Climate: Opportunities for Improving Engagement Between NOAA and the US National Security Community
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flood Mitigation and Sea Level Rise Adaptation for Kiawah Island: a Report
Flood Mitigation and Sea Level Rise Adaptation for Kiawah Island: A Report Story and photographs by Jack Kotz unny day or nuisance flooding is a relatively new term for most of us. As we described in the Winter/Spring 2018 issue of Naturally Kiawah, it refers to temporary flooding of low-lying areas in the absence of any precipitation or storm impacts, usually occurring during new or full moons. The higher than usual tides during these lunar periods are called “spring Stides.” Several times a year, when the new or full moon is closest to the Earth (at its perigee), the gravitational force is even greater. This causes a “king tide” or a “perigean spring tide” that often results in nuisance flooding. 16 The problem for Charleston and other coastal cities, as annual flooding. He estimates that in the next 50 years flooding well as Kiawah Island, is that the number of nuisance floods will be experienced by 15 percent of the buildings in the area. is increasing. In the 1970s there were only about two days On Kiawah, we experienced 16–20 inches of rainfall over a each year with nuisance floods in Charleston, whereas in 2015 four-day period in the 2015 rain event, and at least 42 percent Charleston had 38 days of tidal flooding, and in 2016 there of the land area of the Island was flooded. During Hurricane were 50 days of flooding. It is predicted there could be as Matthew in 2016, the storm tide was 3.5 feet above MHHW many as 180 days of flooding per year in the 2040s. -
Climate Change and Human Health: Risks and Responses
Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Developing and Applying Scenarios
3 Developing and Applying Scenarios TIMOTHY R. CARTER (FINLAND) AND EMILIO L. LA ROVERE (BRAZIL) Lead Authors: R.N. Jones (Australia), R. Leemans (The Netherlands), L.O. Mearns (USA), N. Nakicenovic (Austria), A.B. Pittock (Australia), S.M. Semenov (Russian Federation), J. Skea (UK) Contributing Authors: S. Gromov (Russian Federation), A.J. Jordan (UK), S.R. Khan (Pakistan), A. Koukhta (Russian Federation), I. Lorenzoni (UK), M. Posch (The Netherlands), A.V. Tsyban (Russian Federation), A. Velichko (Russian Federation), N. Zeng (USA) Review Editors: Shreekant Gupta (India) and M. Hulme (UK) CONTENTS Executive Summary 14 7 3. 6 . Sea-Level Rise Scenarios 17 0 3. 6 . 1 . Pu r p o s e 17 0 3. 1 . Definitions and Role of Scenarios 14 9 3. 6 . 2 . Baseline Conditions 17 0 3. 1 . 1 . In t r o d u c t i o n 14 9 3. 6 . 3 . Global Average Sea-Level Rise 17 0 3. 1 . 2 . Function of Scenarios in 3. 6 . 4 . Regional Sea-Level Rise 17 0 Impact and Adaptation As s e s s m e n t 14 9 3. 6 . 5 . Scenarios that Incorporate Var i a b i l i t y 17 1 3. 1 . 3 . Approaches to Scenario Development 3. 6 . 6 . Application of Scenarios 17 1 and Ap p l i c a t i o n 15 0 3. 1 . 4 . What Changes are being Considered? 15 0 3. 7 . Re p r esenting Interactions in Scenarios and Ensuring Consistency 17 1 3. 2 . Socioeconomic Scenarios 15 1 3. -
A Review of Climate Change Scenarios and Preliminary Rainfall Trend Analysis in the Oum Er Rbia Basin, Morocco
WORKING PAPER 110 A Review of Climate Drought Series: Paper 8 Change Scenarios and Preliminary Rainfall Trend Analysis in the Oum Er Rbia Basin, Morocco Anne Chaponniere and Vladimir Smakhtin Postal Address P O Box 2075 Colombo Sri Lanka Location 127, Sunil Mawatha Pelawatta Battaramulla Sri Lanka Telephone +94-11 2787404 Fax +94-11 2786854 E-mail [email protected] Website http://www.iwmi.org SM International International Water Management IWMI isaFuture Harvest Center Water Management Institute supportedby the CGIAR ISBN: 92-9090-635-9 Institute ISBN: 978-92-9090-635-9 Working Paper 110 Drought Series: Paper 8 A Review of Climate Change Scenarios and Preliminary Rainfall Trend Analysis in the Oum Er Rbia Basin, Morocco Anne Chaponniere and Vladimir Smakhtin International Water Management Institute IWMI receives its principal funding from 58 governments, private foundations and international and regional organizations known as the Consultative Group on International Agricultural Research (CGIAR). Support is also given by the Governments of Ghana, Pakistan, South Africa, Sri Lanka and Thailand. The authors: Anne Chaponniere is a Post Doctoral Fellow in Hydrology and Water Resources at IWMI Sub-regional office for West Africa (Accra, Ghana). Vladimir Smakhtin is a Principal Hydrologist at IWMI Headquarters in Colombo, Sri Lanka. Acknowledgments: The study was supported from IWMI core funds. The paper was reviewed by Dr Hugh Turral (IWMI, Colombo). Chaponniere, A.; Smakhtin, V. 2006. A review of climate change scenarios and preliminary rainfall trend analysis in the Oum er Rbia Basin, Morocco. Working Paper 110 (Drought Series: Paper 8) Colombo, Sri Lanka: International Water Management Institute (IWMI). -
Basics of Tide & Tide Forecasting
Basics of tide & tide forecasting K. Srinivas Ocean State Forecast Lab (ISG) INCOIS, Hyderabad E-mail: [email protected] Phone: 040-23886057 040-23895017 Time and TIDE wait for none !!! Tides are an important physical forcing on the ocean particularly the coastal and estuarine seas ! Tide is the periodic rise and fall of a body of water due to gravitational interactions between the sun, moon and Earth Different positions of the sun and moon create two different types of tides: spring tides and neap tides Residual force is the difference between the gravitational force and centrifugal force They are very important for a proper understanding of : physics, chemistry, biology and geology of the coastal and estuarine waters The same location in the High Tide Low Tide Bay of Fundy at low and high tide. The maximum tidal range is approximately 17m The tidal range is the vertical difference between the low tide and the succeeding high tide. High Tide April 20, 2001 Low Tide September 30, 2002 Tidal extremes - The Bay of Fundy Vegetation is green, and water ranges from dark blue (deeper water) to light purple (shallow water) Tides at Halls Harbour on Nova Scotia's Bay of Fundy. This is a time lapse of the tidal rise and fall over a period of six and a half hours. There are two high tides every 25 hours. Presence of tide The most obvious indication of the presence of tide at any location (coastal or deep sea) is a characteristic, sinusoidal oscillation in the water level/ pressure records, containing either two main cycles per day (semidiurnal tides), one cycle per day (diurnal tides), or a combination of the two (mixed tides). -
Development of an Updated Coastal Marine Area Boundary for the Auckland Region
Development of an updated Coastal Marine Area boundary for the Auckland Region Prepared for Auckland Council July 2012 Authors/Contributors : Scott Stephens Sanjay Wadhwa For any information regarding this report please contact: Scott Stephens Coastal Scientist Coastal and Estuarine Processes +64-7-856 7026 [email protected] National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road Hillcrest, Hamilton 3216 PO Box 11115, Hillcrest Hamilton 3251 New Zealand Phone +64-7-856 7026 Fax +64-7-856 0151 NIWA Client Report No: HAM2012-111 Report date: July 2012 NIWA Project: ARC13233 © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client. Contents Executive summary .......................................................................................................................7 1 Introduction ........................................................................................................................9 -
Climate Change Scenario Report
2020 CLIMATE CHANGE SCENARIO REPORT WWW.SUSTAINABILITY.FORD.COM FORD’S CLIMATE CHANGE PRODUCTS, OPERATIONS: CLIMATE SCENARIO SERVICES AND FORD FACILITIES PUBLIC 2 Climate Change Scenario Report 2020 STRATEGY PLANNING TRUST EXPERIENCES AND SUPPLIERS POLICY CONCLUSION ABOUT THIS REPORT In conjunction with our annual sustainability report, this Climate Change CONTENTS Scenario Report is intended to provide stakeholders with our perspective 3 Ford’s Climate Strategy on the risks and opportunities around climate change and our transition to a low-carbon economy. It addresses details of Ford’s vision of the low-carbon 5 Climate Change Scenario Planning future, as well as strategies that will be important in managing climate risk. 11 Business Strategy for a Changing World This is Ford’s second climate change scenario report. In this report we use 12 Trust the scenarios previously developed, while further discussing how we use scenario analysis and its relation to our carbon reduction goals. Based on 13 Products, Services and Experiences stakeholder feedback, we have included physical risk analysis, additional 16 Operations: Ford Facilities detail on our electrification plan, and policy engagement. and Suppliers 19 Public Policy This report is intended to supplement our first report, as well as our Sustainability Report, and does not attempt to cover the same ground. 20 Conclusion A summary of the scenarios is in this report for the reader’s convenience. An explanation of how they were developed, and additional strategies Ford is using to address climate change can be found in our first report. SUSTAINABLE DEVELOPMENT GOALS Through our climate change scenario planning we are contributing to SDG 6 Clean water and sanitation, SDG 7 Affordable and clean energy, SDG 9 Industry, innovation and infrastructure and SDG 13 Climate action. -
Climate Scenario Development
13 Climate Scenario Development Co-ordinating Lead Authors L.O. Mearns, M. Hulme Lead Authors T.R. Carter, R. Leemans, M. Lal, P. Whetton Contributing Authors L. Hay, R.N. Jones, R. Katz, T. Kittel, J. Smith, R. Wilby Review Editors L.J. Mata, J. Zillman Contents Executive Summary 741 13.4.1.3 Applications of the methods to impacts 752 13.1 Introduction 743 13.4.2 Temporal Variability 752 13.1.1 Definition and Nature of Scenarios 743 13.4.2.1 Incorporation of changes in 13.1.2 Climate Scenario Needs of the Impacts variability: daily to interannual Community 744 time-scales 752 13.4.2.2 Other techniques for incorporating 13.2 Types of Scenarios of Future Climate 745 extremes into climate scenarios 754 13.2.1 Incremental Scenarios for Sensitivity Studies 746 13.5 Representing Uncertainty in Climate Scenarios 755 13.2.2 Analogue Scenarios 748 13.5.1 Key Uncertainties in Climate Scenarios 755 13.2.2.1 Spatial analogues 748 13.5.1.1 Specifying alternative emissions 13.2.2.2 Temporal analogues 748 futures 755 13.2.3 Scenarios Based on Outputs from Climate 13.5.1.2 Uncertainties in converting Models 748 emissions to concentrations 755 13.2.3.1 Scenarios from General 13.5.1.3 Uncertainties in converting Circulation Models 748 concentrations to radiative forcing 755 13.2.3.2 Scenarios from simple climate 13.5.1.4 Uncertainties in modelling the models 749 climate response to a given forcing 755 13.2.4 Other Types of Scenarios 749 13.5.1.5 Uncertainties in converting model response into inputs for impact 13.3 Defining the Baseline 749 studies 756 -
Product Guide
ProductsProducts && ServicesServices GuideGuide National Weather Service Corpus Christi, Texas November 2010 Products & Services Guide Page i Products & Services Guide Page ii ACKNOWLEDGMENTS This guide is intended to provide the news media and emergency services agencies with information and examples of the products issued by the National Weather Service in Corpus Christi, Texas. Armando Garza, former Meteorologist in Charge, initiated the development of this guide. Former meteorologists Bob Burton and current meteorologist Jason Runyen created most of the content for this guide. Warning Coordination Meteorologist John Metz directed the production of this guide. Recognition is also given to the entire staff of WFO Corpus Christi for valuable information and suggestions that were essential in the prepara- tion of this guide. If you have any suggestions for improving this guide, please contact the Warning Coordination Meteorologist or the Meteorologist in Charge at the National Weather Service in Corpus Christi, Texas. The 2010 version of this guide was compiled and updated by Matthew Grantham, Meteorolo- gist Intern and Alex Tardy, Science and Operations Officer. The following forecasters and program leaders updated parts of the guide: Mike Gittinger, Tim Tinsley, Jason Runyen, Roger Gass and Greg Wilk. Products & Services Guide Page iii PRECAUTIONARY NOTE The examples used in this guide are fictional and should not be taken as factual events. These examples are meant to illustrate the format and content of each product produced by your local National Weather Service office. In some cases the examples were cut short and limited to one page. However, the information provided should be adequate to understand the product. -
Improving the Contribution of Climate Model Information to Decision Making: the Value and Demands of Robust Decision Frameworks
Advanced Review Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks Christopher P. Weaver,1∗ Robert J. Lempert,2 Casey Brown,3 John A. Hall,4 David Revell5 and Daniel Sarewitz6 In this paper, we review the need for, use of, and demands on climate modeling to support so-called ‘robust’ decision frameworks, in the context of improving the contribution of climate information to effective decision making. Such frameworks seek to identify policy vulnerabilities under deep uncertainty about the future and propose strategies for minimizing regret in the event of broken assumptions. We argue that currently there is a severe underutilization of climate models as tools for supporting decision making, and that this is slowing progress in developing informed adaptation and mitigation responses to climate change. This underutilization stems from two root causes, about which there is a growing body of literature: one, a widespread, but limiting, conception that the usefulness of climate models in planning begins and ends with regional-scale predictions of multidecadal climate change; two, the general failure so far to incorporate learning from the decision and social sciences into climate-related decision support in key sectors. We further argue that addressing these root causes will require expanding the conception of climate models; not simply as prediction machines within ‘predict-then-act’ decision frameworks, but as scenario generators, sources of insight into complex system behavior, and aids to critical thinking within robust decision frameworks. Such a shift, however, would have implications for how users perceive and use information from climate models and, ultimately, the types of information they will demand from these models—and thus for the types of simulations and numerical experiments that will have the most value for informing decision making. -
What Is High Tide Flooding?
https://oceanservice.noaa.gov/facts/high-tide-flooding.html%20 Examples of why Highway 80 going out to Tybee Islands floods and low-lying areas throughout Savannah where the coastal waters connect with elevations near 6 NAVD 1988. National Ocean ServiceNational Oceanic and Atmospheric AdministrationU.S. Department of Commerce SearchSearch National Ocean Service • HOMEHome 1. Facts 2. What is high tide flooding? What is high tide flooding? High tide flooding—flooding that leads to public inconveniences such as road closures — is increasingly common as coastal sea levels rise. High tide flooding events have increased around the U.S., but especially off the East Coast. To down load the image click on: | Download PDF As relative sea level increases, it no longer takes a strong storm or a hurricane to cause coastal flooding. Flooding now occurs with high tides in many locations due to climate- related sea level rise, land subsidence, and the loss of natural barriers. High tide flooding — which causes such public inconveniences as frequent road closures, overwhelmed storm drains and compromised infrastructure — has increased in the U.S. on average by about 50 percent since 20 years ago and 100 percent since 30 years ago. The effects of rising sea levels along most of the continental U.S. coastline are expected to become more noticeable and much more severe in the coming decades, likely more so than any other climate-change related factor. Any acceleration in sea level rise that is https://oceanservice.noaa.gov/facts/high-tide-flooding.html%20 predicted to occur this century will further intensify high tide flooding impacts over time, and will further reduce the time between flood events. -
Climate Change Effects on Natural Resources
Climate Change Effects on Natural Resources FOR 797, Fall 2007 John Stella, [email protected] This seminar examined the evidence of global climate change, integrating scientific analyses and their perceptions in the media. Weekly class discussions focused on different physical, biological, Projected number of snow-covered days (Image: Union of Concerned Scientists) and social facets of the climate change story. Readings were drawn from primary climate change research (Nature, Science), global and regional analyses (IPCC 4th Assessment Report, New England Regional Assessment), news accounts, and the popular science literature (e.g. Tim Flannery’s The Weather Makers). For the final ‘White Paper’, students summarized the state of knowledge about a particular area, the perception of the issue in the media and popular literature, and the implications for policymakers. (Image: IPCC 2007) Muir Glacier, Alaska, 1941 and 2004 (Images: William Field, Bruce Molnia, USGS) FOR 797 Climate Change Effects on Natural Resources, Fall 2007 Final White Papers Table of Contents Chapter Subject Area Author Page 1 Overview: the physical science basis Katherina Searing 3 2 Paleoclimate and physical changes to the Matt Distler 10 atmosphere 3 Changes to the oceans Kacie Gehl 15 4 Changes to the cryosphere (snow, ice and frozen Brandon Murphy 19 ground) 5 Global and regional climate models Anna Lumsden 26 6 Impacts to freshwater resources Nidhi Pasi 31 7 Carbon sinks and sequestration Ken Hubbard 34 8 Impacts to coastal regions Juliette Smith 38 9 Effects on biodiversity and species ranges Lisa Giencke 43 10 Effects on species’ phenology Laura Heath 47 11 Human health, crop yields and food production Judy Crawford 52 12 Media perceptions of climate change: the Northeast Kristin Cleveland 57 case study 13 Mitigation measures Tony Eallonardo 62 INTRODUCTION Overview: the physical science Climate change is an extremely basis and expected impacts complex issue.