universidad Nacional Autónomo de México, Instituto de Geologia, México DF email: [email protected] ABSTRACT: It has been recommended that geological time be described in a single set of terms and according to metric or SI (“Système International d’Unités”) standards, to ensure “worldwide unification of measurement”. While any effort to improve communication in sci- entific research and writing is to be encouraged, we are also concerned that fundamental differences between date and duration, in the way that our profession expresses geological time, would be lost in such an oversimplified terminology. In addition, no precise value for ‘year’ in the SI base unit of second has been accepted by the international bodies. Under any circumstances, however, it remains the fact that geologi- cal dates – as points in time – are not relevant to the SI.
    [Show full text]
  • School Terms and Holidays 2020/2021
    SCHOOL TERMS AND HOLIDAYS 2020/2021 SEPTEMBER OCTOBER NOVEMBER Mon 7 14 21 28 Mon 5 12 19 26 Mon 2 9 16 23 30 Tues 1 8 15 22 29 Tues 6 13 20 27 Tues 3 10 17 24 Wed 2 9 16 23 30 Wed 7 14 21 28 Wed 4 11 18 25 Thur 3 10 17 24 Thur 1 8 15 22 29 Thur 5 12 19 26 Fri 4 11 18 25 Fri 2 9 16 23 30 Fri 6 13 20 27 Sat 5 12 19 26 Sat 3 10 17 24 31 Sat 7 14 21 28 Sun 6 13 20 27 Sun 4 11 18 25 Sun 1 8 15 22 29 DECEMBER JANUARY FEBRUARY Mon 7 14 21 28 Mon 4 11 18 25 Mon 1 8 15 22 Tues 1 8 15 22 29 Tues 5 12 19 26 Tues 2 9 16 23 Wed 2 9 16 23 30 Wed 6 13 20 27 Wed 3 10 17 24 Thur 3 10 17 24 31 Thur 7 14 21 28 Thur 4 11 18 25 Fri 4 11 18 25 Fri 1 8 15 22 29 Fri 5 12 19 26 Sat 5 12 19 26 Sat 2 9 16 23 30 Sat 6 13 20 27 Sun 6 13 20 27 Sun 3 10 17 24 31 Sun 7 14 21 28 MARCH APRIL MAY Mon 1 8 15 22 29 Mon 5 12 19 26 Mon 3 10 17 24 31 Tues 2 9 16 23 30 Tues 6 13 20 27 Tues 4 11 18 25 Wed 3 10 17 24 31 Wed 7 14 21 28 Wed 5 12 19 26 Thur 4 11 18 25 Thur 1 8 15 22 29 Thur 6 13 20 27 Fri 5 12 19 26 Fri 2 9 16 23 30 Fri 7 14 21 28 Sat 6 13 20 27 Sat 3 10 17 24 Sat 1 8 15 22 29 Sun 7 14 21 28 Sun 4 11 18 25 Sun 2 9 16 23 30 JUNE JULY AUGUST Mon 7 14 21 28 Mon 5 12 19 26 Mon 2 9 16 23 30 Tues 1 8 15 22 29 Tues 6 13 20 27 Tues 3 10 17 24 31 Wed 2 9 16 23 30 Wed 7 14 21 28 Wed 4 11 18 25 Thur 3 10 17 24 Thur 1 8 15 22 29 Thur 5 12 19 26 Fri 4 11 18 25 Fri 2 9 16 23 30 Fri 6 13 20 27 Sat 5 12 19 26 Sat 3 10 17 24 31 Sat 7 14 21 28 Sun 6 13 20 27 Sun 4 11 18 25 Sun 1 8 15 22 29 th Term Time Holidays Christmas Bank Holidays 25 December 2020 th Bank Holiday Inset Day 28
    [Show full text]