Higher Tides Pdf, Epub, Ebook

Total Page:16

File Type:pdf, Size:1020Kb

Higher Tides Pdf, Epub, Ebook HIGHER TIDES PDF, EPUB, EBOOK Jo Grafford | 122 pages | 26 Nov 2019 | JG Press | 9781944794439 | English | none Higher Tides PDF Book A perigean spring tide will be occurring. Apparis faux fur coats, puffer jackets and more marked down for Winter Sale. The height of mean high water neaps is the average, throughout a year as defined above, of the heights of two successive high waters during those periods approximately once a fortnight when the range of the tide is least. Recent flood trends must have a lot of these people wondering about tidal science. Environment Report. At the new and full moon phases, the combined gravitational pull of the sun and moon creates higher than average high tides and lower than average low tides. Cruise ships in central London. Select a region below to see when you may experience higher than normal tides from September and November San Diego tide times for January and February January and February Tide charts for San Diego: The tide charts below show the height, time and date of high and low tides for the next 30 days. Sunrise: AM. A diurnal tide is characterised by one high water tide and one low water tide per day. When the moon is at right angles to the earth and the sun in its orbit around the earth at the first and third quarter phases the gravitational attraction of the sun and moon almost cancel each other, causing lower than normal high tides and low tides that are higher than average. All heights are in metres above local chart datum. The Moon has a greater effect because, although it is much smaller than the Sun, it is much closer. PLA Charges. View the latest report summarizing high tide flooding events in and our high tide flooding outlook through April Typically the time between each successive high or low tide is 12 hours 25 minutes, this is half of one lunar day. Moonset: AM. Since the moon is orbiting in roughly the same direction as the earth is rotating, it takes an earth based observer another 50 minutes to get to a point where the moon is in about the same position overhead. Last Quarter. By Associated Press. Tidal Thames Environment and Heritage Conferences. When these bulges hit land and the water piles up, the land under the bulges experiences high tides, while the land not under the bulges experiences low tide. First Quarter AM. The Rights Holder for media is the person or group credited. The tide chart above shows the height and times of high tide and low tide for Virginia Beach, Virginia. The highest and lowest levels respectively which can be predicted to occur under average meteorological conditions and under any combination of astronomical conditions; these levels will not be reached every year. Sunset: PM. Earth may be a "blue planet," but 29 percent of our world's surface is covered by land. Georgia and most of the east coast of the United States experience semi-diurnal tides. The Pacific, Atlantic, and Indian oceans are known as the three major oceans. The barriers would likely be activated shortly after midnight, he said. What is the Tide? PLA Policies. Floods of this sort block roadways, harm infrastructure, and back up storm drains. The height of mean low water neaps is the average height obtained from the two successive low waters during the same periods, i. Virginia Beach, Virginia, Tide Times. Between and , the average frequency of "high tide flooding" across the United States increased by 50 percent. Tides can be used as a source of renewable energy. Once every 24 hours, Earth completes a full rotation around its axis. It's no coincidence that the ocean bulges are highest right over those two spots. Port Facilities and Services. Powered by Tide-Forecast. Environmental Guidance. Educational Resources in Your Inbox Join our community of educators and receive the latest information on National Geographic's resources for you and your students. Why are there summer tides in the fall? Higher Tides Writer The more that is known about how tides work and how they shape our coastlines, scientists say, the better prepared we will be for future changes in the oceans. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. Mean Sea Level is the average level of the sea surface over a long period, normally 19 years, or the average level which would exist in the absence of tides, i. Media Credits The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. Higher than normal high tides and lower than normal low tides will occur. Click to watch the flood tide in a mangrove forest. They must also be able to withstand crashing waves. Spring tides are characterised by higher high tides and lower low tides than the neap tides. Smaller tides, called neap tides, are formed when the earth, sun and moon form a right angle. Just over a year ago, Venice experienced its worst flooding in more than 50 years when the water reached 1. A Yes, there can be slight differences in the order of a few minutes for predicted times or up to 0. Environment Report. Even more news An eye on the ocean: how are waves formed? The Tidal Range. It focuses on more impactful, deeper floods at some locations and expands the outlook to about coastal locations. It often accompanies a new moon and when the moon is closest to the Earth. Moonrise: PM. Spring tides is a term which implies a welling up of the water and bears no relationship to the season of the year. When the moon is at right angles to the earth and the sun in its orbit around the earth at the first and third quarter phases the gravitational attraction of the sun and moon almost cancel each other, causing lower than normal high tides and low tides that are higher than average. The term has now come to be used in British Columbia and the United States as well. The moon revolves around the earth once every 29 days. However, there are different types of tides throughout the planet. Moonset: PM. The earth revolves around the sun once every days. January and February Tide charts for Virginia Beach: The tide charts below show the height, time and date of high and low tides for the next 30 days. Higher Tides Reviews The grey shading corresponds to nighttime hours between sunset and sunrise at San Diego. Tidal currents are the alternating horizontal movement of water associated with the rise and fall of the tide. This scientific expression means that there are two high tides as well as two low tides, but they can be very different from one another. The Dodge tide. Thames Bridges. If you wish to know more about the type of tides close to you, look it up on the site of the Naval Hydrographic and Oceanographic Service. While the ocean seems vast and unending, it is, in fact, finite; as the climate continues to change, we are learning more about those limits. Thom Litts Named Assistant Director. Coral bleaching detected off Kimberley coast. This story has been shared , times. Half the Oxygen we breath is produced in the Ocean. Click to watch the flood tide in a mangrove forest. The tidal range for any particular site is determined as the difference between the highest high tide and the Lowest Astronomical Tide LAT datum. Interactives Any interactives on this page can only be played while you are visiting our website. Marine Science Australia. Due to the topography of the northeast less low lying areas , high tides alone will not likely cause a significant impact on the coast unless accompanied by storm or strong winds. Living with Wildlife Resources. The moon revolves around the earth once every 29 days. The tidal levels are defined below. What License Do I Need? In the deep open ocean maximum tidal currents tend to parallel the high tide and minimum current speeds are associated with low tide. Lots More Information. The report is based on new, national flooding thresholds. January and February Tide charts for San Diego: The tide charts below show the height, time and date of high and low tides for the next 30 days. These occur along the Pacific Coast of the U. Why are there summer tides in the fall? Environment Report. During spring tides, the "high" tides are really high and the "low" tides are unusually low. This is when the moon is either new or full and closest to earth. However, there are different types of tides throughout the planet. Exploring London by River. When the sun, moon, and Earth are aligned at the time of the new or full moon , the solar tide has an additive effect to the lunar tide, creating extra- high high tides, and very low, low tides these are called spring tides. And it can also pull things "horizontally" — i. Today we're going to look at the physics and idiosyncrasies of planet Earth's tides. The tide cycle can be separated into two general types by the level that is reached at high and low tide. You want to learn more? Since the combined tidal force is decreased the high tides are lower and the low tides are higher than average. Name required. This alignment occurs at the new and full moon phases. To be the provider of geoscience data globally Navigation Main content Bottom links.
Recommended publications
  • Flood Mitigation and Sea Level Rise Adaptation for Kiawah Island: a Report
    Flood Mitigation and Sea Level Rise Adaptation for Kiawah Island: A Report Story and photographs by Jack Kotz unny day or nuisance flooding is a relatively new term for most of us. As we described in the Winter/Spring 2018 issue of Naturally Kiawah, it refers to temporary flooding of low-lying areas in the absence of any precipitation or storm impacts, usually occurring during new or full moons. The higher than usual tides during these lunar periods are called “spring Stides.” Several times a year, when the new or full moon is closest to the Earth (at its perigee), the gravitational force is even greater. This causes a “king tide” or a “perigean spring tide” that often results in nuisance flooding. 16 The problem for Charleston and other coastal cities, as annual flooding. He estimates that in the next 50 years flooding well as Kiawah Island, is that the number of nuisance floods will be experienced by 15 percent of the buildings in the area. is increasing. In the 1970s there were only about two days On Kiawah, we experienced 16–20 inches of rainfall over a each year with nuisance floods in Charleston, whereas in 2015 four-day period in the 2015 rain event, and at least 42 percent Charleston had 38 days of tidal flooding, and in 2016 there of the land area of the Island was flooded. During Hurricane were 50 days of flooding. It is predicted there could be as Matthew in 2016, the storm tide was 3.5 feet above MHHW many as 180 days of flooding per year in the 2040s.
    [Show full text]
  • Basics of Tide & Tide Forecasting
    Basics of tide & tide forecasting K. Srinivas Ocean State Forecast Lab (ISG) INCOIS, Hyderabad E-mail: [email protected] Phone: 040-23886057 040-23895017 Time and TIDE wait for none !!! Tides are an important physical forcing on the ocean particularly the coastal and estuarine seas ! Tide is the periodic rise and fall of a body of water due to gravitational interactions between the sun, moon and Earth Different positions of the sun and moon create two different types of tides: spring tides and neap tides Residual force is the difference between the gravitational force and centrifugal force They are very important for a proper understanding of : physics, chemistry, biology and geology of the coastal and estuarine waters The same location in the High Tide Low Tide Bay of Fundy at low and high tide. The maximum tidal range is approximately 17m The tidal range is the vertical difference between the low tide and the succeeding high tide. High Tide April 20, 2001 Low Tide September 30, 2002 Tidal extremes - The Bay of Fundy Vegetation is green, and water ranges from dark blue (deeper water) to light purple (shallow water) Tides at Halls Harbour on Nova Scotia's Bay of Fundy. This is a time lapse of the tidal rise and fall over a period of six and a half hours. There are two high tides every 25 hours. Presence of tide The most obvious indication of the presence of tide at any location (coastal or deep sea) is a characteristic, sinusoidal oscillation in the water level/ pressure records, containing either two main cycles per day (semidiurnal tides), one cycle per day (diurnal tides), or a combination of the two (mixed tides).
    [Show full text]
  • Development of an Updated Coastal Marine Area Boundary for the Auckland Region
    Development of an updated Coastal Marine Area boundary for the Auckland Region Prepared for Auckland Council July 2012 Authors/Contributors : Scott Stephens Sanjay Wadhwa For any information regarding this report please contact: Scott Stephens Coastal Scientist Coastal and Estuarine Processes +64-7-856 7026 [email protected] National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road Hillcrest, Hamilton 3216 PO Box 11115, Hillcrest Hamilton 3251 New Zealand Phone +64-7-856 7026 Fax +64-7-856 0151 NIWA Client Report No: HAM2012-111 Report date: July 2012 NIWA Project: ARC13233 © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client. Contents Executive summary .......................................................................................................................7 1 Introduction ........................................................................................................................9
    [Show full text]
  • What Is High Tide Flooding?
    https://oceanservice.noaa.gov/facts/high-tide-flooding.html%20 Examples of why Highway 80 going out to Tybee Islands floods and low-lying areas throughout Savannah where the coastal waters connect with elevations near 6 NAVD 1988. National Ocean ServiceNational Oceanic and Atmospheric AdministrationU.S. Department of Commerce SearchSearch National Ocean Service • HOMEHome 1. Facts 2. What is high tide flooding? What is high tide flooding? High tide flooding—flooding that leads to public inconveniences such as road closures — is increasingly common as coastal sea levels rise. High tide flooding events have increased around the U.S., but especially off the East Coast. To down load the image click on: | Download PDF As relative sea level increases, it no longer takes a strong storm or a hurricane to cause coastal flooding. Flooding now occurs with high tides in many locations due to climate- related sea level rise, land subsidence, and the loss of natural barriers. High tide flooding — which causes such public inconveniences as frequent road closures, overwhelmed storm drains and compromised infrastructure — has increased in the U.S. on average by about 50 percent since 20 years ago and 100 percent since 30 years ago. The effects of rising sea levels along most of the continental U.S. coastline are expected to become more noticeable and much more severe in the coming decades, likely more so than any other climate-change related factor. Any acceleration in sea level rise that is https://oceanservice.noaa.gov/facts/high-tide-flooding.html%20 predicted to occur this century will further intensify high tide flooding impacts over time, and will further reduce the time between flood events.
    [Show full text]
  • INTERNAL DOCUMENT Tide, Surge and Still Water Levels at Chesil Beach. Graham Alcock. Institute of Oceanographic Sciences Bidston
    INTERNAL DOCUMENT 2/0 Tide, Surge and Still Water Levels at Chesil Beach. Graham Alcock. Institute of Oceanographic Sciences Bidston Observatory Birkenhead. June 1984. [This document should not be cited in a published bibliography, and is supplied for the use of the recipient only]. INSTITUTE OF \ OCEANOGRAPHIC SCIENCES ''loi INSTITUTE OF OCEANOGRAPHIC SCIENCES Wormley, Godalming, Surrey GU8 5UB (042-879-4141) (Director: Dr. A. S. Laughton) Bidston Observatory, Crossway, Birkenhead, Taunton, Mersey side L43 7RA Somerset TA1 2DW (051-653-8633) (0823-86211) (Assistant Director: Dr. D. E. Cartwright) (Assistant Director: M.J. Tucker) \ Tide, Surge and Still Water Levels at Chesil Beach. Graham A1cock. Institute of Oceanographic Sciences Bidston Observatory Birkenhead. June 1984. Internal Document No. 210. "This information or advice is given in good faith and is believed to be correct, but no responsibility can be accepted by the Natural Environment Research Council for any consequential loss or damage arising from any use that is made of it." 1. Introduction C.H. Dobbie (CHD) are acting as Consulting Engineers on a project concerning shore processes and protection at Chesil Beach, in conjunction with the Department of Civil Engineering at Imperial College, Hydraulics Research Ltd., Wessex Water Authority and Ministry of Agriculture, Fisheries and Food. CHD need to supply HRS with estimates of still water level (i.e. tide + surge) during the flood events of 13 December 1978, 13 February 1979» 20 December 1983s and 26 January 1984. lOS were commissioned by CHD to provide and prepare a pressure gauge for deployment off of Chesil Beach, to process and analyse the record to yield tide and surge statistics, and to hindcast levels for the flood events.
    [Show full text]
  • Tide 1 Tides Are the Rise and Fall of Sea Levels Caused by the Combined
    Tide 1 Tide The Bay of Fundy at Hall's Harbour, The Bay of Fundy at Hall's Harbour, Nova Scotia during high tide Nova Scotia during low tide Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun and the rotation of the Earth. Most places in the ocean usually experience two high tides and two low tides each day (semidiurnal tide), but some locations experience only one high and one low tide each day (diurnal tide). The times and amplitude of the tides at the coast are influenced by the alignment of the Sun and Moon, by the pattern of tides in the deep ocean (see figure 4) and by the shape of the coastline and near-shore bathymetry.[1] [2] [3] Most coastal areas experience two high and two low tides per day. The gravitational effect of the Moon on the surface of the Earth is the same when it is directly overhead as when it is directly underfoot. The Moon orbits the Earth in the same direction the Earth rotates on its axis, so it takes slightly more than a day—about 24 hours and 50 minutes—for the Moon to return to the same location in the sky. During this time, it has passed overhead once and underfoot once, so in many places the period of strongest tidal forcing is 12 hours and 25 minutes. The high tides do not necessarily occur when the Moon is overhead or underfoot, but the period of the forcing still determines the time between high tides.
    [Show full text]
  • Coastal Resilience Forum 2/12/2020 Notes
    Coastal Resilience Forum 2/12/2020 Notes Dr. Cheryl Hapke, USF College of Marine Science A Unified Approach to Mapping Florida’s Coastal Waters: Process and Applications • Dr. Cheryl Hapke, Research Professor at the University of South Florida, College of Maine Science and coordinator of the Florida Coastal Mapping Program (FCMaP), will present on the data inventory, gap analysis, and statewide prioritization accomplished over the past 2 years by the program. FCMaP is a Federal-State partnership working to provide modern, uniform, high resolution seafloor data for all of Florida’s coastal waters in the next decade. Applications of the data include improving storm surge forecasts and coastal hazard assessments that are integral to sea level rise adaptation planning. Cheryl announced that the Coastal Mapping Summit will be held March 31, 2020 in St. Petersburg at FWRI. Registration ends February 25. https://www.eventbrite.com/e/fcmap-2020-florida-coastal-mapping-summit-tickets-90958245561 • The story map for the Florida Coastal Mapping Program can be found at arcg.is/1Of0OT0 • FCMaP has aligned their sea level rise adaptation planning guidance with the Florida Adaptation Planning Guidebook. Paul Fanelli, NOAA NOAA’s Inundation Dashboard • Paul Fanelli, Lead Oceanographer with the Data Monitoring and Assessment Team, at NOAA’s Center for Operational Oceanographic Products and Services will present the new National Ocean Service (NOS) Coastal Inundation Dashboard web mapping tool. This application pulls together historical flooding information at NOS long-term water level stations along with real-time water level data, which can be used to monitor coastal inundation with causes ranging from high tide flooding to storm surge resulting from tropical cyclones.
    [Show full text]
  • Technical Considerations for Use of Geospatial Data in Sea Level Change Mapping and Assessment
    NOAA NOS Technical Report Technical Considerations for Use of Geospatial Data in Sea Level Change Mapping and Assessment U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Silver Spring, Maryland September 2010 i This report prepared by: NOAA Center for Operational Oceanographic Products and Services Richard Edwing, Director www.tidesandcurrents.noaa.gov NOAA Coastal Services Center Margaret Davidson, Director www.csc.noaa.gov NOAA National Geodetic Survey Juliana Blackwell, Director www.ngs.noaa.gov NOAA Office of Coast Survey Captain John Lowell, Director www.nauticalcharts.noaa.gov Acknowledgments: A special thank you to the writing team: Allison Allen (lead), Stephen Gill, Doug Marcy, Maria Honeycutt, Jerry Mills, Mary Erickson, Edward Myers, Stephen White, Doug Graham, Joe Evjen, Jeff Olson, Jack Riley, Carolyn Lindley, Chris Zervas, William Sweet, Lori Fenstermacher, Dru Smith. And to those who reviewed the document: W. Michael Gibson, Gretchen Imahori, Paul Scholz, Mary Culver, Jeff Payne. Technical editing by Helen Worthington, NOAA Center for Operational Oceanographic Products and Services. ii Table of Contents List of Figures ............................................................................................................... v Executive Summary ..................................................................................................... ix Chapter 1.0 Introduction ........................................................................................... 1 Chapter
    [Show full text]
  • PASI Tide Lecture
    The Importance of Tides Important for commerce and science for thousands of years • Tidal heights are necessary for navigation. • Tides affect mixing, stratification and, as a result biological activity. • Tides produce strong currents, up to 5m/s in coastal waters • Tidal currents generate internal waves over various topographies. • The Earth's crust “bends” under tidal forces. • Tides influence the orbits of satellites. • Tidal forces are important in solar and galactic dynamics. The Nature of Tides “The truth is, the word "tide" as used by sailors at sea means horizontal motion of the water; but when used by landsmen or sailors in port, it means vertical motion of the water.” “One of the most interesting points of tidal theory is the determination of the currents by which the rise and fall is produced, and so far the sailor's idea of what is most noteworthy as to tidal motion is correct: because before there can be a rise and fall of the water anywhere it must come from some other place, and the water cannot pass from place to place without moving horizontally, or nearly horizontally, through a great distance. Thus the primary phenomenon of the tides is after all the tidal current; …” The Tides, Sir William Thomson (Lord Kelvin) – 1882, Evening Lecture To The British Association TIDAL HYDRODYNAMICS AND MODELING Dr. Cheryl Ann Blain Naval Research Laboratory Stennis Space Center, MS, USA [email protected] Pan-American Studies Institute, PASI Universidad Técnica Federico Santa María, 2–13 January, 2013 — Valparaíso, Chile
    [Show full text]
  • Perigean Spring Tides Tide Predictions, You Coincide with a Major Can Call the NOS Office Storm and Storm Surge
    Phone: (508) 289-2398 • Fax: (508) 457-2172 • E-mail: [email protected] • Internet: http:/j \\1\vw.whoi.edu/ seagrant Sea Grant Program, Woods Hole Oceanographic Institution, MS#2, Woods Hole, MA 02543 Perigean Storm waves with storm surge Spring Tides and neap high tide Predicting Potential Disasters: How Tidal Information May Save You From a Coastal Crisis The memorable blizzard ofFebruary, 1978, caused coastal flooding and $500 Storm waves with storm surge million in damages to Massachusetts and perigean spring tide alone, much of the loss to coastal prop­ erties. The storm began a few hours after the moon was in perigee (closest to the earth) on February 6, and the day before a new moon. The property damage resulted not only from the severity of the storm and its accompanying storm surge, but also from the extreme high water caused by the nearly coincident new moon tide, or "spring tide," and a perigean tide. Though meteorological conditions, Perigetm Spring Tides occurs when the moon is closest to the such as those that produced the Blizzard The term "spring tide" does not refer earth .. The moon's orbit around the of'78, are predictable only days or to the season, but rather to the higher earth is elliptical rather than circular, hours in advance, astronomical high high tides and lower low tides which which means that the distance between tides are predictable centuries in ad­ occur at new and full moons. At new earth and moon is always changing. vance. If you are a coastal property and full moons, the sun, earth and moon Perigee refers to the time when the owner in Massachusetts, or a boat are aligned such that the pull of the sun moon and the earth are closest to one owner, you may want to note dates on on the oceans adds to the pull of the another.
    [Show full text]
  • Community Vulnerability to Elevated Sea Level and Coastal Tsunami Events in Otago
    Community vulnerability to elevated sea level and coastal tsunami events in Otago Otago Regional Council Private Bag 1954, 70 Stafford St, Dunedin 9054 Phone 03 474 0827 Fax 03 479 0015 Freephone 0800 474 082 www.orc.govt.nz © Copyright for this publication is held by the Otago Regional Council. This publication may be reproduced in whole or in part provided the source is fully and clearly acknowledged. ISBN: 978 0 478 37630 2 Published July 2012 Prepared by Michael Goldsmith, Manager Natural Hazards, Otago Regional Council Community vulnerability to elevated sea level and coastal tsunami events in Otago i Executive summary The Otago coastline extends 480km from Chaslands in the south to the mouth of the Waitaki River in the north. Approximately 124,000 people (64% of Otago’s population) live within five kilometres of this coastline. A number of the communities situated along the coast have a level of hazard exposure to elevated sea level (or storm surge) and tsunami events. This report assesses the vulnerability (rather than the risk) 1 of these coastal communities to these hazards. The report draws on tsunami and storm surge modelling undertaken by National Institute of Water and Atmosphere (NIWA) for the Otago Regional Council (ORC) in 2007/08, coastal topography data and local knowledge of each community. This information has been used to assess how people and the communities in which they live would be affected during credible, high magnitude tsunami and elevated sea level events. It is intended that this information will: • increase community awareness of elevated sea level and tsunami hazard • inform decision making on the development of warning systems and evacuation plans • assist with the selection of land-use planning and development controls • increase the resilience of infrastructure and utilities (‘lifelines’).
    [Show full text]
  • Climate: Opportunities for Improving Engagement Between NOAA and the US National Security Community
    Climate: Opportunities for Improving Engagement Between NOAA and the US National Security Community Rachael Jonassen and Jeremey Alcorn Climate: Opportunities for Improving Engagement Between NOAA and the US National Security Community Rachael Jonassen and Jeremey Alcorn Copyright 2012 by LMI All rights reserved. Published by LMI, which is a 501(c)(3) not-for-profit corporation. This publication advances LMI’s not-for-profit purpose and mission. The views, opinions, and findings contained in this book are those of LMI and should not be construed as an official agency position, policy, or decision, unless so designated by other of- ficial doumentation. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or information storage and retrieval system, without permission in writing from the publisher. Requests for permission or further informa- tion should be addressed to the attention of the Library, LMI, 2000 Corporate Ridge, McLean, VA 22102, USA. ISBN 9780966191684 Library of Congress Control Number: 2012954680 Printed in the United States of America. Table of Contents Table of Contents Acknowledgments iv Executive Summary 1 Introduction 3 Overview of Meeting Results 5 Theme 1—Prepare and Respond to Climate Variability and Adapt to Climate Change 11 Theme 2—Develop Climate Change Predictions Endorsed by the Federal Government 17 Theme 3—Support National Security with NOAA Climate Products 23 Theme 4—Move from Data Access to Data Application 29 Theme 5—Sustain Cooperation 33 Theme 6—Consider Emerging Product Areas 37 Long-range forecasts of permafrost active layer thickness 37 Long-range tidal extreme forecasts 41 Glossary 47 Appendix A—Reviewers 49 Appendix B—Biographies 51 © LMI 2012 iii Opportunities to Expand NOAA Support for US National Security Acknowledgments The authors gratefully acknowledge the invitation from the NOAA Office of Climate, Water, and Weather Services to participate in CPASW 2012 and to prepare this report.
    [Show full text]