Super Shield Silver Conductive Coating

Total Page:16

File Type:pdf, Size:1020Kb

Super Shield Silver Conductive Coating 842AR Super Shield Silver Conductive Coating (Aerosol) MG Chemicals UK Limited Version No: A-1.03 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Issue Date: 15/01/2020 Revision Date: 17/03/2020 L.REACH.GBR.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING 1.1. Product Identifier Product name 842AR Synonyms SDS Code: 842AR-Aerosol; 842AR-140G Other means of identification Super Shield Silver Conductive Coating (Aerosol) 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Electrically conductive coating and EMI/RFI shield Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Not Available Emergency telephone numbers +(44) 20 35147487 Not Available Other emergency telephone +(0) 800 680 0425 Not Available numbers SECTION 2 HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification according to H223+H229 - Aerosols Category 2, H319 - Eye Irritation Category 2, H336 - Specific target organ toxicity - single exposure Category 3 (narcotic effects), regulation (EC) No 1272/2008 H410 - Chronic Aquatic Hazard Category 1 [CLP] [1] Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI 2.2. Label elements Hazard pictogram(s) SIGNAL WORD WARNING Hazard statement(s) H223+H229 Flammable aerosol; Pressurized container: may burst if heated. H319 Causes serious eye irritation. H336 May cause drowsiness or dizziness. H410 Very toxic to aquatic life with long lasting effects. Supplementary statement(s) Not Applicable Precautionary statement(s) Prevention Continued... Page 2 of 21 842AR Super Shield Silver Conductive Coating (Aerosol) P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P211 Do not spray on an open flame or other ignition source. P251 Do not pierce or burn, even after use. P271 Use only outdoors or in a well-ventilated area. P261 Avoid breathing gas. P273 Avoid release to the environment. P280 Wear protective gloves/protective clothing/eye protection/face protection. Precautionary statement(s) Response P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P312 Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. P337+P313 If eye irritation persists: Get medical advice/attention. P391 Collect spillage. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. Precautionary statement(s) Storage P405 Store locked up. P410+P412 Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. P403+P233 Store in a well-ventilated place. Keep container tightly closed. Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS 3.1.Substances See 'Composition on ingredients' in Section 3.2 3.2.Mixtures 1.CAS No 2.EC No %[weight] Name Classification according to regulation (EC) No 1272/2008 [CLP] 3.Index No 4.REACH No 1.7440-22-4 2.231-131-3 3.Not Available 32 silver EUH210 [1] 4.01-2119513211-60- XXXX|01-2119555669-21-XXXX 1.67-64-1 2.200-662-2 Flammable Liquid Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Eye 17 acetone * 3.606-001-00-8 Irritation Category 2; H225, H336, H319, EUH066 [2] 4.01-2119471330-49-XXXX 1.74-98-6 2.200-827-9 13 propane Gas under Pressure, Flammable Gas Category 1; H280, H220 [2] 3.601-003-00-5 4.01-2119486944-21-XXXX 1.616-38-6 2.210-478-4 dimethyl 3.607-013-00-6 10 [2] carbonate Flammable Liquid Category 2; H225 4.01-2119548399-23- XXXX|01-2119822377-36-XXXX 1.75-28-5. 2.200-857-2 7 iso-butane Flammable Gas Category 1, Gas under Pressure (Liquefied gas); H220, H280 3.601-004-00-0|601-004-01-8 4.01-2119485395-27-XXXX 1.123-86-4 2.204-658-1 Flammable Liquid Category 3, Specific target organ toxicity - single exposure Category 3 (narcotic effects); H226, 6 n-butyl acetate 3.607-025-00-1 H336, EUH066 [2] 4.01-2119485493-29-XXXX Continued... Page 3 of 21 842AR Super Shield Silver Conductive Coating (Aerosol) 1.110-43-0 2.203-767-1 amyl methyl Flammable Liquid Category 3, Acute Toxicity (Oral) Category 4, Acute Toxicity (Inhalation) Category 4; H226, H302, 3.606-024-00-3 6 ketone * H332 [2] 4.01-2119902391-49- XXXX|01-2120752829-39-XXXX 1.14807-96-6 2.238-877-9 Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Toxicity (Inhalation) 0.4 talc 3.Not Available Category 4; H335, H332 [1] 4.01-2120140278-58-XXXX Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L; * EU IOELVs available SECTION 4 FIRST AID MEASURES 4.1. Description of first aid measures If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye with fresh running water. Eye Contact Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. In case of cold burns (frost-bite): Move casualty into warmth before thawing the affected part; if feet are affected carry if possible Bathe the affected area immediately in luke-warm water (not more than 35 deg C) for 10 to 15 minutes, immersing if possible and without rubbing DO NOT apply hot water or radiant heat. Apply a clean, dry, light dressing of 'fluffed-up' dry gauze bandage If a limb is involved, raise and support this to reduce swelling If an adult is involved and where intense pain occurs provide pain killers such as paracetomol Skin Contact Transport to hospital, or doctor Subsequent blackening of the exposed tissue indicates potential of necrosis, which may require amputation. If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Inhalation Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Ingestion Not considered a normal route of entry. 4.2 Most important symptoms and effects, both acute and delayed See Section 11 4.3. Indication of any immediate medical attention and special treatment needed Treat symptomatically. 53ag for simple ketones: -------------------------------------------------------------- BASIC TREATMENT -------------------------------------------------------------- Establish a patent airway with suction where necessary. Watch for signs of respiratory insufficiency and assist ventilation as necessary. Administer oxygen by non-rebreather mask at 10 to 15 l/min. Monitor and treat, where necessary, for pulmonary oedema . Monitor and treat, where necessary, for shock. DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5mL/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. Give activated charcoal. -------------------------------------------------------------- ADVANCED TREATMENT -------------------------------------------------------------- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. Consider intubation at first sign of upper airway obstruction resulting from oedema. Positive-pressure ventilation using a bag-valve mask might be of use. Monitor and treat, where necessary, for arrhythmias. Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. Drug therapy should be considered for pulmonary oedema. Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. Treat seizures with diazepam. Proparacaine hydrochloride should be used to assist eye irrigation. -------------------------------------------------------------- EMERGENCY DEPARTMENT -------------------------------------------------------------- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Ag2s Solubility in Sulfide Solutions up to 250°C in Order to Estimate Possible Silver Sulfide Complexes in Ore Solutions, the S
    Geochemical Journal, Vol. 21, pp. 291 to 305, 1987 Ag2S solubility in sulfide solutions up to 250°C ASAHIKO SUGAKI', STEVEN D. SCOTT', KENICHIRO HAYASHI', and ARASHI KITAKAZE1 Institute of Mineralogy, Petrology and Economic Geology, Faculty of Science, Tohoku University, Sendai 980, Japan' and Department of Geology, University of Toronto, Toronto M5S 1A1, Canada' (Received December 2, 1987: Accepted February 22, 1988) In order to estimatepossible silver sulfide complexes in ore solutions, the solubilityof Ag2Swas measuredbetween 25° and 250°Cin NaOH-H2S-H20solutions of 0.0 to 4.1m NaHSconcentration. Solu bilitychanges as a functionof temperature,total reducedsulfur concentration ES (mHS + mHS-)and pH. A maximumsolubility of 2140ppmAg was obtained at 250°Cin 4.1m NaHSconcentration under PH 2Sof 29.1 atm. From these solubility data, reactions to form silver sulfide complexes are estimated as follows: Ag2S + H2S = Ag2S(H2S), Ag2S + H2S + HS = Ag2S(H2S) (HS)-, Ag2S + H2S + 2HS = Ag2S (H2S) (HS)22 and Ag2S + 2HS = Ag2S (HS)22-. The equilibrium constants for these reactions are given in Table 2. Assuming that such silver sulfide complexes as above are in an ore solution , Ag2S (argentite or acanthite) is precipitated in response to changes of temperature, pH and total sulfur concentration (ES). Decrease of pH and ES is more effective than that of temperature. Silver sulfide complexes are more important than silver chloride complexes in ore solution of high ES, neutral to slightly alkaline pH and geologically reasonable chloride concentrations. INTRODUCTION to the experimental study by Seward (1973), Thermochemical data for aqueous metal bisulfide complexes are significant for the trans species at elevated temperatures and pressures port of gold in ore solutions under epithermal are indispensable for understanding transport of conditions, even if chloride complexes have the metals in hydrothermal solution.
    [Show full text]
  • An Investigation of the Crystal Growth of Heavy Sulfides in Supercritical
    AN ABSTRACT OF THE THESIS OF LEROY CRAWFORD LEWIS for the Ph. D. (Name) (Degree) in CHEMISTRY presented on (Major) (Date) Title: AN INVESTIGATION OF THE CRYSTAL GROWTH OF HEAVY SULFIDES IN SUPERCRITICAL HYDROGEN SULFIDE Abstract approved Redacted for privacy Dr. WilliarriIJ. Fredericks Solubility studies on the heavy metal sulfides in liquid hydrogen sulfide at room temperature were carried out using the isopiestic method. The results were compared with earlier work and with a theoretical result based on Raoult's Law. A relative order for the solubilities of sulfur and the sulfides of tin, lead, mercury, iron, zinc, antimony, arsenic, silver, and cadmium was determined and found to agree with the theoretical result. Hydrogen sulfide is a strong enough oxidizing agent to oxidize stannous sulfide to stannic sulfide in neutral or basic solution (with triethylamine added). In basic solution antimony trisulfide is oxi- dized to antimony pentasulfide. In basic solution cadmium sulfide apparently forms a bisulfide complex in which three moles of bisul- fide ion are bonded to one mole of cadmium sulfide. Measurements were made extending the range over which the volumetric properties of hydrogen sulfide have been investigated to 220 °C and 2000 atm. A virial expression in density was used to represent the data. Good agreement, over the entire range investi- gated, between the virial expressions, earlier work, and the theorem of corresponding states was found. Electrical measurements were made on supercritical hydro- gen sulfide over the density range of 10 -24 moles per liter and at temperatures from the critical temperature to 220 °C. Dielectric constant measurements were represented by a dielectric virial ex- pression.
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • Chemical List
    1 EXHIBIT 1 2 CHEMICAL CLASSIFICATION LIST 3 4 1. Pyrophoric Chemicals 5 1.1. Aluminum alkyls: R3Al, R2AlCl, RAlCl2 6 Examples: Et3Al, Et2AlCl, EtAlCl2, Me3Al, Diethylethoxyaluminium 7 1.2. Grignard Reagents: RMgX (R=alkyl, aryl, vinyl X=halogen) 8 1.3. Lithium Reagents: RLi (R = alkyls, aryls, vinyls) 9 Examples: Butyllithium, Isobutyllithium, sec-Butyllithium, tert-Butyllithium, 10 Ethyllithium, Isopropyllithium, Methyllithium, (Trimethylsilyl)methyllithium, 11 Phenyllithium, 2-Thienyllithium, Vinyllithium, Lithium acetylide ethylenediamine 12 complex, Lithium (trimethylsilyl)acetylide, Lithium phenylacetylide 13 1.4. Zinc Alkyl Reagents: RZnX, R2Zn 14 Examples: Et2Zn 15 1.5. Metal carbonyls: Lithium carbonyl, Nickel tetracarbonyl, Dicobalt octacarbonyl 16 1.6. Metal powders (finely divided): Bismuth, Calcium, Cobalt, Hafnium, Iron, 17 Magnesium, Titanium, Uranium, Zinc, Zirconium 18 1.7. Low Valent Metals: Titanium dichloride 19 1.8. Metal hydrides: Potassium Hydride, Sodium hydride, Lithium Aluminum Hydride, 20 Diethylaluminium hydride, Diisobutylaluminum hydride 21 1.9. Nonmetal hydrides: Arsine, Boranes, Diethylarsine, diethylphosphine, Germane, 22 Phosphine, phenylphosphine, Silane, Methanetellurol (CH3TeH) 23 1.10. Non-metal alkyls: R3B, R3P, R3As; Tributylphosphine, Dichloro(methyl)silane 24 1.11. Used hydrogenation catalysts: Raney nickel, Palladium, Platinum 25 1.12. Activated Copper fuel cell catalysts, e.g. Cu/ZnO/Al2O3 26 1.13. Finely Divided Sulfides: Iron Sulfides (FeS, FeS2, Fe3S4), and Potassium Sulfide 27 (K2S) 28 REFERRAL
    [Show full text]
  • Prohibited and Restricted Chemical List
    School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only.
    [Show full text]
  • United States Patent Office Patented Mar
    3,311,468 United States Patent Office Patented Mar. 28, 1967 2 3,351,468 continuously or batchwise as desired. Other objects and SVRESR RECGVERY PRO CESS advantages will appear as the description proceeds. Charies Davidoff, 1:8 Roliagiiii Road, The attainment of the above objects is made possible Maiaasset, N.Y. 1936 by my method of recovering silver from a solution of No Drawing, Fied Dec. 26, 1963, Ser. No. 333,635 5 alkali metal silver cyanide comprising adding to the solu 6 Caias. (Ci. 75-63) tion at least about 0.25 mole of an alkali metal hydro sulfite compound for each mole of silver in the solution, This invention relates to a method for recovering silver, maintaining the resulting solution, preferably at an ele and more particularly to a method for recovering silver vated temperature above about 150 F., until cessation from a solution of alkali metal silver cyanide or other sil 10 of precipitation of the silver, and removing the precipi wer salt. tated silver from the solution. The above process has It is common knowledge that solutions of silver cyanide been found to constitute a surprisingly simple, economical complex exist in several fields of industry from which the method of expeditiously recovering silver from solutions silver must be recovered for obvious reasons of economy. of alkali metal silver cyanide in up to 100% yields with Thus, in the mining industry, a widely employed method out the need for the previously required acid-proof equip of recovering silver from ore containing the same involves ment. Further, although the said process exhibits its leaching the silver from the ore with an aqueous solu greatest advantages in the treatment of solutions contain tion of alkali metal cyanide, a solution of sodium or ing the highly stable alkali metal silver cyanide complex, potassium silver cyanide being thereby obtained.
    [Show full text]
  • Revised Version the Crystal Structure of Uytenbogaardtite, Ag3aus2, And
    Title The crystal structure of uytenbogaardtite, Ag3AuS2, and its relationships with gold and silver sulfides-selenides Authors Bindi, L; Stanley, Christopher; Seryotkin, YV; Bakakin, VR; Pal'yanova, GA; Kokh, KA Date Submitted 2017-03-30 1 1 1237R – revised version 2 The crystal structure of uytenbogaardtite, Ag3AuS2, and its relationships 3 with gold and silver sulfides-selenides 4 1, 2 3,4 5 5 LUCA BINDI *, CHRISTOPHER J. STANLEY , YURII V. SERYOTKIN , VLADIMIR V. BAKAKIN , 3,4 3,4 6 GALINA A. PAL’YANOVA , KONSTANTIN A. KOKH 7 8 1Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, I-50121Firenze, Italy 9 2Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom 3 10 Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences, pr. 11 Akademika Koptyuga, 3, Novosibirsk 630090, Russia 4 12 Novosibirsk State University, Pirogova str., 2, Novosibirsk 630090, Russia 5 13 Institute of Inorganic Chemistry, Siberian Branch of the RAS, prosp. Lavrentieva 3, 630090 Novosibirsk, Russia 14 15 * e-mail address: [email protected] 16 17 Abstract 18 The crystal structure of the mineral uytenbogaardtite, a rare silver-gold sulfide, was solved 19 using intensity data collected on a crystal from the type locality, the Comstock lode, Storey 20 County, Nevada (U.S.A.). The study revealed that the structure is trigonal, space group R 3 c, 3 21 with cell parameters: a = 13.6952(5), c = 17.0912(8) Å, and V = 2776.1(2) Å . The refinement 22 of an anisotropic model led to an R index of 0.0140 for 1099 independent reflections.
    [Show full text]
  • [email protected] 1-800-424-9300 (North America) Website: +1-703-527-3887 (International)
    Date of Issue: 27 July 2021 SAFETY DATA SHEET 1. SUBSTANCE AND SOURCE IDENTIFICATION Product Identifier RM Number: 8554 RM Name: IAEA-S-1 (Sulfur Isotopes in Silver Sulfide) Other Means of Identification: Not applicable. Recommended Use of This Material and Restrictions of Use This Reference Material (RM) is an international measurement standard that defines the Vienna Cañon-Diablo Troilite (VCDT) scale for relative differences in sulfur (S) isotope-number ratios, R(34S/32S). A unit of RM 8554 consists of one bottle containing approximately 0.5 g of silver sulfide (Ag2S). Company Information National Institute of Standards and Technology Standard Reference Materials Program 100 Bureau Drive, Stop 2300 Gaithersburg, Maryland 20899-2300 Telephone: 301-975-2200 Emergency Telephone ChemTrec: E-mail: [email protected] 1-800-424-9300 (North America) Website: https://www.nist.gov/srm +1-703-527-3887 (International) 2. HAZARDS IDENTIFICATION Classification Physical Hazard: Not classified. Health Hazard: Not classified. Label Elements Symbol: No symbol/No pictogram. Signal Word: No signal word. Hazard Statement(s): Not applicable. Precautionary Statement(s): Not applicable. Hazards Not Otherwise Classified: None. Ingredients(s) with Unknown Acute Toxicity: None. 3. COMPOSITION AND INFORMATION ON HAZARDOUS INGREDIENTS Substance: Silver sulfide Other Designations: Disilver sulfide. Components are listed in compliance with OSHA’s 29 CFR 1910.1200. For actual values, see the NIST Report of Investigation. Hazardous Component(s) CAS Number EC Number Nominal Mass Concentration (EINECS) (%) Silver sulfide 21548-73-2 244-438-2 100 RM 8554 Page 1 of 6 4. FIRST AID MEASURES Description of First Aid Measures Inhalation: If adverse effects occur, remove to well-ventilated (uncontaminated) area.
    [Show full text]
  • List of Reactive Chemicals
    LIST OF REACTIVE CHEMICALS Chemical Prefix Chemical Name Reactive Reactive Reactive CAS# Chemical Chemical Chemical Stimulus 1 Stimulus 2 Stimulus 3 111-90-0 "CARBITOL" SOLVENT D 111-15-9 "CELLOSOLVE" ACETATE D 110-80-5 "CELLOSOLVE" SOLVENT D 2- (2,4,6-TRINITROPHENYL)ETHYL ACETATE (1% IN ACETONE & BENZENE S 12427-38-2 AAMANGAN W 88-85-7 AATOX S 40487-42-1 AC 92553 S 105-57-7 ACETAL D 75-07-0 ACETALDEHYDE D 105-57-7 ACETALDEHYDE, DIETHYL ACETAL D 108-05-4 ACETIC ACID ETHENYL ESTER D 108-05-4 ACETIC ACID VINYL ESTER D 75-07-0 ACETIC ALDEHYDE D 101-25-7 ACETO DNPT T 126-84-1 ACETONE DIETHYL ACETAL D 108-05-4 ACETOXYETHYLENE D 108-05-4 1- ACETOXYETHYLENE D 37187-22-7 ACETYL ACETONE PEROXIDE, <=32% AS A PASTE T 37187-22-7 ACETYL ACETONE PEROXIDE, <=42% T 37187-22-7 ACETYL ACETONE PEROXIDE, >42% T S 644-31-5 ACETYL BENZOYL PEROXIDE (SOLID OR MORE THAN 45% IN SOLUTION) T S 644-31-5 ACETYL BENZOYL PEROXIDE, <=45% T 506-96-7 ACETYL BROMIDE W 75-36-5 ACETYL CHLORIDE W ACETYL CYCLOHEXANE SULFONYL PEROXIDE (>82% WITH <12% WATER) T S 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=32% T 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=82% T 674-82-8 ACETYL KETENE (POISON INHALATION HAZARD) D 110-22-5 ACETYL PEROXIDE, <=27% T 110-22-5 ACETYL PEROXIDE, SOLID, OR MORE THAN 27% IN SOLUTION T S 927-86-6 ACETYLCHOLINE PERCHLORATE O S 74-86-2 ACETYLENE D 74-86-2 ACETYLENE (LIQUID) D ACETYLENE SILVER NITRATE D 107-02-08 ACRALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACROLEIC ACID D 107-02-08 ACROLEIN, INHIBITED (POISON INHALATION HAZARD) D 107-02-08 ACRYLALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACRYLIC ACID D 141-32-2 ACRYLIC ACID BUTYL ESTER D 140-88-5 ACRYLIC ACID ETHYL ESTER D 96-33-3 ACRYLIC ACID METHYL ESTER D Stimulus - Stimuli is the thermal, physical or chemical input needed to induce a hazardous reaction.
    [Show full text]
  • The First Chemical Achievements and Publications by Justus Von Liebig
    MICROREVIEW The First Chemical Achievements and Publications by Justus von Liebig 1803؊1873) on Metal Fulminates and Some Further Developments in Metal) Fulminates and Related Areas of Chemistry[‡] Wolfgang Beck[a] Dedicated to Professor Wolfgang Steglich on the occasion of his 70th birthday for his great friendship, collaboration and support[‡‡] Keywords: Liebig / Fulminates / Silver / Structure elucidation The first chemical investigations and publications by Justus by Liebig. Later, explosive (fulminato)metal complexes were von Liebig dealt with the fulminates of silver and mercury. prepared by Nef, Wieland, and especially by Lothar Wöhler Even as a boy Liebig had learnt how to prepare silver fulmi- and co-workers. In Munich the HCNO structure of fulminic nate, and as student of chemistry in Erlangen (1821) he stud- acid was established by its IR spectrum and the spectroscopic ied the properties and reactions of silver fulminate. In Paris in properties of (fulminato)metal complexes were studied. A se- 1823 (together with Gay-Lussac) he succeeded in analyzing ries of new nonexplosive complexes could be obtained by quantitatively the highly explosive silver compound. This dilution of the energy-rich species with large cations or li- great experimental success with the dangerous silver fulmi- gands. Recent X-ray structure determinations have revealed nate was most important in three respects: i. The develop- the almost perfect linear, tetrahedral, square-planar, or octa- ment of the experimental method later culminated in Liebig’s hedral structures of these complexes with linear − 2− perfected and well-known C,H,N analysis of organic com- metal−CϵNO bonds, e.g. [Au(CNO)2] , [Zn(CNO)4] , 2− 3− pounds (1830).
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]