The Strong Force: Two Calculations of Strong Interaction Phenomena

Total Page:16

File Type:pdf, Size:1020Kb

The Strong Force: Two Calculations of Strong Interaction Phenomena W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1996 The strong force: Two calculations of strong interaction phenomena Richard L. Kahler College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Physics Commons Recommended Citation Kahler, Richard L., "The strong force: Two calculations of strong interaction phenomena" (1996). Dissertations, Theses, and Masters Projects. Paper 1539623887. https://dx.doi.org/doi:10.21220/s2-zpsq-v546 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with with permission permission of the of copyright the copyright owner. owner.Further reproductionFurther reproduction prohibited without prohibited permission. without permission. THE STRONG FORCE, Two Calculations of Strong Interaction Phenomena A Dissertation Presented to The Faculty of the Department of Physics The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by Richard L. Kahler 1996 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9720975 Copyright 1997 by Kahler, Richard L. All rights reserved. UMI Microform 9720975 Copyright 1997, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPROVAL SHEET This dissertation is submitted, in partial fulfillment of the requirements for the degree of loctcjr of Philosophy] Richard kahler Approved, August 1996 . Dirk-iWi Carl Carlson Marc Sher J. W. van Orden ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DEDICATION I would like to dedicate this work to the young ladies of St. Margaret’s School, particularly my physics students past, present, and future, in the hope that they will be encouraged to participate in the greatest intellectual adventure of our culture, theoretical physics. And to another young lady, my grandmother, Helen Kahler, who celebrates her ninetieth birthday this month: Happy Birthday Grandma! Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. C ontents 1 Introduction 2 1.1 Background ..................................................................................................................... 2 1 .1 . 1 The Structure of M atter ................................................................................... 3 1.1.2 The Historical Perspective................................................................................ 5 1.2 The Nucleon-Nucleon Potential ...................................................................................... 30 1.3 The Standard Model .........................................................................................................32 2 Chiral Bag Model calculation of the Nucleon-Nucleon Potential 42 2.1 Introduction ........................................................................................................................ 42 2.1.1 One Boson Exchange M odels ............................................................................. 42 2.1.2 The Bag M odel ......................................................................................................50 2.2 Calculation of the OPE potential ................................................................................... 51 2.3 Calculation of the TPE Potential ...................................................................................58 2.4 Results..................................................................................................................................63 2.5 Discussion ........................................................................................................................... 71 3 Perturbative QCD calculation of the Pion Form Factor 75 3.1 Introduction ........................................................................................................................75 3.2 Calculation of Fv ...............................................................................................................78 3.3 Determination of F*. from the decay of J / r p .................................................................84 85 4 Conclusion 93 iv 4 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS I would like to gratefully and sincerely acknowledge the gracious support, helpful advice, and stimulating teaching of my advisor, Franz Gross, who has been very patient with my trying to teach high school and get a degree at the same time. Chapter two is based in large part on a set of unpublished notes of his which he has graciously shared with me. Chapter three is taken from a paper which was co-authored with Joe Milana and his contri­ bution and guiding hand is much in evidence. It was quite generous of him to share this project with me and I appreciate it very much. Finally, I would like to thank SURA and CEBAF for a generous fellowship which supported my work during 1993 and 1994. They provided office space and access to computing facilities, and most importantly, the opportunity to meet and learn from many outstanding physicists. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Tables 1.1 Properties of Low Mass Hadrons ....................................................................................18 1.2 Properties of the Quarks ...................................................................................................25 1.3 The Four Forces of Standard Model ..............................................................................33 1.4 The Leptons of the Standard M odel ..............................................................................33 2.1 Light M eso n s ..................................................................................................................... 46 2.2 Feynman rules for propagators in the static limit .......................................................... 59 2.3 Feynman rules for vertices in the static limit ..................................................................59 2.4 OBE couplings required to fit bag model potentials ...................................................... 70 2.5 OBE masses required to fit bag model potentials ........................................................... 70 vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Figures 1-1 J. J. Thompson’s cathode ray tube ............................................................................... 7 1-2 Measuring e/m of the electron ....................................................................................... 8 1-3 Rutherford’s alpha particle experiment............................................................................ 1 2 1-4 Alpha particles deflected by a nucleus .............................................................................. 14 1-5 Elementary Particles in 1963 ...................................................................................... 16 1-6 Low mass hadrons ................................................................................................................ 19 1-7 A geometrical representation of SU(3) symmetry [9] ......................................................21 1 - 8 Forming the product of
Recommended publications
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • THE STRONG INTERACTION by J
    MISN-0-280 THE STRONG INTERACTION by J. R. Christman 1. Abstract . 1 2. Readings . 1 THE STRONG INTERACTION 3. Description a. General E®ects, Range, Lifetimes, Conserved Quantities . 1 b. Hadron Exchange: Exchanged Mass & Interaction Time . 1 s 0 c. Charge Exchange . 2 d L u 4. Hadron States a. Virtual Particles: Necessity, Examples . 3 - s u - S d e b. Open- and Closed-Channel States . 3 d n c. Comparison of Virtual and Real Decays . 4 d e 5. Resonance Particles L0 a. Particles as Resonances . .4 b. Overview of Resonance Particles . .5 - c. Resonance-Particle Symbols . 6 - _ e S p p- _ 6. Particle Names n T Y n e a. Baryon Names; , . 6 b. Meson Names; G-Parity, T , Y . 6 c. Evolution of Names . .7 d. The Berkeley Particle Data Group Hadron Tables . 7 7. Hadron Structure a. All Hadrons: Possible Exchange Particles . 8 b. The Excited State Hypothesis . 8 c. Quarks as Hadron Constituents . 8 Acknowledgments. .8 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-280 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: The Strong Interaction OF PROJECT PHYSNET Author: J. R. Christman, Dept. of Physical Science, U. S. Coast Guard The goal of our project is to assist a network of educators and scientists in Academy, New London, CT transferring physics from one person to another. We support manuscript Version: 11/8/2001 Evaluation: Stage B1 processing and distribution, along with communication and information systems. We also work with employers to identify basic scienti¯c skills Length: 2 hr; 12 pages as well as physics topics that are needed in science and technology.
    [Show full text]
  • A Young Physicist's Guide to the Higgs Boson
    A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with..
    [Show full text]
  • Gravitational Interaction to One Loop in Effective Quantum Gravity A
    IT9700281 LABORATORI NAZIONALI Dl FRASCATI SIS - Pubblicazioni LNF-96/0S8 (P) ITHf 00 Z%i 31 ottobre 1996 gr-qc/9611018 Gravitational Interaction to one Loop in Effective Quantum Gravity A. Akhundov" S. Bellucci6 A. Shiekhcl "Universitat-Gesamthochschule Siegen, D-57076 Siegen, Germany, and Institute of Physics, Azerbaijan Academy of Sciences, pr. Azizbekova 33, AZ-370143 Baku, Azerbaijan 6INFN-Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati, Italy ^International Centre for Theoretical Physics, Strada Costiera 11, P.O. Box 586, 34014 Trieste, Italy Abstract We carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and couplings, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence our results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. We consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective lagrangian. We calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature. PACS.: 04.60.+n Submitted to Physics Letters B 1 E-mail addresses: [email protected], bellucciQlnf.infn.it, [email protected] — 2 1 Introduction A longstanding puzzle in quantum physics is how to marry the description of gravity with the field theory of elementary particles.
    [Show full text]
  • New Physics of Strong Interaction and Dark Universe
    universe Review New Physics of Strong Interaction and Dark Universe Vitaly Beylin 1 , Maxim Khlopov 1,2,3,* , Vladimir Kuksa 1 and Nikolay Volchanskiy 1,4 1 Institute of Physics, Southern Federal University, Stachki 194, 344090 Rostov on Don, Russia; [email protected] (V.B.); [email protected] (V.K.); [email protected] (N.V.) 2 CNRS, Astroparticule et Cosmologie, Université de Paris, F-75013 Paris, France 3 National Research Nuclear University “MEPHI” (Moscow State Engineering Physics Institute), 31 Kashirskoe Chaussee, 115409 Moscow, Russia 4 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia * Correspondence: [email protected]; Tel.:+33-676380567 Received: 18 September 2020; Accepted: 21 October 2020; Published: 26 October 2020 Abstract: The history of dark universe physics can be traced from processes in the very early universe to the modern dominance of dark matter and energy. Here, we review the possible nontrivial role of strong interactions in cosmological effects of new physics. In the case of ordinary QCD interaction, the existence of new stable colored particles such as new stable quarks leads to new exotic forms of matter, some of which can be candidates for dark matter. New QCD-like strong interactions lead to new stable composite candidates bound by QCD-like confinement. We put special emphasis on the effects of interaction between new stable hadrons and ordinary matter, formation of anomalous forms of cosmic rays and exotic forms of matter, like stable fractionally charged particles. The possible correlation of these effects with high energy neutrino and cosmic ray signatures opens the way to study new physics of strong interactions by its indirect multi-messenger astrophysical probes.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Aalborg Universitet Photon-Graviton Interaction and CPH Theory Javadi
    Aalborg Universitet Photon-Graviton Interaction and CPH Theory Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed Published in: The General Science Journal Publication date: 2016 Document Version Accepted author manuscript, peer reviewed version Link to publication from Aalborg University Citation for published version (APA): Javadi, H., Forouzbakhsh, F., & Daei Kasmaei, H. (2016). Photon-Graviton Interaction and CPH Theory. The General Science Journal. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: September 26, 2021 Photon-Graviton Interaction and CPH Theory H. Javadi 1, F. Forouzbakhsh 2 and H.Daei Kasmaei 3 1 Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran [email protected] 2 Department of Energy Technology,
    [Show full text]
  • MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
    Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.
    [Show full text]
  • Perturbative Improvement of Fermion Operators in Strong Interaction Physics
    UNIVERSITY OF CYPRUS PHYSICS DEPARTMENT Perturbative Improvement of Fermion Operators in Strong Interaction Physics M.Sc THESIS FOTOS STYLIANOU JUNE 2010 UNIVERSITY OF CYPRUS PHYSICS DEPARTMENT Perturbative Improvement of Fermion Operators in Strong Interaction Physics M.Sc Thesis Fotos Stylianou Advisor Prof. Haralambos Panagopoulos Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Physics Department at the University of Cyprus June 2010 Dedicated to my girlfriend Irene Acknowledgments The completion of this project would not have been possible without the support of family members, friends and colleagues. In this respect, I grasp this opportunity to acknowledge their contribution and to express my sincerest regards. Initially, I would like to express my deepest gratitude to my supervisor Prof. Haris Panagopoulos, for his knowledge sharing. Throughout the course of this project, his continuous guidance contributed both to my professional and personal development. I deeply appreciate his persistence in my participation in the lattice conference in China, which has been a once in a lifetime experience for me. I also take this opportunity to thank Prof. Haris Panagopoulos, for showing trust to my abilities and choosing to include me in research programs. Special thanks go to my colleague Dr. Martha Constantinou, for her uncondi- tional support, her experience and helpful ideas through difficult times. I would also like to thank my colleague Dr. Apostolos Skouroupathis, for the cooperation and his constructive calculations. For all the joyful lunch breaks as well as their meaningful advice, I would like to thank my fellow roommates Phanos, Savvas, Phillipos, Marios and Demetris.
    [Show full text]
  • Advanced Information on the Nobel Prize in Physics, 5 October 2004
    Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force.
    [Show full text]
  • Geometric Justification of the Fundamental Interaction Fields For
    S S symmetry Article Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces Vesselin G. Gueorguiev 1,2,* and Andre Maeder 3 1 Institute for Advanced Physical Studies, Sofia 1784, Bulgaria 2 Ronin Institute for Independent Scholarship, 127 Haddon Pl., Montclair, NJ 07043, USA 3 Geneva Observatory, University of Geneva, Chemin des Maillettes 51, CH-1290 Sauverny, Switzerland; [email protected] * Correspondence: [email protected] Abstract: Based on the principle of reparametrization invariance, the general structure of physically relevant classical matter systems is illuminated within the Lagrangian framework. In a straight- forward way, the matter Lagrangian contains background interaction fields, such as a 1-form field analogous to the electromagnetic vector potential and symmetric tensor for gravity. The geometric justification of the interaction field Lagrangians for the electromagnetic and gravitational interactions are emphasized. The generalization to E-dimensional extended objects (p-branes) embedded in a bulk space M is also discussed within the light of some familiar examples. The concept of fictitious accelerations due to un-proper time parametrization is introduced, and its implications are discussed. The framework naturally suggests new classical interaction fields beyond electromagnetism and gravity. The simplest model with such fields is analyzed and its relevance to dark matter and dark energy phenomena on large/cosmological scales is inferred. Unusual pathological behavior in the Newtonian limit is suggested to be a precursor of quantum effects and of inflation-like processes at microscopic scales. Citation: Gueorguiev, V.G.; Maeder, A. Geometric Justification of Keywords: diffeomorphism invariant systems; reparametrization-invariant matter systems; matter the Fundamental Interaction Fields lagrangian; homogeneous singular lagrangians; relativistic particle; string theory; extended objects; for the Classical Long-Range Forces.
    [Show full text]
  • Introduction to Gauge Theories and the Standard Model*
    INTRODUCTION TO GAUGE THEORIES AND THE STANDARD MODEL* B. de Wit Institute for Theoretical Physics P.O.B. 80.006, 3508 TA Utrecht The Netherlands Contents The action Feynman rules Photons Annihilation of spinless particles by electromagnetic interaction Gauge theory of U(1) Current conservation Conserved charges Nonabelian gauge fields Gauge invariant Lagrangians for spin-0 and spin-g Helds 10. The gauge field Lagrangian 11. Spontaneously broken symmetry 12. The Brout—Englert-Higgs mechanism 13. Massive SU (2) gauge Helds 14. The prototype model for SU (2) ® U(1) electroweak interactions The purpose of these lectures is to give an introduction to gauge theories and the standard model. Much of this material has also been covered in previous Cem Academic Training courses. This time I intend to start from section 5 and develop the conceptual basis of gauge theories in order to enable the construction of generic models. Subsequently spontaneous symmetry breaking is discussed and its relevance is explained for the renormalizability of theories with massive vector fields. Then we discuss the derivation of the standard model and its most conspicuous features. When time permits we will address some of the more practical questions that arise in the evaluation of quantum corrections to particle scattering and decay reactions. That material is not covered by these notes. CERN Academic Training Programme — 23-27 October 1995 OCR Output 1. The action Field theories are usually defined in terms of a Lagrangian, or an action. The action, which has the dimension of Planck’s constant 7i, and the Lagrangian are well-known concepts in classical mechanics.
    [Show full text]