Antimicrobial and Cytotoxic Properties of the Ascidians Lissoclinum

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial and Cytotoxic Properties of the Ascidians Lissoclinum Original Article 65 Pharmaceutical Sciences and Research (PSR), 5(2), 2018, 65 - 71 Antimicrobial and Cytotoxic Properties of the Ascidians Lissoclinum patella, Oxycoryna fascicularis, Didemnum molle and Botryllus schlosseri Firmansyah Karim1, Masteria Yunovilsa Putra1, Tri Aryono Hadi1, Muhammad Abrar1 1Research Center for Oceanography, Indonesian Institute of Science ABSTRACT The aim of this research was to investigate antimicrobial and cytotoxic activity of Indonesian ascidians. Extracts prepared from the Indonesian ascidians namely Lissoclinum patella, Oxycoryna fascicularis, Didemnum molle and Botryllus schlosseri were assessed for anti- microbial and cytotoxic properties. Antibacterial activity of the extracts was tested against two Gram-positive bacteria, viz. Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 25923, and three Gram-negative bacteria, viz. Escherichia coli ATCC 25922, Vibrio cholerae ATCC 14035 and Pseudomonas aeruginosa ATCC 101454 using the disk ARTICLE HISTORY diffusion test. Antifungal activity was also tested againstCandida albicans ATCC 10231 and Received: October 2017 Aspergillus niger ATCC 16404. The minimum inhibitory concentrations (MICs) of potential Revised: November 2017 ascidian extracts were determined by the microdilution technique. Cytotoxicity of the extracts Accepted: June 2018 was assessed using the brine shrimp lethality bioassay. By comparing the inhibition zones in the disk diffusion test, the most active anti-bacterial activity against Gram-positive bacteria (S. aureus and B. subtilis) was found in the crude extracts of Oxycoryna fascicularis and Didemnum molle. Lissoclinum patella extract showed the highest activity against the Gram- negative bacteria E. coli and V. cholerae. The LC50 values of the crude extracts of Lissoclinum patella, Didemnum molle, Botryllus schlosseri, and Oxycoryna fascicularis were 74.3, 97.2, 114.7 and 132.9 μg/ml, respectively. In our study, the most promising species for anti- microbial and cytotoxic properties were Lissoclinum patella and Didemnum molle. Keywords : ascidians; antibacterial; antifungal; cytotoxicity *corresponding author Email: [email protected] INTRODUCTION 2003; Paul et al., 1990; Pisut & Pawlik, 2002)northern Sulawesi (Indonesia. While research efforts in bioactive The marine environment becomes a new focus of metabolites from marine ascidians are relatively recent, natural product drug discovery because of its relatively some chemical compounds from marine ascidians unexplored biodiversity compared to terrestrial are being evaluated as antitumor agents in preclinical environment (Malve, 2016). Available resources for and clinical trials. The most prominent example of an pharmacy can be found in the coral reef communities ascidian-derived drug is trabectedin or ecteinascidin such as algae, soft coral, sponge, ascidian, marine 743 (ET-743, Yondelis®), an alkaloid isolated from the microorganism, etc (Abdillah et al., 2015; Deepa et Caribbean ascidian Ecteinascidia turbinate. This is the al., 2017; Ramos et al., 2016). Bio-prospection of first marine-derived drug to be prescribed against soft marine natural products is one of the main interest of tissue carcinoma (Cuevas & Francesch, 2009; Gordon et pharmaceutical research such as antibacterial, antiviral, al., 2016; Menna, 2009). antifungal, cytotoxic activity (Castro-Carvalho et al., 2017). It has been demonstrated that 7% of the compounds isolated from ascidians are produced by symbiotic Sessile filter-feeding chordates known as ascidians are an bacteria, leaving the exact biosynthetic source of the important structural component of coral reef communities. remaining 93% of described metabolites unknown They populate marine ecosystems, whether in tropical, (Schmidt & Donia, 2010; Tianero et al., 2015). Many subtropical or temperate waters. Ascidians have been anti-microbial compounds have been isolated from the source of a wide variety of secondary metabolites, ascidians or ascidian-associated marine bacteria. some of which have physiological functions, mainly in Antibacterial activity was observed in brominated defense against their natural predators (Joullié et al., rubrolides isolated from an African ascidian Synoicum ISSN 2407-2354 66 Pharm Sci Res, Vol 5 No 2, 2018 Karim, et al. globosum (Sikorska, Parker-Nance, et al., 2012). and extracted three times with MeOH-CHCl3 (3:1) Peptidolipins, which are lipopeptide compounds at room temperature overnight. Following this, the produced by bacteria (Nocardia sp.) from the Florida crude extracts were concentrated by evaporation under Keys tunicate Trididemnum orbiculatum, showed reduced pressure. activity against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus Antimicrobial Assays aureus (MRSA) (Wyche et al., 2012). Disk Diffusion Assay In the present study, investigations were undertaken Antibacterial activity of the ascidian extracts was on marine invertebrates from coastal areas of the assessed using the agar disk diffusion test6. Five Indonesian archipelago, one of the world’s hotspots reference strains of human pathogens were used in the of marine biodiversity. We examined organic extracts assays, viz. two Gram-positive bacteria (Staphylococcus from some of the most abundant marine ascidians in the aureus ATCC 25923, Bacillus subtilis ATCC 6633) and Buton islands, Southeast Sulawesi, namely Lissoclinum three Gram-negative bacteria (Eschericia coli ATCC patella, Oxycoryna fascicularis, and Didemnum molle. 25922, Vibrio cholerae ATCC 14035, Pseudomonas We also investigated crude extracts of the ascidian aeruginosa ATCC 10145). The bacteria were grown Botryllus schlosseri collected from Selayar Island, South in liquid marine broth medium for 24 hours at room Sulawesi, for their anti-microbial and cytotoxic effects. temperature. The various ascidian extracts were adjusted Using the disk diffusion assay, the anti-bacterial activity to a concentration of 100 µg/mL in MeOH and 20 μl of of ascidian extracts was tested against five human each extract was pipetted on to a sterile paper disk (6 pathogenic bacteria, viz. Staphylococcus aureus (ATCC mm diameter) and allowed to dry. A reference control 25923), Bacillus subtilis (ATCC 6633), Eschericia coli paper disk carried 10 µg ampicillin in 20 μl MeOH. The (ATCC 25922), Vibrio cholerae (ATCC 14035), and paper discs were then placed on Mueller Hinton Agar Pseudomonas aeruginosa (ATCC 10145). Antifungal (Himedia) in a petri dish that had been inoculated with activity was similarly tested against Candida albicans the test bacteria (107 CFU/mL). The inhibition zone that (ATCC 10231) and Aspergillus niger (ATCC 16404). We appeared was recorded after 24 h incubation at 30°C. All also used the brine shrimp lethality bioassay to test for the assays were carried out in triplicate. cytotoxic activity. Candida albicans ATCC 10231 and Aspergillus niger MATERIALS AND METHODS ATCC 16404 were used as test fungi and inoculated on to Sabouraud Dextrose Agar (fungus) plates (104 CFU/ Ascidian Sample Collection and Extraction mL). The various ascidian extracts were adjusted to a Three ascidians, Lissoclinum patella, Oxycoryna concentration of 100 µg/mL and 20 μl of each extract was fascicularis, and Didennum molle, were collected in July pipetted on to 6 mm sterile paper disks. The discs were 2016 at a depth of 1-5 m by scuba diving from two sites allowed to dry and then placed on Sabouraud Dextrose of the Buton Islands, Southeast Sulawesi, Indonesia. The Agar. The inhibition zone was recorded after incubation ascidian Botryllus schlosseri was collected in June 2015 at room temperature (25 °C) for 48 h. Nystatin (30 mg/ at a depth of 5-10 m from Selayar Island, South Sulawesi disc) was used as the positive control and methanol as (Table 1). A voucher record of each specimen (ASC1- the solvent control. All the assays were performed in BT, ASC2-BT, ASC3-BT, ASC1-SLY) was deposited triplicate. at the Research Center for Oceanography of Indonesian Institute of Science. Each ascidian sample of 150-200 Microdilution Method g wet weight was cut into small pieces, homogenized The microdilution method was used to evaluate the Table 1. Ascidians Species and Place of Collection Voucher Specimen Sponge Species Depth (m) Place of Collection Number Lissoclinum patella 1-5 m Buton Island (Southeast ASC1-BT Sulawesi) Oxycoryna fascicularis 1-5 m Buton Island (Southeast ASC2-BT, Sulawesi) Didennum molle 1-5 m Buton Island (Southeast ASC3-BT Sulawesi) Botryllus schlosseri 5-10 m Selayar Island (South Su- ASC1-SLY lawesi) ISSN 2407-2354 Antimicrobial and Cytotoxic Properties Pharm Sci Res, Vol 5 No 2, 2018 67 minimum inhibitory concentration (MIC) of the ascidian Statistical Analysis extracts which displayed high activity (growth inhibition Measurements in all the experimental analyses were halos more than 9 mm.) Tests were performed in 96-well expressed as mean ± SD (n = 3). Results of the research round bottom sterile culture plates using the Infinite® were tested for statistical significance with One-way 200 PRO microplate reader (Tecan Austria GmbH). ANOVA. Differences were considered statistically The assay plates were filled with Mueller-Hinton broth significant at the P < 0.05 level. The statistical software medium (MHB) containing different concentrations package SPSS v.16 (SPSS Inc., Chicago, IL, USA) was (62.5, 125, 250, 500 µg/ml) of Lissoclinum patella used for the analysis. extract, Oxycoryna fascicularis extract, Didemnum molle extract, ampicillin
Recommended publications
  • Biologically Active Compounds from Pacific Tunicates;
    BIOLOGICALLY ACTIVE COMPOUNDS FROM PACIFIC TUNICATES by David Francis Sesin A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Medicinal Chemistry The University of Utah December 1986 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital Library THE UNIVERSITY OF UTAH GRADUATE SCHOOL SUPERVISORY COMMITTEE APPROVAL of a dissertation submitted by DAVID FRANCIS SESIN This dissertation has been read by each member of the following supervisory committee and by majority vote has been found to be satisfactory .. September 16. 1986 Chainnan:chris M. Ire'iand. Ph.D. September 16. 1986 Arthur D. Broom. Ph.D. September 16. 1986 ark E. Sanders. Ph.D. September 16, 1986 Martin P. Schweizer.�.D. September 16. 1986 David M. Grant. Ph.D. THE VI'IiIVERSITY OF UTAH GRADUATE SCHOOL FINAL READING APPRC)VAL To the Graduate Council of The University of Utah: I have read the dissertation of David Francis Sesin 10 Its final form and have found that (I) its format. citations. and bibliographic style are consistent and acceptable; (2) its illustrative materials including figures. tables. and charts are in place: and (3) the final manuscript is satisfactory to the Supervis­ ory Committee and is ready for submission to the Graduate School. Date Chris M. Ireland. Ph.D. Chairp(,rson. Supt'rvisory Commill('t, Approved for the Major Departmenl Arthur D. Broom. Ph.D. Chairman / Dean Approved ror lhe GradU,Ill' Coullcil Dean of The (;raduate Sdl()ol Copyright@ David Francis Sesin 1986 All Rights Reserved ABSTRACT Tunicates have proven to be a rich source of structurally-diverse metabolites covering a broad spectrum of biological activities.
    [Show full text]
  • Sea Squirt Symbionts! Or What I Did on My Summer Vacation… Leah Blasiak 2011 Microbial Diversity Course
    Sea Squirt Symbionts! Or what I did on my summer vacation… Leah Blasiak 2011 Microbial Diversity Course Abstract Microbial symbionts of tunicates (sea squirts) have been recognized for their capacity to produce novel bioactive compounds. However, little is known about most tunicate-associated microbial communities, even in the embryology model organism Ciona intestinalis. In this project I explored 3 local tunicate species (Ciona intestinalis, Molgula manhattensis, and Didemnum vexillum) to identify potential symbiotic bacteria. Tunicate-specific bacterial communities were observed for all three species and their tissue specific location was determined by CARD-FISH. Introduction Tunicates and other marine invertebrates are prolific sources of novel natural products for drug discovery (reviewed in Blunt, 2010). Many of these compounds are biosynthesized by a microbial symbiont of the animal, rather than produced by the animal itself (Schmidt, 2010). For example, the anti-cancer drug patellamide, originally isolated from the colonial ascidian Lissoclinum patella, is now known to be produced by an obligate cyanobacterial symbiont, Prochloron didemni (Schmidt, 2005). Research on such microbial symbionts has focused on their potential for overcoming the “supply problem.” Chemical synthesis of natural products is often challenging and expensive, and isolation of sufficient quantities of drug for clinical trials from wild sources may be impossible or environmentally costly. Culture of the microbial symbiont or heterologous expression of the biosynthetic genes offers a relatively economical solution. Although the microbial origin of many tunicate compounds is now well established, relatively little is known about the extent of such symbiotic associations in tunicates and their biological function. Tunicates (or sea squirts) present an interesting system in which to study bacterial/eukaryotic symbiosis as they are deep-branching members of the Phylum Chordata (Passamaneck, 2005 and Buchsbaum, 1948).
    [Show full text]
  • Bistratamides M and N, Oxazole-Thiazole Containing Cyclic Hexapeptides Isolated from Lissoclinum Bistratum Interaction of Zinc (II) with Bistratamide K
    marine drugs Article Bistratamides M and N, Oxazole-Thiazole Containing Cyclic Hexapeptides Isolated from Lissoclinum bistratum Interaction of Zinc (II) with Bistratamide K Carlos Urda 1, Rogelio Fernández 1, Jaime Rodríguez 2, Marta Pérez 1,*, Carlos Jiménez 2,* and Carmen Cuevas 1 1 Medicinal Chemistry Department, PharmaMar S. A., Polígono Industrial La Mina Norte, Avenida de los Reyes 1, 28770 Madrid, Spain; [email protected] (C.U.); [email protected] (R.F.); [email protected] (C.C.) 2 Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, 15071 A Coruña, Spain; [email protected] * Correspondence: [email protected] (M.P.); [email protected] (C.J.); Tel.: +34-981-167000 (C.J.); Fax: +34-981-167065 (C.J.) Received: 24 May 2017; Accepted: 26 June 2017; Published: 1 July 2017 Abstract: Two novel oxazole-thiazole containing cyclic hexapeptides, bistratamides M (1) and N (2) have been isolated from the marine ascidian Lissoclinum bistratum (L. bistratum) collected in Raja Ampat (Papua Bar, Indonesia). The planar structure of 1 and 2 was assigned on the basis of extensive 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configuration of the amino acid residues in 1 and 2 was determined by the application of the Marfey’s and advanced Marfey’s methods after ozonolysis followed by acid-catalyzed hydrolysis. The interaction between zinc (II) and the naturally known bistratamide K (3), a cyclic hexapeptide isolated from a different specimen of Lissoclinum bistratum, was monitored by 1H and 13C NMR. The results obtained are consistent with the proposal that these peptides are biosynthesized for binding to metal ions.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts
    marine drugs Review Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts Xiaoju Dou 1,4 and Bo Dong 1,2,3,* 1 Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; [email protected] 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China 4 College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa 850030, China * Correspondence: [email protected]; Tel.: +86-0532-82032732 Received: 29 October 2019; Accepted: 25 November 2019; Published: 28 November 2019 Abstract: Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials.
    [Show full text]
  • Révision Taxonomique Des Didemnidae Des Côtes De France (Ascidies Composées)
    RÉVISION TAXONOMIQUE DES DIDEMNIDAE DES CÔTES DE FRANCE (ASCIDIES COMPOSÉES). DESCRIPTION DES ESPÈCES DE BANYULS-SUR-MER. GENRE LISSOCLINUM. GENRE DIPLOSOMA Françoise Lafargue To cite this version: Françoise Lafargue. RÉVISION TAXONOMIQUE DES DIDEMNIDAE DES CÔTES DE FRANCE (ASCIDIES COMPOSÉES). DESCRIPTION DES ESPÈCES DE BANYULS-SUR-MER. GENRE LISSOCLINUM. GENRE DIPLOSOMA. Vie et Milieu , Observatoire Océanologique - Laboratoire Arago, 1975, pp.289-309. hal-02988198 HAL Id: hal-02988198 https://hal.archives-ouvertes.fr/hal-02988198 Submitted on 4 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vie Milieu, 1975, Vol. XXV, fasc. 2, sér. A, pp. 289-309. RÉVISION TAXONOMIQUE DES DIDEMNIDAE DES CÔTES DE FRANCE (ASCIDIES COMPOSÉES). DESCRIPTION DES ESPÈCES DE BANYULS-SUR-MER. GENRE LISSOCLINUM. GENRE DIPLOSOMA par Françoise LAFARGUE Laboratoire Arago, 66650 Banyuls-sur-Mer, France ABSTRACT A description is given of four species of the family Didemnidae, collected in the area of Banyuls-sur-Mer, which possess a straight sperm duct. The définition of thèse species also takes into account those features shown in spécimens collected from a larger geographical area (English Channel, Atlantic, "Western Mediterranean and Adriatic). The synonymies are given in a tabular form and have been esta- blished after examining type material from collections and from samples collected by diving on the type localities.
    [Show full text]
  • Patellamide a and C Biosynthesis by a Microcin-Like Pathway in Prochloron Didemni, the Cyanobacterial Symbiont of Lissoclinum Patella
    Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella Eric W. Schmidt*†, James T. Nelson*, David A. Rasko‡, Sebastian Sudek§, Jonathan A. Eisen‡, Margo G. Haygood§, and Jacques Ravel‡ *Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112; ‡The Institute for Genomic Research, Rockville, MD 20850; and §Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093 Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved April 7, 2005 (received for review February 18, 2005) Prochloron spp. are obligate cyanobacterial symbionts of many a project to sequence the genome of Prochloron didemni, isolated didemnid family ascidians. It has been proposed that the cyclic from the ascidian Lissoclinum patella. peptides of the patellamide class found in didemnid extracts are The patellamides and trunkamide (another didemnid product) synthesized by Prochloron spp., but studies in which host and are peptides that exemplify both the unique structural features and symbiont cells are separated and chemically analyzed to identify potent bioactivities of didemnid ascidian natural products (Fig. 1). the biosynthetic source have yielded inconclusive results. As part Both groups have clinical potential, because patellamides are of the Prochloron didemni sequencing project, we identified pa- typically moderately cytotoxic, and patellamides B, C, and D tellamide biosynthetic genes and confirmed their function by reportedly reverse multidrug resistance (15, 16), whereas trunka- heterologous expression of the whole pathway in Escherichia coli. mide was initially isolated because of specific and unusual activity The primary sequence of patellamides A and C is encoded on a against the multidrug-resistant UO-31 renal cell line (17).
    [Show full text]
  • First Fossil Record of Early Sarmatian Didemnid Ascidian Spicules
    First fossil record of Early Sarmatian didemnid ascidian spicules (Tunicata) from Moldova Keywords: Ascidiacea, Didemnidae, sea squirts, Sarmatian, Moldova ABSTRACT In the present study, numerous ascidian spicules are reported for the first time from the Lower Sarmatian Darabani-Mitoc Clays of Costeşti, north-western Moldova. The biological interpretation of the studied sclerites allowed the distinguishing of at least four genera (Polysyncraton, Lissoclinum, Trididemnum, Didemnum) within the Didemnidae family. Three other morphological types of spicules were classified as indeterminable didemnids. Most of the studied spicules are morphologically similar to spicules of recent shallow-water taxa from different parts of the world. The greater size of the studied spicules, compared to that of present-day didemnids, may suggest favourable physicochemical conditions within the Sarmatian Sea. The presence of these rather stenohaline tunicates that prefer normal salinity seems to confirm the latest hypotheses regarding mixo-mesohaline conditions (18–30 ‰) during the Early Sarmatian. PLAIN LANGUAGE SUMMARY For the first time the skeletal elements (spicules) of sessile filter feeding tunicates called sea squirts (or ascidians) were found in 13 million-year-old sediments of Moldova. When assigned the spicules to Recent taxa instead of using parataxonomical nomenclature, we were able to reconstruct that they all belong to family Didemnidae. Moreover, we were able to recognize four genera within this family: Polysyncraton, Lissoclinum, Trididemnum, and Didemnum. All the recognized spicules resemble the spicules of present-day extreemly shallow-water ascidians inhabiting depths not greater than 20 m. The presence of these rather stenohaline tunicates that prefer normal salinity seems to confirm the latest hypotheses regarding mixo-mesohaline conditions during the Early Sarmatian.
    [Show full text]
  • Metabarcoding Analysis on European Coastal Samples Reveals New
    www.nature.com/scientificreports OPEN Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity Received: 8 November 2017 David López-Escardó1, Jordi Paps2, Colomban de Vargas3,4, Ramon Massana5, Accepted: 5 June 2018 Iñaki Ruiz-Trillo 1,6,7 & Javier del Campo1,5 Published: xx xx xxxx Although animals are among the best studied organisms, we still lack a full description of their diversity, especially for microscopic taxa. This is partly due to the time-consuming and costly nature of surveying animal diversity through morphological and molecular studies of individual taxa. A powerful alternative is the use of high-throughput environmental sequencing, providing molecular data from all organisms sampled. We here address the unknown diversity of animal phyla in marine environments using an extensive dataset designed to assess eukaryotic ribosomal diversity among European coastal locations. A multi-phylum assessment of marine animal diversity that includes water column and sediments, oxic and anoxic environments, and both DNA and RNA templates, revealed a high percentage of novel 18S rRNA sequences in most phyla, suggesting that marine environments have not yet been fully sampled at a molecular level. This novelty is especially high among Platyhelminthes, Acoelomorpha, and Nematoda, which are well studied from a morphological perspective and abundant in benthic environments. We also identifed, based on molecular data, a potentially novel group of widespread tunicates. Moreover, we recovered a high number of reads for Ctenophora and Cnidaria in the smaller fractions suggesting their gametes might play a greater ecological role than previously suspected. Te animal kingdom is one of the best-studied branches of the tree of life1, with more than 1.5 million species described in around 35 diferent phyla2.
    [Show full text]
  • Species Specificity of Symbiosis and Secondary Metabolism in Ascidians
    The ISME Journal (2015) 9, 615–628 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Species specificity of symbiosis and secondary metabolism in ascidians Ma Diarey B Tianero1, Jason C Kwan1,2, Thomas P Wyche2, Angela P Presson3, Michael Koch4, Louis R Barrows4, Tim S Bugni2 and Eric W Schmidt1 1Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT, USA; 2School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA; 3Study Design and Biostatistics Center, Division of Epidemiology, University of Utah, Salt Lake City, UT, USA and 4Department of Pharmacology and Toxicology, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT, USA Ascidians contain abundant, diverse secondary metabolites, which are thought to serve a defensive role and which have been applied to drug discovery. It is known that bacteria in symbiosis with ascidians produce several of these metabolites, but very little is known about factors governing these ‘chemical symbioses’. To examine this phenomenon across a wide geographical and species scale, we performed bacterial and chemical analyses of 32 different ascidians, mostly from the didemnid family from Florida, Southern California and a broad expanse of the tropical Pacific Ocean. Bacterial diversity analysis showed that ascidian microbiomes are highly diverse, and this diversity does not correlate with geographical location or latitude. Within a subset of species, ascidian microbiomes are also stable over time (R ¼À0.037, P-value ¼ 0.499). Ascidian microbiomes and metabolomes contain species-specific and location-specific components. Location-specific bacteria are found in low abundance in the ascidians and mostly represent strains that are widespread.
    [Show full text]
  • And Transcriptomic-Profiling of the Host-Associated Cyanobacteria Prochloron and Acaryochloris Marina
    The ISME Journal (2018) 12, 556–567 © 2018 International Society for Microbial Ecology All rights reserved 1751-7362/18 www.nature.com/ismej ORIGINAL ARTICLE In situ metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria Prochloron and Acaryochloris marina Lars Behrendt1,2,3, Jean-Baptiste Raina4, Adrian Lutz5, Witold Kot6, Mads Albertsen7, Per Halkjær-Nielsen7, Søren J Sørensen3, Anthony WD Larkum4 and Michael Kühl2,4 1Department of Civil, Environmental and Geomatic Engineering, Swiss Federal Institute of Technology, Zürich, Switzerland; 2Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark; 3Microbiology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark; 4Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia; 5Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia; 6Department of Environmental Science—Enviromental Microbiology and Biotechnology, Aarhus University, Roskilde, Denmark and 7Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark The tropical ascidian Lissoclinum patella hosts two enigmatic cyanobacteria: (1) the photoendo- symbiont Prochloron spp., a producer of valuable bioactive compounds and (2) the chlorophyll-d containing Acaryochloris spp., residing in the near-infrared enriched underside of the animal. Despite numerous efforts, Prochloron remains uncultivable,
    [Show full text]
  • A New Record of Photosymbiotic Ascidians from Andaman & Nicobar
    Indian Journal of Geo Marine Sciences Vol.46 (11), November 2017, pp. 2393-2398 A new record of photosymbiotic ascidians from Andaman & Nicobar Islands, India Chinnathambi Stalin1, Gnanakkan Ananthan1* & Chelladurai Raghunathan2 1CAS in Marine Biology, Annamalai University, Parangipettai – 628 502, Tamil Nadu, India. 2Zoological Survey of India, Andaman and Nicobar Regional Centre, Port Blair – 744 102, India. [Email: [email protected]] Received 30 June 2015 ; revised 22 November 2016 Photosymbiotic ascidian fauna were surveyed in the intertidal and subtidal zone off Andaman and Nicobar Islands in India. A total of four species, Didemnum molle, Diplosoma simile, Lissoclinum patella and Trididemnum cyclops, were newly recorded in India. Clean waters in Andaman and Nicobar Islands probably provide a better environment for the growth of photosymbiotic ascidians and this area has a greater variety of these ascidians than the other areas in India and all of the observed species are potentially widely distributed in Coco-Channel, Andaman Sea, Great Channel and Bay of Bengal coral reefs. [Keywords: Photosymbiotic, Intertidal, Sub tidal, Islands, Coral reefs] Introduction Diplosoma simile (Sluiter, 1909), Lissoclinum A number of tropical species have patella (Gottscholdt, 1898) and Trididemnum obligate symbioses with chlorophyll-containing cyclops (Michaelsen, 1921) are widespread in cells. Supplementary tropical species at times Indian waters. Andaman and Nicobar Islands have have patches of non-obligate symbionts, a coastline of 900n km with 572 islands habitually Prochloron, on the surface1. This is an surrounded by Coco-Channel, Andaman Sea, exclusive symbiotic system from the viewpoints Great Channel and Bay of Bengal. The of evolution and ecology. Hence researchers of advantageous geographic position of this region biochemical and pharmaceutical science have also provides a compassionate atmosphere for a great paid particular attention to photosynthetic deal of marine organisms.
    [Show full text]