Orchid Research Newsletter 65 (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Protocols for Program Outcomes
Monitoring and Reporting Framework: Technical Protocols for Program Outcomes Melbourne Strategic Assessment © The State of Victoria Department of Environment, Land, Water and Planning 2015 This work is licensed under a Creative Commons Attribution 3.0 Australia licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, the Victorian Government logo and the Department of Environment, Land, Water and Planning logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en ISBN 978-1-74146-577-8 Accessibility If you would like to receive this publication in an alternative format, please telephone the DELWP Customer Service Centre on 136186, email [email protected] or via the National Relay Service on 133 677 www.relayservice.com.au. This document is also available on the internet at www.delwp.vic.gov.au Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Contents Introduction 5 Context and scope 5 Monitoring Program Outcomes 5 Reporting on Program Outcomes 8 The composition, structure and function of Natural -
Orchidaceae, Diurideae) En Nouvelle-Calédonie
Diversité du genre Corybas Salisb. (Orchidaceae, Diurideae) en Nouvelle-Calédonie Edouard FARIA 17, rue Victor Hugo, F-70290 Champagney (France) [email protected] Publié le 30 décembre 2016 Faria E. 2016. — Diversité du genre Corybas Salisb. (Orchidaceae, Diurideae) en Nouvelle-Calédonie. Adansonia, sér. 3, 38 (2): 175-198. https://doi.org/10.5252/a2016n2a4 RÉSUMÉ La diversité du genre Corybas Salisb. en Nouvelle-Calédonie est abordée. Le concept de Corybas neoca- ledonicus (Schltr.) Schltr. est révisé et délimité, Corybas aconitifl orus Salisb. est signalé pour la première MOTS CLÉS fois en Nouvelle-Calédonie et trois nouveaux taxons sont décrits : C. echinulus E.Faria, sp. nov., off rant Nouvelle-Calédonie, Province sud, de petites fl eurs, inférieures au centimètre et au sépale dorsal coloré en damier, C. pignalii E.Faria, Mont Mou, sp. nov., la plus grande espèce, dotée d’un labelle aux larges lobes latéraux densément hispidulés et biodiversité, de deux gibbosités glabres à son plancher et C. × halleanus E.Faria, hybr. nat. nov., l’hybride naturel UICN, hybride naturel nouveau, entre ces deux nouvelles espèces. Une clé de détermination pour le genre en Nouvelle-Calédonie ainsi espèces nouvelles. que quelques recommandations pour la conservation de chaque taxon sont proposées. ABSTRACT Diversity in the genus Corybas Salisb. (Orchidaceae, Diurideae) in New Caledonia. Corybas Salisb. diversity in New Caledonia is reassessed, Corybas neocaledonicus (Schltr.) Schltr. con- cept is reviewed and delimited, C. aconitifl orus Salisb. is recorded for the fi rst time in New Caledonia KEY WORDS and three new taxa are described: C. echinulus E.Faria, sp. nov. with a small fl ower, less than one New Caledonia southern province, centimeter, and a dorsal sepal marked with checkerboard pattern, C. -
UV Reflectance but No Evidence for Colour Mimicry in a Putative Brood-Deceptive Orchid Corybas Cheesemanii
Current Zoology 60 (1): 104–113, 2014 UV reflectance but no evidence for colour mimicry in a putative brood-deceptive orchid Corybas cheesemanii M. M. KELLY, A. C. GASKETT* School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Abstract Rewardless orchids attract pollinators by food, sexual, and brood-site mimicry, but other forms of sensory deception may also operate. Helmet orchids (Corybas, Nematoceras and related genera) are often assumed to be brood-site deceivers that mimic the colours and scents of mushrooms to fool female fungus gnats (Mycetophilidae) into attempting oviposition and polli- nating flowers. We sampled spectral reflectances and volatile odours of an endemic terrestrial New Zealand orchid Corybas cheesemanii, and co-occurring wild mushrooms. The orchid is scentless to humans and SPME GC-MS analyses did not detect any odours, but more sensitive methods may be required. The orchids reflected strongly across all visible wavelengths (300700nm) with peaks in the UV (~320nm), yellow-green (500600 nm) and red regions (650700 nm), whereas mushrooms and surrounding leaf litter reflected predominantly red and no UV. Rather than mimicking mushrooms, these orchids may attract pollinators by exploiting insects’ strong sensory bias for UV. Modelling spectral reflectances into a categorical fly vision model and a generic tetrachromat vision model provided very different results, but neither suggest any mimicry of mushrooms. However, these models require further assessment and data on fly spectral sensitivity to red wavelengths is lacking – a problem given the predominance of red, fly-pollinated flowers worldwide [Current Zoology 60 (1): 104113, 2014]. Keywords Diptera, Colour space, Fly pollination, Orchidaceae, Spectral reflectance, Visual modelling Flowers typically attract pollinators by advertising in the Orchidaceae, in which approximately one-third of rewards such as food (Chittka and Thompson, 2001; species do not reward their pollinators (Jersáková et al., Raguso, 2004). -
Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice. -
Dendrobium Kingianum Bidwill Ex Lindl
Volume 24: 203–232 ELOPEA Publication date: 19 May 2021 T dx.doi.org/10.7751/telopea14806 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) A review of Dendrobium kingianum Bidwill ex Lindl. (Orchidaceae) with morphological and molecular- phylogenetic analyses Peter B. Adams1,2, Sheryl D. Lawson2, and Matthew A.M. Renner 3 1The University of Melbourne, School of BioSciences, Parkville 3010, Victoria 2National Herbarium of Victoria, Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne 3004, Victoria 3National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney 2000, New South Wales Author for correspondence: [email protected] Abstract Populations of Dendrobium kingianum Bidwill ex Lindl. from near Newcastle, New South Wales to southern and central west Queensland and encompassing all regions of the distribution were studied using field observations, morphometric analysis and nrITS sequences. A total of 281 individuals were used to construct regional descriptions of D. kingianum and 139 individuals were measured for 19 morphological characters, and similarities and differences among specimens summarised using multivariate statistical methods. Patterns of morphological variation within D. kingianum are consistent with a single variable species that expresses clinal variation, with short-growing plants in the south and taller plants in the northern part of the distribution. The nrITS gene tree suggests two subgroups within D. kingianum subsp. kingianum, one comprising northern, the other southern individuals, which may overlap in the vicinity of Dorrigo, New South Wales. The disjunct D. kingianum subsp. carnarvonense Peter B. -
PGR Diversity and Economic Utilization of Orchids
Int.J.Curr.Microbiol.App.Sci (2019) 8(10): 1865-1887 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 10 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.810.217 PGR Diversity and Economic Utilization of Orchids R. K. Pamarthi, R. Devadas, Raj Kumar, D. Rai, P. Kiran Babu, A. L. Meitei, L. C. De, S. Chakrabarthy, D. Barman and D. R. Singh* ICAR-NRC for Orchids, Pakyong, Sikkim, India ICAR-IARI, Kalimpong, West Bengal, India *Corresponding author ABSTRACT Orchids are one of the highly commercial crops in floriculture sector and are robustly exploited due to the high ornamental and economic value. ICAR-NRC for Orchids Pakyong, Sikkim, India, majorly focused on collection, characterization, K e yw or ds evaluation, conservation and utilization of genetic resources available in the country particularly in north-eastern region and developed a National repository of Orchids, Collection, Conservation, orchids. From 1996 to till date, several exploration programmes carried across the Utilization country and a total of 351 species under 94 genera was collected and conserved at Article Info this institute. Among the collections, 205 species were categorized as threatened species, followed by 90 species having breeding value, 87 species which are used Accepted: in traditional medicine, 77 species having fragrance and 11 species were used in 15 September 2019 traditional dietary. Successful DNA bank of 260 species was constructed for Available Online: 10 October 2019 future utilization in various research works. The collected orchid germplasm which includes native orchids was successfully utilized in breeding programme for development of novel varieties and hybrids. -
Orchids of Bhutan Susanne Masters Outlines the Species Found in This Small Country In
The orchids in habitat Orchid Review Susanne Masters Susanne Susanne Masters Susanne Orchids of Bhutan SuSanne MaSterS outlines the species found in this small country in the Himalayas, the diversity of their Coelogyne nitida was one of the orchids featured in Bhutan’s set of orchid stamps issued in 1976 habitats, and also discusses uses of Masters Susanne orchids locally and their conservation Epiphytic Dendrobium falconeri can be seen growing on trees near Dochula Pass Susanne Masters Susanne Dochula Pass is a gateway through the mountains when heading east from Butan’s capital, Thimphu. 108 chortens on the pass commemorate Butanese soldiers killed fighting Indian rebels in 2003 Galearis spathulata, prevoiusly Aorchis spathulata, grows on damp ground, in open spaces ➤ 96 June 2015 June 2015 97 The orchids in habitat Orchid Review HuTaNEsE ORCHIds Environmental protection A diversity of habitats and 4,000m, forests are home to Masters Susanne span the alphabet from Economic exploitation of Bhutan’s Bhutan is one of the smallest countries orchid species that flower from spring BAcampe to Zeuxine. In the natural resources has been tempered in asia, occupying 384,394sq km. It through to autumn. In the subtropical capital city, Thimphu, it is easy and by legislation that prioritizes preserv- is located in the eastern Himalayas, at zone, between 150m and 2,000m, inexpensive to buy excellent, English ation. In fact, the Constitution of the the intersection of two biogeographic there are tropical and subtropical language wildlife guides, written Kingdom of Bhutan states in article realms, the warm Indo-Malayan and forests, and grasslands, and orchid by Bhutanese people able to bring 5.1 that ‘Every Bhutanese is a trustee the temperate Palearctic. -
Genomic Diversity Guides Conservation Strategies Among Rare Terrestrial Orchid Species When Taxonomy Remains Uncertain
Annals of Botany Page 1 of 11 doi:10.1093/aob/mcx022, available online at https://academic.oup.com/aob Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain Collin W. Ahrens1,2,*, Megan A. Supple3, Nicola C. Aitken3, David J. Cantrill1, Justin O. Borevitz3 and Elizabeth A. James1 1Royal Botanic Gardens Victoria, Science Division, Melbourne, Victoria 3004, Australia, 2Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia and 3Australian National University, Research School of Biology, Centre of Excellence in Plant Energy Biology, Canberra, ACT 0200, Australia *For correspondence. E-mail [email protected] Received: 21 January 2017 Editorial decision: 30 January 2017 Accepted: 12 February 2017 Background and Aims Species are often used as the unit for conservation, but may not be suitable for species complexes where taxa are difficult to distinguish. Under such circumstances, it may be more appropriate to consider species groups or populations as evolutionarily significant units (ESUs). A population genomic approach was em- ployed to investigate the diversity within and among closely related species to create a more robust, lineage-specific conservation strategy for a nationally endangered terrestrial orchid and its relatives from south-eastern Australia. Methods Four putative species were sampled from a total of 16 populations in the Victorian Volcanic Plain (VVP) bioregion and one population of a sub-alpine outgroup in south-eastern Australia. Morphological measure- ments were taken in situ along with leaf material for genotyping by sequencing (GBS) and microsatellite analyses. Key Results Species could not be differentiated using morphological measurements. -
Plastome Structure and Adaptive Evolution of Calanthe S.L. Species
Plastome structure and adaptive evolution of Calanthe s.l. species Yanqiong Chen, Hui Zhong, Yating Zhu, Yuanzhen Huang, Shasha Wu, Zhongjian Liu, Siren Lan and Junwen Zhai Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China ABSTRACT Calanthe s.l. is the most diverse group in the tribe Collabieae (Orchidaceae), which are pantropical in distribution. Illumina sequencing followed by de novo assembly was used in this study, and the plastid genetic information of Calanthe s.l. was used to investigate the adaptive evolution of this taxon. Herein, the complete plastome of five Calanthe s.l. species (Calanthe davidii, Styloglossum lyroglossa, Preptanthe rubens, Cephalantheropsis obcordata, and Phaius tankervilliae) were determined, and the two other published plastome sequences of Calanthe s.l. were added for comparative analyses to examine the evolutionary pattern of the plastome in the alliance. The seven plastomes ranged from 150,181 bp (C. delavayi) to 159,014 bp (C. davidii) in length and were all mapped as circular structures. Except for the three ndh genes (ndhC, ndhF, and ndhK ) lost in C. delavayi, the remaining six species contain identical gene orders and numbers (115 gene). Nucleotide diversity was detected across the plastomes, and we screened 14 mutational hotspot regions, including 12 non-coding regions and two gene regions. For the adaptive evolution investigation, three species showed positive selected genes compared with others, C. -
Research Priorities and Future Directions in Conservation of Wild Orchids in Sri Lanka: a Review
Nature Conservation Research. Заповедная наука 2020. 5(Suppl.1): 34–45 https://dx.doi.org/10.24189/ncr.2020.029 RESEARCH PRIORITIES AND FUTURE DIRECTIONS IN CONSERVATION OF WILD ORCHIDS IN SRI LANKA: A REVIEW J. Dananjaya Kottawa-Arachchi1,*, R. Samantha Gunasekara2 1Tea Research Institute of Sri Lanka, Sri Lanka 2Lanka Nature Conservationists, Sri Lanka *e-mail: [email protected], [email protected] Received: 24.03.2020. Revised: 22.05.2020. Accepted: 29.05.2020. Together with Western Ghats, Sri Lanka is a biodiversity hotspot amongst the 35 regions known worldwide. Considering the Sri Lankan orchids, 70.6% of the orchid species, including 84% of the endemics, are categorised as threatened. The distribution of the family Orchidaceae is mostly correlated with the distribution pattern of the main bioclimatic zones which is governed by the amount and intensity of rainfall and altitude. Habitat deterioration and degradation, clearing of vegetation, intentional forest fires and spread of invasive alien species are significant threats to native species. Illegally collection and exporting of indigenous species has been another alarming issue in the past decades. Protection of native species, increased public awareness, enforcement of legislation and introduction of new propagation techniques would certainly bring a beneficial effect to the native orchid flora. Conduct awareness programs, strengthen existing laws, and reviewing the legal framework related to the native orchid flora could be vital for future conservation. Apart from the identification of new species and their distribution, future research on understanding soil chemical and physical parameters of terrestrial habitats, plant association of terrestrial orchids, phenology patterns and interactions of pollinators, associations with mycorrhiza, effect of invasive alien species and impact of climate change are highlighted. -
Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation. -
Jones Cross 2006 Index
AN INDEX AND ORCHID SPECIES CROSS REFERENCE TO JONES, D.L. (2006) A Complete Guide to Native Orchids of Australia including the Island Territories Compiled by David Gillingham - A.N.O.S. (Qld) Kabi Group Inc. Contents: Page 1: Contents Explanations/Introduction References General Comments Page 2: The Jones "Dendrobium Alliance" - Comments, Notes, Cross Index Page 3: The Jones "Bulbophyllum Alliance" - Cross Index Page 4: The Jones "Vanda Alliance" - Notes, Cross Index Page 5: The Jones "Miscellaneous Epiphytes" - Notes, Cross Index Page 6: The Dendrobium speciosum/Thelychiton speciosus Complex Explanations/Introduction: There can be little doubt that David Jones's (2006) book A Complete Guide to Native Orchids of Australia including the Island Territories provides probably the most current and most comprehensive coverage of Australia's native orchids available between one set of covers. However whether, and to what extent, the very substantial taxonomic restructure presented in the book is accepted by the professional botanical community, only time will tell. In the meantime, while many orchid growers will enthusiastically embrace these new taxonomies, many others will exercise their valid right to continue labelling their orchids using the older taxa, waiting for the dust to settle on the scientific debate. In either regard there are difficulties for users of Jones's book, in their attempt to relate many of these new taxa to older species descriptors. The individual species entries in the text provide no prior taxonomic information whatever; and the index is of limited assistance, and far from complete regarding taxonomic descriptors commonly used over the past decade or so.