Climate: Opportunities for Improving Engagement Between NOAA and the US National Security Community

Total Page:16

File Type:pdf, Size:1020Kb

Climate: Opportunities for Improving Engagement Between NOAA and the US National Security Community Climate: Opportunities for Improving Engagement Between NOAA and the US National Security Community Rachael Jonassen and Jeremey Alcorn Climate: Opportunities for Improving Engagement Between NOAA and the US National Security Community Rachael Jonassen and Jeremey Alcorn Copyright 2012 by LMI All rights reserved. Published by LMI, which is a 501(c)(3) not-for-profit corporation. This publication advances LMI’s not-for-profit purpose and mission. The views, opinions, and findings contained in this book are those of LMI and should not be construed as an official agency position, policy, or decision, unless so designated by other of- ficial doumentation. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or information storage and retrieval system, without permission in writing from the publisher. Requests for permission or further informa- tion should be addressed to the attention of the Library, LMI, 2000 Corporate Ridge, McLean, VA 22102, USA. ISBN 9780966191684 Library of Congress Control Number: 2012954680 Printed in the United States of America. Table of Contents Table of Contents Acknowledgments iv Executive Summary 1 Introduction 3 Overview of Meeting Results 5 Theme 1—Prepare and Respond to Climate Variability and Adapt to Climate Change 11 Theme 2—Develop Climate Change Predictions Endorsed by the Federal Government 17 Theme 3—Support National Security with NOAA Climate Products 23 Theme 4—Move from Data Access to Data Application 29 Theme 5—Sustain Cooperation 33 Theme 6—Consider Emerging Product Areas 37 Long-range forecasts of permafrost active layer thickness 37 Long-range tidal extreme forecasts 41 Glossary 47 Appendix A—Reviewers 49 Appendix B—Biographies 51 © LMI 2012 iii Opportunities to Expand NOAA Support for US National Security Acknowledgments The authors gratefully acknowledge the invitation from the NOAA Office of Climate, Water, and Weather Services to participate in CPASW 2012 and to prepare this report. In particular, we thank Dr. Marina Timofeyeva for organizing the meeting and for continual engagement over the past 18 months as the themes emerged and ideas were developed. We thank Dr. Fiona Horsfall, Division Chief of the Climate Services Division, for her strong leadership of the meeting, and we thank Dr. David Caldwell, Director of the Office of Climate, Water, and Weather Services for comments that improved this report. Ms. Jenna Meyers at NOAA coordinated many aspects of the meeting and report formulation. Various members of the CPASW organizing committee shaped the program and influenced the final product. John White of the US Army Special Operations Command provided continuous and important guidance throughout the effort. His insights into the requirements of the military influenced the whole report. Comments and insights from Dr. Tom Murphree of the US Navy Post- graduate School in Monterey and Dr. Caitlin Simpson of NOAA’s Climate Program Office influenced the organization and improved the success of CPASW 2012. Dr. David Letson served as host. Conversations with many experts on national defense and climate during and after the workshop clarified issues and focused our attention on the six themes presented here. Dr. Mark Miller of the US Public Health Service (on assignment to the EPA), Mr. Jonathan Herz, and Capt. Ed Pfister of the Department of Health and Human Services provided useful guidance on the role of the public health community. Mr. Paul McCrone of the US Navy Postgraduate School discussed security issues for large data sets. Dr. Adam Parris and Dr. Preston Leftwich pointed us to useful resource material. Ms. Kathy Myers designed this document, and Mr. Dennis Dombkowski edited it. The LMI Research Institute (LRI) supported development of the text under an internal Independent Research and Development grant. We thank Mr. Taylor Wilkerson, Director of LRI, for this help. We also thank the University of Miami for financial support for editing, layout, and printing. iv © LMI 2012 Executive Summary Executive Summary use of NOAA products outside the United States. Six themes emerge from a workshop that dis- New software, new media, and new hardware cussed potential new climate products and ser- offer opportunities for NOAA to develop better vices from the National Oceanic and Atmospher- ways to access data that would nurture greater ic Administration (NOAA) that could serve needs use. Users also need tools (“apps”) for deep- in the national security community. These er and more efficient analysis of existing data. themes are the following: Theme 4 shows how NOAA could partner with the national security community to address 1. Prepare and respond to climate variability both of these opportunities. and adapt to climate change. 2. Develop climate change predictions en- Effective use of the climate products and ser- dorsed by the federal government. vices NOAA now provides can be enhanced through a program that facilitates more produc- 3. Support national security with NOAA cli- tive interaction with the national security com- mate products. munity. Such interaction can identify, develop, 4. Move from data access to data application. and apply useful products and ser- 5. Sustain cooperation. vices. Theme 5 lays the groundwork Effective use of the cli- for effective partnership dealing with mate products and ser- 6. Consider emerging product areas. the long-term challenges that climate vices NOAA now pro- The first theme addresses published statements change poses to US national security. that imply adaptation to climate variability will vides can be enhanced Theme 6 describes several opportu- help to adapt to climate change. This is not al- through a program nities for early focus. Two are ripe for ways true. A counterexample is coastal adapta- that facilitates more early action. First, NOAA could use tion now in an area that a rising sea level will the existing official long-term fore- productive interaction inundate soon. Greater clarity can help ensure cast to develop predictions of active with the national secu- appropriate allocation of adaptation resources. layer thickness in permafrost with- This issue is important to the national defense rity community. in Alaska. This information can help community both because of its large investment protect energy supplies and improve planning in infrastructure and possible compromise of for military mobility in Arctic regions. Second, continuity of operations. NOAA could work in cooperation with the Naval The second theme responds to the lack of any Oceanographic Office to calculate estimates of official federal statement of what projected cli- tidal range with higher sea level. Such informa- mate changes agencies are obliged to consider tion informs the vulnerability of coastal military in adaptation plans. Such plans are required by installations. laws and regulations that do not stipulate which These six opportunities could allow NOAA to potential changes to consider. This disconnect better serve the needs of the country and could compromise national security planning. NOAA’s mission to “understand and predict NOAA produces an official forecast of climate changes in climate.” Together, they could help for the United States that extends to 1 year in the national security community respond to the future. Forecasts are available from NOAA challenges from climate variability and climate international desks for areas outside the United change. States. Theme 3 proposes a dialogue on greater © LMI 2012 1 Opportunities to Expand NOAA Support for US National Security 2 © LMI 2012 Introduction Introduction provide context and a sense of how fully ideas could be vetted and critiqued within the meeting The National Oceanic and Atmospheric Adminis- and by participants as this document evolved. tration (NOAA) sponsors an annual Climate Pre- All participants were given the opportunity to diction Applications Science Workshop (CPASW) comment on an early draft of the six key themes that brings together climate information us- included here and multiple NOAA scientists re- ers, tool developers, researchers, and provid- viewed an early draft of the full report itself. ers. These meetings identify state-of the-art use These recommendations do not represent the of climate information and gaps in services. The official position of any federal agency and in no overall goals of CPASW are to build a communi- way commit any federal agency to act upon the ty of climate practitioners, discover user needs, ideas presented. assess impacts of climate forecasts on environ- mental-societal interactions, identify the science Intended Audience potential for meeting these needs, and provide As intended in this report, the national security feedback to producers on the usability of existing community includes the 17 intelligence agen- climate products. cies that either operate independently or within The 10th annual CPASW convened in Miami, FL, other federal organizations; those that direct in- on March 13–15, 2012, and featured broad dis- stallation and operational planning within the cussions revolving around the integrated theme military services of the Department of Defense of “Climate Services for National Security Chal- (DoD: Army, Navy, Air Force, and Marine Corps); lenges.” The workshop highlighted national and international diplomacy agencies, including the global uses of data and outlooks from seasonal Department of State, the Agency for Interna- to decadal scales in applications
Recommended publications
  • Flood Mitigation and Sea Level Rise Adaptation for Kiawah Island: a Report
    Flood Mitigation and Sea Level Rise Adaptation for Kiawah Island: A Report Story and photographs by Jack Kotz unny day or nuisance flooding is a relatively new term for most of us. As we described in the Winter/Spring 2018 issue of Naturally Kiawah, it refers to temporary flooding of low-lying areas in the absence of any precipitation or storm impacts, usually occurring during new or full moons. The higher than usual tides during these lunar periods are called “spring Stides.” Several times a year, when the new or full moon is closest to the Earth (at its perigee), the gravitational force is even greater. This causes a “king tide” or a “perigean spring tide” that often results in nuisance flooding. 16 The problem for Charleston and other coastal cities, as annual flooding. He estimates that in the next 50 years flooding well as Kiawah Island, is that the number of nuisance floods will be experienced by 15 percent of the buildings in the area. is increasing. In the 1970s there were only about two days On Kiawah, we experienced 16–20 inches of rainfall over a each year with nuisance floods in Charleston, whereas in 2015 four-day period in the 2015 rain event, and at least 42 percent Charleston had 38 days of tidal flooding, and in 2016 there of the land area of the Island was flooded. During Hurricane were 50 days of flooding. It is predicted there could be as Matthew in 2016, the storm tide was 3.5 feet above MHHW many as 180 days of flooding per year in the 2040s.
    [Show full text]
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Developing and Applying Scenarios
    3 Developing and Applying Scenarios TIMOTHY R. CARTER (FINLAND) AND EMILIO L. LA ROVERE (BRAZIL) Lead Authors: R.N. Jones (Australia), R. Leemans (The Netherlands), L.O. Mearns (USA), N. Nakicenovic (Austria), A.B. Pittock (Australia), S.M. Semenov (Russian Federation), J. Skea (UK) Contributing Authors: S. Gromov (Russian Federation), A.J. Jordan (UK), S.R. Khan (Pakistan), A. Koukhta (Russian Federation), I. Lorenzoni (UK), M. Posch (The Netherlands), A.V. Tsyban (Russian Federation), A. Velichko (Russian Federation), N. Zeng (USA) Review Editors: Shreekant Gupta (India) and M. Hulme (UK) CONTENTS Executive Summary 14 7 3. 6 . Sea-Level Rise Scenarios 17 0 3. 6 . 1 . Pu r p o s e 17 0 3. 1 . Definitions and Role of Scenarios 14 9 3. 6 . 2 . Baseline Conditions 17 0 3. 1 . 1 . In t r o d u c t i o n 14 9 3. 6 . 3 . Global Average Sea-Level Rise 17 0 3. 1 . 2 . Function of Scenarios in 3. 6 . 4 . Regional Sea-Level Rise 17 0 Impact and Adaptation As s e s s m e n t 14 9 3. 6 . 5 . Scenarios that Incorporate Var i a b i l i t y 17 1 3. 1 . 3 . Approaches to Scenario Development 3. 6 . 6 . Application of Scenarios 17 1 and Ap p l i c a t i o n 15 0 3. 1 . 4 . What Changes are being Considered? 15 0 3. 7 . Re p r esenting Interactions in Scenarios and Ensuring Consistency 17 1 3. 2 . Socioeconomic Scenarios 15 1 3.
    [Show full text]
  • A Review of Climate Change Scenarios and Preliminary Rainfall Trend Analysis in the Oum Er Rbia Basin, Morocco
    WORKING PAPER 110 A Review of Climate Drought Series: Paper 8 Change Scenarios and Preliminary Rainfall Trend Analysis in the Oum Er Rbia Basin, Morocco Anne Chaponniere and Vladimir Smakhtin Postal Address P O Box 2075 Colombo Sri Lanka Location 127, Sunil Mawatha Pelawatta Battaramulla Sri Lanka Telephone +94-11 2787404 Fax +94-11 2786854 E-mail [email protected] Website http://www.iwmi.org SM International International Water Management IWMI isaFuture Harvest Center Water Management Institute supportedby the CGIAR ISBN: 92-9090-635-9 Institute ISBN: 978-92-9090-635-9 Working Paper 110 Drought Series: Paper 8 A Review of Climate Change Scenarios and Preliminary Rainfall Trend Analysis in the Oum Er Rbia Basin, Morocco Anne Chaponniere and Vladimir Smakhtin International Water Management Institute IWMI receives its principal funding from 58 governments, private foundations and international and regional organizations known as the Consultative Group on International Agricultural Research (CGIAR). Support is also given by the Governments of Ghana, Pakistan, South Africa, Sri Lanka and Thailand. The authors: Anne Chaponniere is a Post Doctoral Fellow in Hydrology and Water Resources at IWMI Sub-regional office for West Africa (Accra, Ghana). Vladimir Smakhtin is a Principal Hydrologist at IWMI Headquarters in Colombo, Sri Lanka. Acknowledgments: The study was supported from IWMI core funds. The paper was reviewed by Dr Hugh Turral (IWMI, Colombo). Chaponniere, A.; Smakhtin, V. 2006. A review of climate change scenarios and preliminary rainfall trend analysis in the Oum er Rbia Basin, Morocco. Working Paper 110 (Drought Series: Paper 8) Colombo, Sri Lanka: International Water Management Institute (IWMI).
    [Show full text]
  • Basics of Tide & Tide Forecasting
    Basics of tide & tide forecasting K. Srinivas Ocean State Forecast Lab (ISG) INCOIS, Hyderabad E-mail: [email protected] Phone: 040-23886057 040-23895017 Time and TIDE wait for none !!! Tides are an important physical forcing on the ocean particularly the coastal and estuarine seas ! Tide is the periodic rise and fall of a body of water due to gravitational interactions between the sun, moon and Earth Different positions of the sun and moon create two different types of tides: spring tides and neap tides Residual force is the difference between the gravitational force and centrifugal force They are very important for a proper understanding of : physics, chemistry, biology and geology of the coastal and estuarine waters The same location in the High Tide Low Tide Bay of Fundy at low and high tide. The maximum tidal range is approximately 17m The tidal range is the vertical difference between the low tide and the succeeding high tide. High Tide April 20, 2001 Low Tide September 30, 2002 Tidal extremes - The Bay of Fundy Vegetation is green, and water ranges from dark blue (deeper water) to light purple (shallow water) Tides at Halls Harbour on Nova Scotia's Bay of Fundy. This is a time lapse of the tidal rise and fall over a period of six and a half hours. There are two high tides every 25 hours. Presence of tide The most obvious indication of the presence of tide at any location (coastal or deep sea) is a characteristic, sinusoidal oscillation in the water level/ pressure records, containing either two main cycles per day (semidiurnal tides), one cycle per day (diurnal tides), or a combination of the two (mixed tides).
    [Show full text]
  • Development of an Updated Coastal Marine Area Boundary for the Auckland Region
    Development of an updated Coastal Marine Area boundary for the Auckland Region Prepared for Auckland Council July 2012 Authors/Contributors : Scott Stephens Sanjay Wadhwa For any information regarding this report please contact: Scott Stephens Coastal Scientist Coastal and Estuarine Processes +64-7-856 7026 [email protected] National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road Hillcrest, Hamilton 3216 PO Box 11115, Hillcrest Hamilton 3251 New Zealand Phone +64-7-856 7026 Fax +64-7-856 0151 NIWA Client Report No: HAM2012-111 Report date: July 2012 NIWA Project: ARC13233 © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client. Contents Executive summary .......................................................................................................................7 1 Introduction ........................................................................................................................9
    [Show full text]
  • Climate Change Scenario Report
    2020 CLIMATE CHANGE SCENARIO REPORT WWW.SUSTAINABILITY.FORD.COM FORD’S CLIMATE CHANGE PRODUCTS, OPERATIONS: CLIMATE SCENARIO SERVICES AND FORD FACILITIES PUBLIC 2 Climate Change Scenario Report 2020 STRATEGY PLANNING TRUST EXPERIENCES AND SUPPLIERS POLICY CONCLUSION ABOUT THIS REPORT In conjunction with our annual sustainability report, this Climate Change CONTENTS Scenario Report is intended to provide stakeholders with our perspective 3 Ford’s Climate Strategy on the risks and opportunities around climate change and our transition to a low-carbon economy. It addresses details of Ford’s vision of the low-carbon 5 Climate Change Scenario Planning future, as well as strategies that will be important in managing climate risk. 11 Business Strategy for a Changing World This is Ford’s second climate change scenario report. In this report we use 12 Trust the scenarios previously developed, while further discussing how we use scenario analysis and its relation to our carbon reduction goals. Based on 13 Products, Services and Experiences stakeholder feedback, we have included physical risk analysis, additional 16 Operations: Ford Facilities detail on our electrification plan, and policy engagement. and Suppliers 19 Public Policy This report is intended to supplement our first report, as well as our Sustainability Report, and does not attempt to cover the same ground. 20 Conclusion A summary of the scenarios is in this report for the reader’s convenience. An explanation of how they were developed, and additional strategies Ford is using to address climate change can be found in our first report. SUSTAINABLE DEVELOPMENT GOALS Through our climate change scenario planning we are contributing to SDG 6 Clean water and sanitation, SDG 7 Affordable and clean energy, SDG 9 Industry, innovation and infrastructure and SDG 13 Climate action.
    [Show full text]
  • Climate Scenario Development
    13 Climate Scenario Development Co-ordinating Lead Authors L.O. Mearns, M. Hulme Lead Authors T.R. Carter, R. Leemans, M. Lal, P. Whetton Contributing Authors L. Hay, R.N. Jones, R. Katz, T. Kittel, J. Smith, R. Wilby Review Editors L.J. Mata, J. Zillman Contents Executive Summary 741 13.4.1.3 Applications of the methods to impacts 752 13.1 Introduction 743 13.4.2 Temporal Variability 752 13.1.1 Definition and Nature of Scenarios 743 13.4.2.1 Incorporation of changes in 13.1.2 Climate Scenario Needs of the Impacts variability: daily to interannual Community 744 time-scales 752 13.4.2.2 Other techniques for incorporating 13.2 Types of Scenarios of Future Climate 745 extremes into climate scenarios 754 13.2.1 Incremental Scenarios for Sensitivity Studies 746 13.5 Representing Uncertainty in Climate Scenarios 755 13.2.2 Analogue Scenarios 748 13.5.1 Key Uncertainties in Climate Scenarios 755 13.2.2.1 Spatial analogues 748 13.5.1.1 Specifying alternative emissions 13.2.2.2 Temporal analogues 748 futures 755 13.2.3 Scenarios Based on Outputs from Climate 13.5.1.2 Uncertainties in converting Models 748 emissions to concentrations 755 13.2.3.1 Scenarios from General 13.5.1.3 Uncertainties in converting Circulation Models 748 concentrations to radiative forcing 755 13.2.3.2 Scenarios from simple climate 13.5.1.4 Uncertainties in modelling the models 749 climate response to a given forcing 755 13.2.4 Other Types of Scenarios 749 13.5.1.5 Uncertainties in converting model response into inputs for impact 13.3 Defining the Baseline 749 studies 756
    [Show full text]
  • Product Guide
    ProductsProducts && ServicesServices GuideGuide National Weather Service Corpus Christi, Texas November 2010 Products & Services Guide Page i Products & Services Guide Page ii ACKNOWLEDGMENTS This guide is intended to provide the news media and emergency services agencies with information and examples of the products issued by the National Weather Service in Corpus Christi, Texas. Armando Garza, former Meteorologist in Charge, initiated the development of this guide. Former meteorologists Bob Burton and current meteorologist Jason Runyen created most of the content for this guide. Warning Coordination Meteorologist John Metz directed the production of this guide. Recognition is also given to the entire staff of WFO Corpus Christi for valuable information and suggestions that were essential in the prepara- tion of this guide. If you have any suggestions for improving this guide, please contact the Warning Coordination Meteorologist or the Meteorologist in Charge at the National Weather Service in Corpus Christi, Texas. The 2010 version of this guide was compiled and updated by Matthew Grantham, Meteorolo- gist Intern and Alex Tardy, Science and Operations Officer. The following forecasters and program leaders updated parts of the guide: Mike Gittinger, Tim Tinsley, Jason Runyen, Roger Gass and Greg Wilk. Products & Services Guide Page iii PRECAUTIONARY NOTE The examples used in this guide are fictional and should not be taken as factual events. These examples are meant to illustrate the format and content of each product produced by your local National Weather Service office. In some cases the examples were cut short and limited to one page. However, the information provided should be adequate to understand the product.
    [Show full text]
  • Improving the Contribution of Climate Model Information to Decision Making: the Value and Demands of Robust Decision Frameworks
    Advanced Review Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks Christopher P. Weaver,1∗ Robert J. Lempert,2 Casey Brown,3 John A. Hall,4 David Revell5 and Daniel Sarewitz6 In this paper, we review the need for, use of, and demands on climate modeling to support so-called ‘robust’ decision frameworks, in the context of improving the contribution of climate information to effective decision making. Such frameworks seek to identify policy vulnerabilities under deep uncertainty about the future and propose strategies for minimizing regret in the event of broken assumptions. We argue that currently there is a severe underutilization of climate models as tools for supporting decision making, and that this is slowing progress in developing informed adaptation and mitigation responses to climate change. This underutilization stems from two root causes, about which there is a growing body of literature: one, a widespread, but limiting, conception that the usefulness of climate models in planning begins and ends with regional-scale predictions of multidecadal climate change; two, the general failure so far to incorporate learning from the decision and social sciences into climate-related decision support in key sectors. We further argue that addressing these root causes will require expanding the conception of climate models; not simply as prediction machines within ‘predict-then-act’ decision frameworks, but as scenario generators, sources of insight into complex system behavior, and aids to critical thinking within robust decision frameworks. Such a shift, however, would have implications for how users perceive and use information from climate models and, ultimately, the types of information they will demand from these models—and thus for the types of simulations and numerical experiments that will have the most value for informing decision making.
    [Show full text]
  • What Is High Tide Flooding?
    https://oceanservice.noaa.gov/facts/high-tide-flooding.html%20 Examples of why Highway 80 going out to Tybee Islands floods and low-lying areas throughout Savannah where the coastal waters connect with elevations near 6 NAVD 1988. National Ocean ServiceNational Oceanic and Atmospheric AdministrationU.S. Department of Commerce SearchSearch National Ocean Service • HOMEHome 1. Facts 2. What is high tide flooding? What is high tide flooding? High tide flooding—flooding that leads to public inconveniences such as road closures — is increasingly common as coastal sea levels rise. High tide flooding events have increased around the U.S., but especially off the East Coast. To down load the image click on: | Download PDF As relative sea level increases, it no longer takes a strong storm or a hurricane to cause coastal flooding. Flooding now occurs with high tides in many locations due to climate- related sea level rise, land subsidence, and the loss of natural barriers. High tide flooding — which causes such public inconveniences as frequent road closures, overwhelmed storm drains and compromised infrastructure — has increased in the U.S. on average by about 50 percent since 20 years ago and 100 percent since 30 years ago. The effects of rising sea levels along most of the continental U.S. coastline are expected to become more noticeable and much more severe in the coming decades, likely more so than any other climate-change related factor. Any acceleration in sea level rise that is https://oceanservice.noaa.gov/facts/high-tide-flooding.html%20 predicted to occur this century will further intensify high tide flooding impacts over time, and will further reduce the time between flood events.
    [Show full text]
  • Climate Change Effects on Natural Resources
    Climate Change Effects on Natural Resources FOR 797, Fall 2007 John Stella, [email protected] This seminar examined the evidence of global climate change, integrating scientific analyses and their perceptions in the media. Weekly class discussions focused on different physical, biological, Projected number of snow-covered days (Image: Union of Concerned Scientists) and social facets of the climate change story. Readings were drawn from primary climate change research (Nature, Science), global and regional analyses (IPCC 4th Assessment Report, New England Regional Assessment), news accounts, and the popular science literature (e.g. Tim Flannery’s The Weather Makers). For the final ‘White Paper’, students summarized the state of knowledge about a particular area, the perception of the issue in the media and popular literature, and the implications for policymakers. (Image: IPCC 2007) Muir Glacier, Alaska, 1941 and 2004 (Images: William Field, Bruce Molnia, USGS) FOR 797 Climate Change Effects on Natural Resources, Fall 2007 Final White Papers Table of Contents Chapter Subject Area Author Page 1 Overview: the physical science basis Katherina Searing 3 2 Paleoclimate and physical changes to the Matt Distler 10 atmosphere 3 Changes to the oceans Kacie Gehl 15 4 Changes to the cryosphere (snow, ice and frozen Brandon Murphy 19 ground) 5 Global and regional climate models Anna Lumsden 26 6 Impacts to freshwater resources Nidhi Pasi 31 7 Carbon sinks and sequestration Ken Hubbard 34 8 Impacts to coastal regions Juliette Smith 38 9 Effects on biodiversity and species ranges Lisa Giencke 43 10 Effects on species’ phenology Laura Heath 47 11 Human health, crop yields and food production Judy Crawford 52 12 Media perceptions of climate change: the Northeast Kristin Cleveland 57 case study 13 Mitigation measures Tony Eallonardo 62 INTRODUCTION Overview: the physical science Climate change is an extremely basis and expected impacts complex issue.
    [Show full text]