October, 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Denver Observer December 2017
The Denver DECEMBER 2017 OBSERVER Messier 76, the Little Dumbbell Nebula, one of the deep-sky objects featured in this month’s “Skies.” Image © Joe Gafford. DECEMBER SKIES by Zachary Singer The Solar System of view in your ’scope will include the Moon’s Sky Calendar 3 Full Moon December will be a decent month for eastern section and the star, with plenty of 10 Last-Quarter Moon planetary events; though some planets are room. 17 New Moon slipping from view, others will take their I recommend you observe early—it 26 First-Quarter Moon place. We also have an occultation of Alde- should be a beautiful view, with the star a baran; as seen from Denver, the Moon will bright spark near the Moon’s edge, and over pass in front of the star at approximately the following minutes (they’ll go fast, just like In the Observer 4:06 PM, on the 30th. At that point, with the recent solar eclipse did), you can see the Moon move in its orbit around us, using the sunset still more than half an hour away, the President’s Message . .2 star won’t be visible to the naked eye, but it star for a benchmark. (Before 4:00 PM, look Society Directory. 2 should be in a telescope if you know where for Aldebaran outside the square, but along to look: Imagine a square drawn just large the diagonal from the Moon’s center to that Schedule of Events . 2 enough to touch the edges of the Moon, and lower-left edge.) About Denver Astronomical Society . -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
Binocular Universe: You're My Hero! December 2010
Binocular Universe: You're My Hero! December 2010 Phil Harrington on't you just love a happy ending? I know I do. Picture this. Princess Andromeda, a helpless damsel in distress, chained to a rock as a ferocious D sea monster loomed nearby. Just when all appeared lost, our hero -- Perseus! -- plunges out of the sky, kills the monster, and sweeps up our maiden in his arms. Together, they fly off into the sunset on his winged horse to live happily ever after. Such is the stuff of myths and legends. That story, the legend of Perseus and Andromeda, was recounted in last month's column when we visited some binocular targets within the constellation Cassiopeia. In mythology, Queen Cassiopeia was Andromeda's mother, and the cause for her peril in the first place. Left: Autumn star map from Star Watch by Phil Harrington Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm This month, we return to the scene of the rescue, to our hero, Perseus. He stands in our sky to the east of Cassiopeia and Andromeda, should the Queen's bragging get her daughter into hot water again. The constellation's brightest star, Mirfak (Alpha [α] Persei), lies about two-thirds of the way along a line that stretches from Pegasus to the bright star Capella in Auriga. Shining at magnitude +1.8, Mirfak is classified as a class F5 white supergiant. It radiates some 5,000 times the energy of our Sun and has a diameter 62 times larger. -
Wynyard Planetarium & Observatory a Autumn Observing Notes
Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. -
Interferometric Observations of the Hierarchical Triple System Algol
The Astrophysical Journal, 705:436–445, 2009 November 1 doi:10.1088/0004-637X/705/1/436 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INTERFEROMETRIC OBSERVATIONS OF THE HIERARCHICAL TRIPLE SYSTEM ALGOL Sz. Csizmadia1,2,9, T. Borkovits3, Zs. Paragi2,4,P.Abrah´ am´ 5, L. Szabados5, L. Mosoni6,9, L. Sturmann7, J. Sturmann7, C. Farrington7, H. A. McAlister7, T. A. ten Brummelaar7, N. H. Turner7, and P. Klagyivik8 1 Institute of Planetary Research, DLR Rutherfordstr. 2 D-12489 Berlin, Germany 2 MTA Research Group for Physical Geodesy and Geodynamics, H-1585 Budapest, P.O. Box 585, Hungary; [email protected] 3 Baja Astronomical Observatory, H-6500 Baja, Szegedi ut,´ Kt. 766, Hungary 4 Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo, Netherlands 5 Konkoly Observatory, H-1525 Budapest, P.O. Box 67, Hungary 6 Max-Planck-Institut fur¨ Astronomy, Konigstuhl¨ 17, D-69117 Heidelberg, Germany 7 Center for High Angular Resolution Astronomy, Georgia State University, P.O. Box 3969, Atlanta, GA 30302, USA 8 Department of Astronomy, Roland Eotv¨ os¨ University, H-1517 Budapest, P.O. Box 32, Hungary Received 2009 March 16; accepted 2009 September 11; published 2009 October 12 ABSTRACT Algol is a triple stellar system consisting of a close semidetached binary orbited by a third object. Due to the disputed spatial orientation of the close pair, the third body perturbation of this pair is a subject of much research. In this study, we determine the spatial orientation of the close pair orbital plane using the CHARA Array, a six-element optical/IR interferometer located on Mount Wilson, and state-of-the-art e-EVN interferometric techniques. -
Today Our Place in the Universe
Our place in the Universe , and other sources ully T , Bob Patterson, Donna Cox (NCSA), Data: Hipparcos, Brent iz: Stuart Levy V Tom Abel Today KIPAC The Birth, Life & Aftermath of the First Stars Tom Abel KIPAC/Stanford work with Matt Turk (Birth) John Wise (Life) Ralf Kähler (Scientific Visualization) Outline • Conception • A difficult birth • A surprising life • Remarkable consequences • Three-D radiation transport around point sources • Spatially & temporally structured adaptive cosmological & relativistic hydrodynamics • public version of enzo at: http://lca.ucsd.edu/portal/software/enzo Discovery by How we find things: Computer? 6 6.28 Conception Physics problem: • Initial Conditions: COBE/ACBAR/ Boomerang/WMAP/CfA/SDDS/ 2DF/CDMS/DAMA/Edelweiss/... + Theory: Constituents, Density Fluctuations, Thermal History • Physics: Gravity, MHD, Chemistry, Radiative Cooling, Radiation Transport, Cosmic Rays, Dust drift & cooling, Supernovae, Stellar evolution, etc. Ralf Kähler & Tom Abel for PBS • Transition from Linear to Non- Origins. Aired Dec 04 Linear: • Using patched based structured adaptive (space & time) mesh refinement Making a proto-star Simulation: Tom Abel (KIPAC/Stanford), Greg Bryan (Columbia), Mike Norman (UCSD) Viz: Ralf Kähler (AEI, ZIB, KIPAC), Bob Patterson, Stuart Levy, Donna Cox (NCSA), Tom Abel © “The Unfolding Universe” Discovery Channel 2002 Dynamic range ~1e12. Typically 3 solar mass dm particles > 30 levels of refinement > 8 cells per local Jeans Length tens of thousands of grid patches non-equilibrium chemistry dynamically load balanced RT effects above 1e12 cm-3 Zoom in MPI. 16 processors enough Turk & Abel in prep Note disks within disks happen routinely in turbulent collapses! Mass Scales? Kelvin Helmholtz time at ZAMS Abel, Bryan & Norman 2002 Recap First Stars are isolated and very massive • Theoretical uncertainty: 30 - 300 solar mass Many simulations with three different numerical techniques and a large range of numerical resolutions have converged to this result. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
The Planets for 1955 24 Eclipses, 1955 ------29 the Sky and Astronomical Phenomena Month by Month - - 30 Phenomena of Jupiter’S S a Te Llite S
THE OBSERVER’S HANDBOOK FOR 1955 PUBLISHED BY The Royal Astronomical Society of Canada C. A. C H A N T, E d ito r RUTH J. NORTHCOTT, A s s is t a n t E d ito r DAVID DUNLAP OBSERVATORY FORTY-SEVENTH YEAR OF PUBLICATION P r i c e 50 C e n t s TORONTO 13 Ross S t r e e t Printed for th e Society By the University of Toronto Press THE ROYAL ASTRONOMICAL SOCIETY OF CANADA The Society was incorporated in 1890 as The Astronomical and Physical Society of Toronto, assuming its present name in 1903. For many years the Toronto organization existed alone, but now the Society is national in extent, having active Centres in Montreal and Quebec, P.Q.; Ottawa, Toronto, Hamilton, London, and Windsor, Ontario; Winnipeg, Man.; Saskatoon, Sask.; Edmonton, Alta.; Vancouver and Victoria, B.C. As well as nearly 1000 members of these Canadian Centres, there are nearly 400 members not attached to any Centre, mostly resident in other nations, while some 200 additional institutions or persons are on the regular mailing list of our publications. The Society publishes a bi-monthly J o u r n a l and a yearly O b s e r v e r ’s H a n d b o o k . Single copies of the J o u r n a l are 50 cents, and of the H a n d b o o k , 50 cents. Membership is open to anyone interested in astronomy. Annual dues, $3.00; life membership, $40.00. -
Patrick Moore's Practical Astronomy Series
Patrick Moore’s Practical Astronomy Series Other Titles in this Series Telescopes and Techniques (2nd Edn.) Observing the Planets Chris Kitchin Peter T. Wlasuk The Art and Science of CCD Astronomy Light Pollution David Ratledge (Ed.) Bob Mizon The Observer’s Year Using the Meade ETX Patrick Moore Mike Weasner Seeing Stars Practical Amateur Spectroscopy Chris Kitchin and Robert W. Forrest Stephen F. Tonkin (Ed.) Photo-guide to the Constellations More Small Astronomical Observatories Chris Kitchin Patrick Moore (Ed.) The Sun in Eclipse Observer’s Guide to Stellar Evolution Michael Maunder and Patrick Moore Mike Inglis Software and Data for Practical Astronomers How to Observe the Sun Safely David Ratledge Lee Macdonald Amateur Telescope Making The Practical Astronomer’s Deep-Sky Stephen F. Tonkin (Ed.) Companion Observing Meteors, Comets, Supernovae and Jess K. Gilmour other Transient Phenomena Observing Comets Neil Bone Nick James and Gerald North Astronomical Equipment for Amateurs Observing Variable Stars Martin Mobberley Gerry A. Good Transit: When Planets Cross the Sun Visual Astronomy in the Suburbs Michael Maunder and Patrick Moore Antony Cooke Practical Astrophotography Astronomy of the Milky Way: The Observer’s Jeffrey R. Charles Guide to the Northern and Southern Milky Way Observing the Moon (2 volumes) Peter T. Wlasuk Mike Inglis Deep-Sky Observing The NexStar User Guide Steven R. Coe Michael W. Swanson AstroFAQs Observing Binary and Double Stars Stephen F. Tonkin Bob Argyle (Ed.) The Deep-Sky Observer’s Year Navigating the Night Sky Grant Privett and Paul Parsons Guilherme de Almeida Field Guide to the Deep Sky Objects The New Amateur Astronomer Mike Inglis Martin Mobberley Choosing and Using a Schmidt-Cassegrain Care of Astronomical Telescopes and Telescope Accessories Rod Mollise M. -
Download This Article in PDF Format
A&A 587, A30 (2016) Astronomy DOI: 10.1051/0004-6361/201526623 & c ESO 2016 Astrophysics Search for systemic mass loss in Algols with bow shocks A. Mayer1, R. Deschamps2,3, and A. Jorissen2 1 University of Vienna, Department of Astrophysics, Sternwartestraße 77, 1180 Wien, Austria e-mail: [email protected] 2 Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Av. F. Roosevelt 50, 1050 Brussels, Belgium 3 European Southern Observatory, Alonso de Cordova 3107, 19001 Casilla, Santiago, Chile Received 28 May 2015 / Accepted 24 December 2015 ABSTRACT Aims. Various studies indicate that interacting binary stars of Algol type evolve non-conservatively. However, direct detections of systemic mass loss in Algols have been scarce so far. We study the systemic mass loss in Algols by looking for the presence of infrared excesses originating from the thermal emission of dust grains, which is linked to the presence of a stellar wind. Methods. In contrast to previous studies, we make use of the fact that stellar and interstellar material is piled up at the edge of the astrosphere where the stellar wind interacts with the interstellar medium. We analyse WISE W3 12 μm and WISE W4 22 μmdataof Algol-type binary Be and B[e] stars and the properties of their bow shocks. From the stand-off distance of the bow shock we are able to determine the mass-loss rate of the binary system. Results. Although the velocities of the stars with respect to the interstellar medium are quite low, we find bow shocks present in two systems, namely π Aqr, and ϕ Per; a third system, CX Dra, shows a more irregular circumstellar environment morphology which might somehow be related to systemic mass loss. -
GTO Keypad Manual, V5.001
ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN! -
December 2019 BRAS Newsletter
A Monthly Meeting December 11th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Annual Christmas Potluck, and election of officers. What's In This Issue? President’s Message Secretary's Summary Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner – The Green Odyssey Messages from the HRPO Friday Night Lecture Series Science Academy Solar Viewing Stem Expansion Transit of Murcury Edge of Night Natural Sky Conference Observing Notes: Perseus – Rescuer Of Andromeda, or the Hero & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 25 December 2019 President’s Message I would like to thank everyone for having me as your president for the last two years . I hope you have enjoyed the past two year as much as I did. We had our first Members Only Observing Night (MOON) at HRPO on Sunday, 29 November,. New officers nominated for next year: Scott Cadwallader for President, Coy Wagoner for Vice- President, Thomas Halligan for Secretary, and Trey Anding for Treasurer. Of course, the nominations are still open. If you wish to be an officer or know of a fellow member who would make a good officer contact John Nagle, Merrill Hess, or Craig Brenden. We will hold our annual Baton Rouge “Gastronomical” Society Christmas holiday feast potluck and officer elections on Monday, December 9th at 7PM at HRPO. I look forward to seeing you all there. ALCon 2022 Bid Preparation and Planning Committee: We’ll meet again on December 14 at 3:00.pm at Coffee Call, 3132 College Dr F, Baton Rouge, LA 70808, UPCOMING BRAS MEETINGS: Light Pollution Committee - HRPO, Wednesday December 4th, 6:15 P.M.