The Ecology and Behaviour of Ascidian Larvae

Total Page:16

File Type:pdf, Size:1020Kb

The Ecology and Behaviour of Ascidian Larvae FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1989 Taylor & Francis Group. This is an electronic published version of an article which may be cited as: Svane, I., & Young, C. M. (1989). The ecology and behaviour of ascidian larvae. Oceanography and Marine Biology: an Annual Review 27, 45-90. Oceanogr. Mar. BioI. Annu. Rev., 1989,27,45-90 Margaret Barnes, Ed. AberdeenUniversity Press • .. THE ECOLOGY AND BEHAVIOUR OF ~ ASCIDIAN LARVAE* I IB SVANE Kristineberg Marine Biological Station, Kristineberg 2130, S-450 34 Fiskebiickstil, Sweden and CRAIG M. YOUNGt Harbor Branch Oceanographic Institution, 5600 Old Dixie Highway, Fort Pierce, Florida 34946, USA ABSTRACT Recent studies of ascidian larval biology reveal a diversity of struc­ ture and behaviour not previously recognised. The introduction of direct methods for observing ascidian larvae in situ has provided important insights on larval behaviour, mortality, and dispersal not possible with the microscopic larvae Of most other marine invertebrates. In the context of these recent advances, this review considers the ecology of pelagic phases (egg, embryo, and larva) of the ascidian life cycle and relates aspects of reproduction and larval biology to the recruitment, abundance, and distribution of adult populations. INTRODUCTION The ascidian larva functions in site selection and dispersal while transporting adult rudiments between generations (Berrill, 1955, 1957; Millar, 1971; Cloney, 1987). Interest in the ecology of ascidian larvae has recently been stimulated by the introduction of new ideas and methods, most notably in situ observations of living larvae. The resulting advances justify a recon­ sideration of ascidian larval ecology. From an ecological standpoint, all pelagic phases of the ascidian life cycle (which may include eggs, embryos and larvae) influence adult populations. Thus, our definition oflarval ecology is broad; it includes reproductive processes leading to the production of gametes and larvae, as well as post-settlement consequences of larval pro­ . '!I' cesses. The literature on larval evolution as it relates to ascidian and chordate phylogeny is large, and will not be considered in the present paper. Reviews on ascidian biology dealing with aspects of reproduction and larval ecology have been published by Millar (1971), Berrill (1975), and Cloney (1987), and * Harbor Branch Contribution No. 678. t Order of authorship is alphabetical. 46 IB SVANE AND CRAIG M. YOUNG detailed reviews on ascidian metamorphosis have been presented by Cloney (1978, 1982). More recently, ascidian metamorphosis and larval locomotion have been treated as parts ofgeneral comprehensive reviews by Burke (1983) and Chia, Buckland-Nicks & Young (1984), respectively. It is our goal to bring together a scattered literature that comprises ascidian larval ecology. While emphasising ecological aspects of larval release, development, disper­ sal, behaviour, and settlement in relation to the distribution and abundance of adult populations, we also deal with reproductive, morphological, and developmental problems that help to elucidate aspects of ascidian larval ecology. REPRODUCTION, FERTILISATION, AND LARVAL ANATOMY MODES OF REPRODUCTION Ascidians may be either oviparous (typical of most solitary ascidians), ovo­ viviparous (typical ofmost compound ascidians), or viviparous (Fig I). True viviparity in which nutrients are exchanged between parent and embryo across a placenta-like structure is known to occur in only a single species, Hypsistozoafasmeriana (Brewin, 1959). Much ofthe earlier literature, includ­ ing the classic works ofBerrill (e.g. 1929, 1935, 1950) uses the term in reference to ovoviviparous species that retain embryos to hatching, but without appar­ ent transfer ofnutrients after ovulation. In oviparous forms, fertilisation and all subsequent developmental stages occur externally. Ascidian embryology and developmental biology have been the subjects of numerous important studies which have been reviewed by Cloney (1987) and Berrill (1975), and provided the theme for a recent symposium (Lambert, 1982). Conklin's (1905) study is still the classic description of cell lineage, although there has been a late resurgence ofcell lineage studies using modern fluorescent markers and immunological techniques (Whittaker, 1987). The most common developmental pattern (urodele development) terminates in the production of a swimming tadpole larva. Many mo1gulids and a few species in the family Styelidae (Pelonia corrugata and Polycarpa tinctor) undergo direct development, bypassing the larval stage completely (reviewed by Berrill, 1931; Millar, 1971; Young et aI., 1988). In ascidians, such direct development is known as anural development (Fig 2). As in many other kinds ofanimals, larval size is correlated with the degree of parental protection. Compound ascidians releasing fully developed larvae generally produce relatively few large larvae, whereas the eggs released by oviparous solitary ascidians are relatively more numerous and result in the production of much smaller, less differentiated tadpoles. In many invertebrates, there appears to be a correlation between adult size and brooding (Menge, 1975; Strathmann & Strathmann, 1982); within a given taxon, species with smaller individuals are more likely to brood than those with larger individuals. If we define an individual as a single zooid, not a colony, the relationship also seems to hold in ascidians. Accordingly, most colonial ascidians, having small zooids, brood relatively large complex larvae which develop from large eggs. Among solitary ascidians, brooders tend to THE ECOLOGY AND BEHAVIOUR OF ASCIDIAN LARVAE 47 _---j~~SMALL. -SIMPLE /'C",NG "DPOll ~ EMBRYOGENESIS SETTLEMENT I SOLITARY \ f EXTERNAL OVIPAROUS FERTILIZATION \ URODELE ""AMO"'""'" ~A~m ) ~ . JUVENILE ~ADULT~ LARGE. _-----,~., SHORT COMPLEX - ~t'LANKTONIC TADPOLE PERIOD ~ / SEffiEMENT lARVAl. RELEASE ~ METAMORPHOSIS / COLONIAL \ IN1ERNAL OVOVIVIPAROUS ~= EM""\N"" URODELE \ 0JOlOOID ~ INTHiNAL SEASONAL t REGRESSION ~ FERTIUZA~ (Of ZOOIOS ) BU>.ST~D'NG ~ ADULT ~ ____ COLON~ Fig I.-Generalised life cycles of typical solitary ascidians (top) and com­ .. pound ascidians (bottom). The diagrams incorporate characteristics ofmany species; not all aspects (e.g., fusion of colonies) are present in the life cycle of any given species. • have small bodies and produce relatively large eggs and larvae, whereas oviparous species often have relatively larger bodies and produce small eggs. Exceptions to this pattern are found in Boltenia echinata (Berrill, 1948b; Svane, 1983) and Corella inflata (Child, 1927; Lambert, Lambert & Abbott, 1981), both of which brood small eggs and produce small, simple tadpole larvae. At least one solitary ascidian, Polycarpa pomaria, is observed in the 48 IB SVANE AND CRAIG M. YOUNG SECRETION --------. AD~SlVE ATTACHMENT ~GENESIS ( SOLITARY \ EXTERNAl OVIPAROUS HATCHING FERTlllZAlION \ ANURAL ) ~A~AOOH~~ Fig 2.~Generalised life cycle of a molgulid ascidian with anural develop­ ment. laboratory to brood facultatively. It is normally oviparous and produces small eggs, but developing larvae have not been found in the atrial cavity in nature (Berrill, 1950). One explanation for the relationship between brooding and zooid size is that cost of reproduction prohibits formation of numerous eggs in small individuals (Vance, 1973; Chia, 1974; Menge, 1976; Heath, 1977; Strathmann & Strathmann, 1982). This explanation, however, begs the question of why very large colonies of genetically identical zooids invest their resources for sexual reproduction in few large tadpoles rather than numerous small ones. Strathmann, Strathmann & Emson (1984) have suggested that self-fer­ tilisation can lead to brooding in echinoderms. The same argument could be applied to ascidians if we knew the extent of self-fertilisation. Botryllus schlosseri, which brood their embryos in the atrial cavity, can be either semelparous or iteroparous (R. Grosberg, pers. comm.). When fully developed larvae are removed surgically from the atrial cavities of a semel­ parous colony, the brood is replaced, suggesting that reproduction is not constrained by energy limitations. When a brood is replaced with inert glass beads, the colony dies shortly thereafter, just as in a typical semelparous colony (R. Grosberg, pers. comm.). Based on these findings, Grosberg has suggested that large broods prevent water flow through the atrium, killing the parent colony before a second brood is formed. FERTILISATION Sperm morphology and the physiology of ascidian fertilisation have been reviewed by Lambert (1982). Ascidian sperm are among the simplest in the THE ECOLOGY AND BEHAVIOUR OF ASCIDIAN LARVAE 49 animal kingdom in that they lack a midpiece. The excentric mitochondrion lies next to the nucleus in the head region. Paradoxically, this simple sperm must penetrate a complex egg covering consisting of two layers of somatic cells and a chorion. Ascidian eggs have an effective block to polyspermy that appears to involve the egg membrane rather than the accessory cells or chorion (Lambert & Lambert, 1981). Moreover, many species demonstrate complete or partial blocks to self-fertilisation (Morgan, 1938, 1942). Sto­ lidobranchs tend to have a better block to self-fertility than phlebobranchs (Cloney, 1987). Many ascidiids and corellids are completely self-fertile. Sev­ eral species in the genus Ascidia demonstrate
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • Ascidian Cannibalism Correlates with Larval Behavior and Adult Distribution
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1988 Elsevier Ltd. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Young, C. M. (1988). Ascidian cannibalism correlates with larval behavior and adult distribution. Journal of Experimental Marine Biology and Ecology, 117(1), 9-26. doi:10.1016/0022-0981(88)90068-8 J. Exp. Mar. Bioi. £Col., 1988, Vol. 117, pp. 9-26 9 Elsevier JEM 01042 Ascidian cannibalism correlates with larval behavior and adult distribution Craig M. Young Department ofLarval Ecology. Harbor Branch Oceanographic Institution, Fort Pierce, Florida. U.S.A. (Received 24 March 1987; revision received 9 December 1987; accepted 22 December 1987) Abstract: In the San Juan Islands, Washington, solitary ascidians .that occur in dense monospecific aggregations demonstrate gregarious settlement as larvae, whereas species that occur as isolated individuals do not. All gregarious species reject their own eggs and larvae as food, but nongregarious species consume conspecific eggs and larvae. Moreover, the rejection mechanism is species-specific in some cases. Correla­ tion analysis suggests that species specificity of the rejection response has a basis in siphon diameter, egg density, and larval size, but not in number of oral tentacles, or tentacle branching. One strongly cannibalistic species, Corella inflata Huntsman, avoids consuming its own eggs and newly released tadpoles by a unique brooding mechanism that involves floating eggs, negative geotaxis after hatching, and adult orientation. Key words: Ascidian; Cannibalism; Distribution; Larva; Settlement behavior INTRODUCTION Many sessile marine invertebrates, including filter-feeders such as mussels, oysters, barnacles and ascidians, occur in discrete, dense aggregations.
    [Show full text]
  • MARINE TANK GUIDE About the Marine Tank
    HOME EDITION MARINE TANK GUIDE About the Marine Tank With almost 34,000 miles of coastline, Alaska’s intertidal zones, the shore areas exposed and covered by ocean tides, are home to a variety of plants and animals. The Anchorage Museum’s marine tank is home to Alaskan animals which live in the intertidal zone. The plants and animals in the Museum’s marine tank are collected under an Alaska Department of Fish and Game Aquatic Resource Permit during low tide at various beaches in Southcentral and Southeast Alaska. Visitors are asked not to touch the marine animals. Touching is stressful for the animals. A full- time animal care technician maintains the marine tank. Since the tank is not located next to the ocean, ocean water cannot be constantly pumped through it. This means special salt water is mixed at the Museum. The tank is also cleaned regularly. Equipment which keeps the water moving, clean, chilled to 43°F and constantly monitored. Contamination from human hands would impact the cleanliness of the water and potentially hurt the animals. A second tank is home to the Museum’s king crab, named King Louie, and black rockfish, named Sebastian. King crab and black rockfish of Alaska live in deeper waters than the intertidal zone creatures. This guide shares information about some of the Museum’s marine animals. When known, the Dena’ina word for an animal is included, recognizing the thousands of years of stewardship and knowledge of Indigeneous people of the Anchorage area and their language. The Dena’ina & Marine Species The geographically diverse Dena’ina lands span both inland and coastal areas, including Anchorage.
    [Show full text]
  • Ascidiacea, Phlebobranchia, Corellidae) in the Southern Hemisphere with Description of a New Species
    Zootaxa 3702 (2): 135–149 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3702.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:E972F88B-7981-4F38-803D-8F4F92FE6A37 The genus Corella (Ascidiacea, Phlebobranchia, Corellidae) in the Southern Hemisphere with description of a new species FRANÇOISE MONNIOT Muséum national d’Histoire naturelle, 57 rue Cuvier Fr 75231 Paris cedex 05, France.E-mail : [email protected] Abstract In the Southern Hemisphere the species attributed to Corella eumyota, Traustedt, 1882 are likely more varied than previously expected. This ascidian species was described from specimens collected at Valparaiso (Chile). Until now it was considered as a widely distributed species in the southern hemisphere. New collections from Chile and the Antarctic area have allowed to separate two species and re-establish Corella antarctica Sluiter, 1905 as a valid species (Alurralde 2013).A morphological re- examination of many specimens from the MNHN collections and especially recent surveys as CEAMARC and REVOLTA confirms that Antarctic specimens from the Antarctic Peninsula and Terre Adélie obviously differ from sub-Antarctic material more varied than previously estimated. On the other hand, C. eumyota invasive in Europe (Lambert 2004) has been shown to be the same as specimens from Chile, New Zealand and other sub-Antarctic regions. The present morphological study compares Corella from different regions and describes a new species Corella brewinae n. sp that is found living mixed with C. eumyota populations. Key words: Ascidians, Corellidae, Antarctic, Sub-Antarctic, new species Introduction The genus Corella was created by Hancock (1870) for Ascidia parallelogramma Müller, 1776.
    [Show full text]
  • Phlebobranchia of CTAW
    PHLEBOBRANCHIA PHLEBOBRANCHIA The suborder Phlebobranchia (order Enterogona) is characterised by having unpaired gonads present only on the same side of the body as the gut. As in Stolidobranchia, the body is not divided into different sections (such as thorax, abdomen and posterior abdomen) as the gut is folded up in the parietal body wall outside the pharynx and the large branchial sac occupies the whole length of the body. Usually the branchial sac (which is flat, without folds) has internal longitudinal vessels (although only vestiges remain in Agneziidae). Epicardial sacs do not persist in adults as they do in Aplousobranchia, although excretory vesicles (nephrocytes) embedded in the body wall over the gut are known to originate from the embryonic epicardium in Ascidiidae and Corellidae. Most phlebobranchs are solitary. However, Plurellidae Kott, 1973 includes both solitary and colonial forms, and Perophoridae Giard, 1872 are all colonial. Replication in Perophoridae is from ectodermal epithelium (rather than endodermal or mesodermal tissue the mesodermal tissue of the vascular stolon (rather than the endodermal tissue as in most as in Aplousobranchia). The process of replication has not been investigated in Plurellidae. Phlebobranch taxa occurring in Australia are documented in Kott (1985). Family level taxa are characterised principally by the size and form of the branchial sac including the number of branchial vessels and form of the stigmata; the form, size and position of the gonads; and the habit (colonial or solitary) of the taxon. Berrill (1950) has discussed problems in assessing the phylogeny of Perophoridae. References Berrill, N.J. (1950). The Tunicata. Ray Soc. Publs 133: 1–354 Giard, A.M.
    [Show full text]
  • Settlement Patterns in Ascidians Concerning Have Been Patchily
    Larval settlement behaviour in six gregarious ascidians in relation to adult 2 distribution 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Marc Rius1,2,*, George M. Branch2, Charles L. Griffiths1,2, Xavier Turon3 18 19 20 1 Centre for Invasion Biology, Zoology Department, University of Cape Town, 21 Rondebosch 7701, South Africa 22 23 2 Marine Biology Research Centre, Zoology Department, University of Cape Town, 24 Rondebosch 7701, South Africa 25 26 3 Center for Advanced Studies of Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, 27 17300 Blanes (Girona), Spain 28 29 30 31 32 33 34 * Corresponding author: Marc Rius 35 Centre for Invasion Biology, Zoology Department, University of Cape Town, 36 Rondebosch 7701, South Africa 37 E-mail: [email protected] 38 Telephone: +27 21 650 4939 39 Fax: +27 21 650 3301 40 41 Running head: Settlement patterns of gregarious ascidians 42 43 44 1 45 ABSTRACT 46 Settlement influences the distribution and abundance of many marine organisms, 47 although the relative roles of abiotic and biotic factors influencing settlement are poorly 48 understood. Species that aggregate often owe this to larval behaviour, and we ask 49 whether this predisposes ascidians to becoming invasive, by increasing their capacity to 50 maintain their populations. We explored the interactive effects of larval phototaxis and 51 geotaxis and conspecific adult extracts on settlement rates of a representative suite of 52 six species of ascidians that form aggregations in the field, including four aliens with 53 global distributions, and how they relate to adult habitat characteristics.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Ascidia Ceratodes (Huntsman, 1912) (Tunicata: Ascidiidae) Off the Northern Chilean Coast: New Record
    Latin American Journal of Aquatic Research, 47(1): Ascidia184-189 ,ceratodes 2019 in the northern Chilean coast 1 DOI: 10.3856/vol47-issue1-fulltext-21 Short Communication Ascidia ceratodes (Huntsman, 1912) (Tunicata: Ascidiidae) off the northern Chilean coast: new record 1 2 3 Juan I. Cañete , José L. López & Erika Mutschke 1Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias Universidad de Magallanes, Punta Arenas, Chile 2Departamento de Biología, Escuela de Medicina, Facultad de Ciencias de la Salud Universidad de Tarapacá, Arica, Chile 3Laboratorio Hidrobiología, Instituto de la Patagonia, Universidad de Magallanes, Punta Arenas, Chile Corresponding author: Juan I. Cañete ([email protected]) ABSTRACT. The ascidian fauna of northern Chile (18º to 25ºS) is poorly known. A member of the family Ascidiidae, Ascidia ceratodes (Huntsman, 1912), is reported in this study. We collected samples of A. ceratodes under intertidal boulders off the northern Chilean coast between Arica (18°S) and Iquique (20°S) (17 to 20°C; intertidal pool; <0.5 m depth; August, 2016). This finding verified a questionable record established by Van Name (1945) from Tocopilla (22ºS), northern Chile. This record extends the confirmed geographical distribution of A. ceratodes along of the eastern Pacific coast from British Columbia, Canada, to northern Chile. Keywords: Ascidia; warm temperate benthos; intertidal rocky shore; biodiversity; Southeastern Pacific The ascidian fauna of the Chilean coast comprises Recent surveys of ascidians biodiversity on the around 72 species. Over the last decade, our knowledge northern Chilean coast (Clarke & Castilla, 2000; about this taxon and its distribution in the Chilean coast Schories et al., 2015; Turon et al., 2016a, 2016b) did has improved (Clarke & Castilla, 2000; Sanamyan & not make any reference to members of the genus Schories, 2003; Lagger et al., 2009; Sanamyan et al., Ascidia.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Appendix 3 Marine Spcies Lists
    Appendix 3 Marine Species Lists with Abundance and Habitat Notes for Provincial Helliwell Park Marine Species at “Wall” at Flora Islet and Reef Marine Species at Norris Rocks Marine Species at Toby Islet Reef Marine Species at Maude Reef, Lambert Channel Habitats and Notes of Marine Species of Helliwell Provincial Park Helliwell Provincial Park Ecosystem Based Plan – March 2001 Marine Species at wall at Flora Islet and Reef Common Name Latin Name Abundance Notes Sponges Cloud sponge Aphrocallistes vastus Abundant, only local site occurance Numerous, only local site where Chimney sponge, Boot sponge Rhabdocalyptus dawsoni numerous Numerous, only local site where Chimney sponge, Boot sponge Staurocalyptus dowlingi numerous Scallop sponges Myxilla, Mycale Orange ball sponge Tethya californiana Fairly numerous Aggregated vase sponge Polymastia pacifica One sighting Hydroids Sea Fir Abietinaria sp. Corals Orange sea pen Ptilosarcus gurneyi Numerous Orange cup coral Balanophyllia elegans Abundant Zoanthids Epizoanthus scotinus Numerous Anemones Short plumose anemone Metridium senile Fairly numerous Giant plumose anemone Metridium gigantium Fairly numerous Aggregate green anemone Anthopleura elegantissima Abundant Tube-dwelling anemone Pachycerianthus fimbriatus Abundant Fairly numerous, only local site other Crimson anemone Cribrinopsis fernaldi than Toby Islet Swimming anemone Stomphia sp. Fairly numerous Jellyfish Water jellyfish Aequoria victoria Moon jellyfish Aurelia aurita Lion's mane jellyfish Cyanea capillata Particuilarly abundant
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Phylum Chordata Bateson, 1885
    Checklist of the Invertebrate Chordata and the Hemichordata of British Columbia (Tunicates and Acorn Worms) (August, 2009) by Aaron Baldwin, PhD Candidate School of Fisheries and Ocean Science University of Alaska, Fairbanks E-mail [email protected] The following checklist contains species in the chordate subphylum Tunicata and the acorn worms which have been listed as found in British Columbia. This list is certainly incomplete. The taxonomy follows that of the World Register of Marine Species (WoRMS database, www.marinespecies.org) and the Integrated Taxonomic Information System (ITIS, www.itis.gov). For several families and higher taxa I was unable to locate author's names so have left these blank. Common names are mainly from Lamb and Hanby (2005). Phylum Chordata Bateson, 1885 Subpylum Tunicata Class Ascidacea Nielsen, 1995 Order Entergona Suborder Aplousobranchia Family Cionidae Genus Ciona Fleming, 1822 Ciona savignyi Herdman, 1882 Family Clavelinidae Genus Clavelina Savigny, 1816 Clavelina huntsmani Van Name, 1931 Family Didemnidae Genus Didemnum Savigny, 1816 Didemnum carnulentum Ritter and Forsyth, 1917 Didenmum sp (Lamb and Hanby, 2005) INV Genus Diplosoma Macdonald, 1859 Diplosoma listerianum (Milne-Edwards, 1841) Genus Trididemnum delle Valle, 1881 Trididemnum alexi Lambert, 2005 Family Holozoidae Genus Distaplia delle Valle, 1881 Distaplia occidentalis Bancroft, 1899 Distaplia smithi Abbot and Trason, 1968 Family Polycitoridae Genus Cystodytes von Drasche, 1884 Cystodytes lobatus (Ritter, 1900) Genus Eudistoma Caullery, 1909
    [Show full text]