New Physics of Strong Interaction and Dark Universe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Higgs Bosons and Supersymmetry
Higgs bosons and Supersymmetry 1. The Higgs mechanism in the Standard Model | The story so far | The SM Higgs boson at the LHC | Problems with the SM Higgs boson 2. Supersymmetry | Surpassing Poincar´e | Supersymmetry motivations | The MSSM 3. Conclusions & Summary D.J. Miller, Edinburgh, July 2, 2004 page 1 of 25 1. Electroweak Symmetry Breaking in the Standard Model 1. Electroweak Symmetry Breaking in the Standard Model Observation: Weak nuclear force mediated by W and Z bosons • M = 80:423 0:039GeV M = 91:1876 0:0021GeV W Z W couples only to left{handed fermions • Fermions have non-zero masses • Theory: We would like to describe electroweak physics by an SU(2) U(1) gauge theory. L ⊗ Y Left{handed fermions are SU(2) doublets Chiral theory ) right{handed fermions are SU(2) singlets f There are two problems with this, both concerning mass: gauge symmetry massless gauge bosons • SU(2) forbids m)( ¯ + ¯ ) terms massless fermions • L L R R L ) D.J. Miller, Edinburgh, July 2, 2004 page 2 of 25 1. Electroweak Symmetry Breaking in the Standard Model Higgs Mechanism Introduce new SU(2) doublet scalar field (φ) with potential V (φ) = λ φ 4 µ2 φ 2 j j − j j Minimum of the potential is not at zero 1 0 µ2 φ = with v = h i p2 v r λ Electroweak symmetry is broken Interactions with scalar field provide: Gauge boson masses • 1 1 2 2 MW = gv MZ = g + g0 v 2 2q Fermion masses • Y ¯ φ m = Y v=p2 f R L −! f f 4 degrees of freedom., 3 become longitudinal components of W and Z, one left over the Higgs boson D.J. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
THE STRONG INTERACTION by J
MISN-0-280 THE STRONG INTERACTION by J. R. Christman 1. Abstract . 1 2. Readings . 1 THE STRONG INTERACTION 3. Description a. General E®ects, Range, Lifetimes, Conserved Quantities . 1 b. Hadron Exchange: Exchanged Mass & Interaction Time . 1 s 0 c. Charge Exchange . 2 d L u 4. Hadron States a. Virtual Particles: Necessity, Examples . 3 - s u - S d e b. Open- and Closed-Channel States . 3 d n c. Comparison of Virtual and Real Decays . 4 d e 5. Resonance Particles L0 a. Particles as Resonances . .4 b. Overview of Resonance Particles . .5 - c. Resonance-Particle Symbols . 6 - _ e S p p- _ 6. Particle Names n T Y n e a. Baryon Names; , . 6 b. Meson Names; G-Parity, T , Y . 6 c. Evolution of Names . .7 d. The Berkeley Particle Data Group Hadron Tables . 7 7. Hadron Structure a. All Hadrons: Possible Exchange Particles . 8 b. The Excited State Hypothesis . 8 c. Quarks as Hadron Constituents . 8 Acknowledgments. .8 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-280 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: The Strong Interaction OF PROJECT PHYSNET Author: J. R. Christman, Dept. of Physical Science, U. S. Coast Guard The goal of our project is to assist a network of educators and scientists in Academy, New London, CT transferring physics from one person to another. We support manuscript Version: 11/8/2001 Evaluation: Stage B1 processing and distribution, along with communication and information systems. We also work with employers to identify basic scienti¯c skills Length: 2 hr; 12 pages as well as physics topics that are needed in science and technology. -
1 Standard Model: Successes and Problems
Searching for new particles at the Large Hadron Collider James Hirschauer (Fermi National Accelerator Laboratory) Sambamurti Memorial Lecture : August 7, 2017 Our current theory of the most fundamental laws of physics, known as the standard model (SM), works very well to explain many aspects of nature. Most recently, the Higgs boson, predicted to exist in the late 1960s, was discovered by the CMS and ATLAS collaborations at the Large Hadron Collider at CERN in 2012 [1] marking the first observation of the full spectrum of predicted SM particles. Despite the great success of this theory, there are several aspects of nature for which the SM description is completely lacking or unsatisfactory, including the identity of the astronomically observed dark matter and the mass of newly discovered Higgs boson. These and other apparent limitations of the SM motivate the search for new phenomena beyond the SM either directly at the LHC or indirectly with lower energy, high precision experiments. In these proceedings, the successes and some of the shortcomings of the SM are described, followed by a description of the methods and status of the search for new phenomena at the LHC, with some focus on supersymmetry (SUSY) [2], a specific theory of physics beyond the standard model (BSM). 1 Standard model: successes and problems The standard model of particle physics describes the interactions of fundamental matter particles (quarks and leptons) via the fundamental forces (mediated by the force carrying particles: the photon, gluon, and weak bosons). The Higgs boson, also a fundamental SM particle, plays a central role in the mechanism that determines the masses of the photon and weak bosons, as well as the rest of the standard model particles. -
Fully Strange Tetraquark Sss¯S¯ Spectrum and Possible Experimental Evidence
PHYSICAL REVIEW D 103, 016016 (2021) Fully strange tetraquark sss¯s¯ spectrum and possible experimental evidence † Feng-Xiao Liu ,1,2 Ming-Sheng Liu,1,2 Xian-Hui Zhong,1,2,* and Qiang Zhao3,4,2, 1Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China 2Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 4University of Chinese Academy of Sciences, Beijing 100049, China (Received 21 August 2020; accepted 5 January 2021; published 26 January 2021) In this work, we construct 36 tetraquark configurations for the 1S-, 1P-, and 2S-wave states, and make a prediction of the mass spectrum for the tetraquark sss¯s¯ system in the framework of a nonrelativistic potential quark model without the diquark-antidiquark approximation. The model parameters are well determined by our previous study of the strangeonium spectrum. We find that the resonances f0ð2200Þ and 2340 2218 2378 f2ð Þ may favor the assignments of ground states Tðsss¯s¯Þ0þþ ð Þ and Tðsss¯s¯Þ2þþ ð Þ, respectively, and the newly observed Xð2500Þ at BESIII may be a candidate of the lowest mass 1P-wave 0−þ state − 2481 0þþ 2440 Tðsss¯s¯Þ0 þ ð Þ. Signals for the other ground state Tðsss¯s¯Þ0þþ ð Þ may also have been observed in PC −− the ϕϕ invariant mass spectrum in J=ψ → γϕϕ at BESIII. The masses of the J ¼ 1 Tsss¯s¯ states are predicted to be in the range of ∼2.44–2.99 GeV, which indicates that the ϕð2170Þ resonance may not be a good candidate of the Tsss¯s¯ state. -
A Young Physicist's Guide to the Higgs Boson
A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with.. -
The Structure of Quarks and Leptons
The Structure of Quarks and Leptons They have been , considered the elementary particles ofmatter, but instead they may consist of still smaller entities confjned within a volume less than a thousandth the size of a proton by Haim Harari n the past 100 years the search for the the quark model that brought relief. In imagination: they suggest a way of I ultimate constituents of matter has the initial formulation of the model all building a complex world out of a few penetrated four layers of structure. hadrons could be explained as combina simple parts. All matter has been shown to consist of tions of just three kinds of quarks. atoms. The atom itself has been found Now it is the quarks and leptons Any theory of the elementary particles to have a dense nucleus surrounded by a themselves whose proliferation is begin fl. of matter must also take into ac cloud of electrons. The nucleus in turn ning to stir interest in the possibility of a count the forces that act between them has been broken down into its compo simpler-scheme. Whereas the original and the laws of nature that govern the nent protons and neutrons. More recent model had three quarks, there are now forces. Little would be gained in simpli ly it has become apparent that the pro thought to be at least 18, as well as six fying the spectrum of particles if the ton and the neutron are also composite leptons and a dozen other particles that number of forces and laws were thereby particles; they are made up of the small act as carriers of forces. -
Pos(LATTICE2014)106 ∗ [email protected] Speaker
Flavored tetraquark spectroscopy PoS(LATTICE2014)106 Andrea L. Guerrieri∗ Dipartimento di Fisica and INFN, Università di Roma ’Tor Vergata’ Via della Ricerca Scientifica 1, I-00133 Roma, Italy E-mail: [email protected] Mauro Papinutto, Alessandro Pilloni, Antonio D. Polosa Dipartimento di Fisica and INFN, ’Sapienza’ Università di Roma P.le Aldo Moro 5, I-00185 Roma, Italy Nazario Tantalo CERN, PH-TH, Geneva, Switzerland and Dipartimento di Fisica and INFN, Università di Roma ’Tor Vergata’ Via della Ricerca Scientifica 1, I-00133 Roma, Italy The recent confirmation of the charged charmonium like resonance Z(4430) by the LHCb ex- periment strongly suggests the existence of QCD multi quark bound states. Some preliminary results about hypothetical flavored tetraquark mesons are reported. Such states are particularly amenable to Lattice QCD studies as their interpolating operators do not overlap with those of ordinary hidden-charm mesons. The 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014 Columbia University New York, NY ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Flavored tetraquark spectroscopy Andrea L. Guerrieri 1. Introduction The recent confirmation of the charged resonant state Z(4430) by LHCb [1] strongly suggests the existence of genuine compact tetraquark mesons in the QCD spectrum. Among the many phenomenological models, it seems that only the diquark-antidiquark model in its type-II version can accomodate in a unified description the puzzling spectrum of the exotics [2]. Although diquark- antidiquark model has success in describing the observed exotic spectrum, it also predicts a number of unobserved exotic partners. -
Physics Letters B 816 (2021) 136227
Physics Letters B 816 (2021) 136227 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Scalar isoscalar mesons and the scalar glueball from radiative J/ψ decays ∗ A.V. Sarantsev a,b, I. Denisenko c, U. Thoma a, E. Klempt a, a Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Germany b NRC “Kurchatov Institute”, PNPI, Gatchina 188300, Russia c Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia a r t i c l e i n f o a b s t r a c t ¯ Article history: A coupled-channel analysis of BESIII data on radiative J/ψ decays into ππ, K K , ηη and ωφ has been Received 12 January 2021 performed. The partial-wave amplitude is constrained by a large number of further data. The analysis Received in revised form 16 March 2021 finds ten isoscalar scalar mesons. Their masses, widths and decay modes are determined. The scalar Accepted 16 March 2021 mesons are interpreted as mainly SU(3)-singlet and mainly octet states. Octet isoscalar scalar states Available online xxxx are observed with significant yields only in the 1500-2100 MeV mass region. Singlet scalar mesons are Editor: M. Doser produced over a wide mass range but their yield peaks in the same mass region. The peak is interpreted = ± +10 = ± +30 as scalar glueball. Its mass and width are determined to M 1865 25−30 MeV and 370 50−20 MeV, − its yield in radiative J/ψ decays to (5.8 ± 1.0) 10 3. © 2021 The Author(s). -
Discovery Potential for the Lhcb Fully Charm Tetraquark X(6900) State Via P¯P Annihilation Reaction
PHYSICAL REVIEW D 102, 116014 (2020) Discovery potential for the LHCb fully charm tetraquark Xð6900Þ state via pp¯ annihilation reaction † ‡ Xiao-Yun Wang,1,* Qing-Yong Lin,2, Hao Xu,3 Ya-Ping Xie,4 Yin Huang,5 and Xurong Chen4,6,7, 1Department of physics, Lanzhou University of Technology, Lanzhou 730050, China 2Department of Physics, Jimei University, Xiamen 361021, China 3Department of Applied Physics, School of Science, Northwestern Polytechnical University, Xi’an 710129, China 4Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 5School of Physical Science and Technology, Southwest Jiaotong University, Chendu 610031, China 6University of Chinese Academy of Sciences, Beijing 100049, China 7Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China (Received 2 August 2020; accepted 16 November 2020; published 18 December 2020) Inspired by the observation of the fully-charm tetraquark Xð6900Þ state at LHCb, the production of Xð6900Þ in pp¯ → J=ψJ=ψ reaction is studied within an effective Lagrangian approach and Breit-Wigner formula. The numerical results show that the cross section of Xð6900Þ at the c.m. energy of 6.9 GeV is much larger than that from the background contribution. Moreover, we estimate dozens of signal events can be detected by the D0 experiment, which indicates that searching for the Xð6900Þ via antiproton-proton scattering may be a very important and promising way. Therefore, related experiments are suggested to be carried out. DOI: 10.1103/PhysRevD.102.116014 I. INTRODUCTION Γ ¼ 168 Æ 33 Æ 69 MeV; ð2Þ In recent decades, more and more exotic hadron states have been observed [1]. -
MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules. -
Introduction to Supersymmetry
Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .