(12) Patent Application Publication (10) Pub. No.: US 2010/0298247 A1 Wilson Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2010/0298247 A1 Wilson Et Al US 2010O298247A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0298247 A1 Wilson et al. (43) Pub. Date: Nov. 25, 2010 (54) PESTICIDE COMPOSITIONS EXHIBITING Related U.S. Application Data ENHANCED ACTIVITY (60) Provisional application No. 61/214,952, filed on Apr. (76) Inventors: Stephen L. Wilson, Indianapolis, 30, 2009. IN (US); Lei Liu, Carmel, IN (US); Publication Classification James D. Thomas, Fishers, IN (51) Int. Cl. (US); Raymond E. Boucher, JR. AOIN 43/22 (2006.01) Lebanon, IN (US); James E. AOIP 7/04 (2006.01) Dripps, Carmel, IN (US); Margaret S. Kempe, Greenfield, (52) U.S. Cl. .......................................................... S14/28 IN (US) (57) ABSTRACT Pest controlling compositions exhibiting enhanced pesticidal Correspondence Address: activity levels are disclosed. In one embodiment, a composi Kevin J. Huser tion includes at least one pesticide, at least one proteinaceous Krieg DeVault LLP material and at least one polymeric material. In this embodi Suite 2800, One Indiana Square ment, the composition exhibits enhanced pesticidal activity Indianapolis, IN46204-2079 (US) levels compared to a composition dissimilar only in not hav ing the at least one proteinaceous material and the at least one (21) Appl. No.: 12/768,057 polymeric material. Still, alternative embodiment pesticide compositions exhibiting enhanced activity levels are dis (22) Filed: Apr. 27, 2010 closed. US 2010/0298247 A1 Nov. 25, 2010 PESTICIDE COMPOSITIONS EXHIBITING However, it should be appreciated that alternatives for the at ENHANCED ACTIVITY least one pesticide, proteinaceous material and polymeric material are contemplated. CROSS REFERENCE TO RELATED 0007. In another embodiment, a composition includes APPLICATIONS from about 2% to about 25% by weight of spinetoram, from about 15% to about 75% by weight of a proteinaceous mate 0001. The subject application claims priority to U.S. Pro rial, and from about 5% to about 70% by weight of a poly visional Application No. 61/214,952 filed Apr. 30, 2009, the meric material. In one aspect of this embodiment, the pro contents of which are incorporated herein by reference in teinaceous material includes egg albumin and the polymeric their entirety. material includes polyvinyl alcohol. 0008. In one other embodiment, a composition includes FIELD OF THE INVENTION from about 15% to about 60% by weight of spinetoram and from about 30% to about 75% by weight of at least one 0002. The invention disclosed in this document is related polymeric material. In this embodiment, the composition to the field of pesticides and their use in controlling pests. exhibits enhanced pesticidal activity levels compared to a composition dissimilar only in not having the at least one BACKGROUND OF THE INVENTION polymeric material. In one form of this embodiment, the at least one pesticide is a photo-labile pesticide. In a particular 0003 Pests cause millions of human deaths around the world each year. Furthermore, there are more than ten thou form, the at least one pesticide is a spinosyn Such as spineto sand species of pests that cause losses in agriculture. These ram or spinosad. agricultural losses amount to billions of U.S. dollars each 0009. In yet another embodiment, a method includes year. Termites cause damage to various structures such as applying to a locus where control is desired an insect-inacti homes. These termite damage losses amount to billions of Vating amount of a pesticide composition. U.S. dollars each year. As a final note, many stored food pests 0010 Still, further embodiments, forms, features, aspects, eat and adulterate stored food. These stored food losses benefits, objects, and advantages of the present invention amount to billions of U.S. dollars each year, but more impor shall become apparent from the detailed description and tantly, deprive people of needed food. examples provided. 0004. Many pesticide compositions have been developed DETAILED DESCRIPTION OF THE INVENTION over time to destroy pests and alleviate the damages they cause. These compositions are often applied to the environ 0011. Throughout this document, all temperatures are ment in which the insects or other pests live or where their given in degrees Celsius, and all percentages are weight per eggs are present, including the air Surrounding them, the food centages unless otherwise stated. they eat, or objects which they contact. Several of these com 0012 Pesticide compositions exhibiting increased stabil positions are Vulnerable to chemical and physical degradation ity and enhanced pesticidal activity are described in this docu when applied to these environments. If these types of degra ment. More particularly, in one or more embodiments, the dation occur, the pesticidal activity of the pesticides can be pesticide compositions exhibit enhanced residual pesticidal adversely affected, commonly necessitating an increase in the activity. A pesticide is herein defined as any compound which concentration at which the pesticides are applied and/or more shows some pesticidal or biocidal activity, or otherwise par frequent applications of the pesticides. As a result, user costs ticipates in the control or limitation of pest populations. Such and the cost to consumers can escalate. Therefore, a need compounds include fungicides, insecticides, nematocides, exists for new pesticide compositions that exhibit increased miticides, termiticides, rodenticides, molluscides, arthro stability and enhanced activity compared to existing pesticide podicides, herbicides, biocides, as well as pheromones and compositions when, for example, the pesticide compositions attractants and the like. are applied to an environment to control pests. 0013 Examples of pesticides that can be included in the compositions described herein include, but are not limited to, SUMMARY OF THE INVENTION antibiotic insecticides, macrocyclic lactone insecticides (for example, avermectin insecticides, milbemycin insecticides, 0005. The present invention concerns novel pesticide and spinosyn insecticides), arsenical insecticides, botanical compositions and their use in controlling insects and certain insecticides, carbamate insecticides (for example, benzofura other invertebrates. In one embodiment, a composition nyl methylcarbamate insecticides, dimethylcarbamate insec includes at least one pesticide, at least one proteinaceous ticides, oxime carbamate insecticides, and phenyl methylcar material and at least one polymeric material. In this embodi bamate insecticides), diamide insecticides, desiccant ment, the composition exhibits enhanced pesticidal activity insecticides, dinitrophenol insecticides, fluorine insecticides, levels compared to a composition dissimilar only in not hav formamidine insecticides, fumigant insecticides, inorganic ing the at least one proteinaceous material and the at least one insecticides, insect growth regulators (for example, chitin polymeric material. In one form, the at least one pesticide is a synthesis inhibitors, juvenile hormone mimics, juvenile hor photo-labile pesticide. In another form, the at least one pes mones, moulting hormone agonists, moulting hormones, ticide is a macrocyclic lactone insecticide. moulting inhibitors, precocenes, and other unclassified insect 0006. In a more particular form, the at least one pesticide growth regulators), nereistoxin analogue insecticides, nicoti is a spinosyn, such as spinetoram or spinosad, the at least one noid insecticides (for example, nitroguanidine insecticides, proteinaceous material includes at least one of bovine serum nitromethylene insecticides, and pyridylmethylamine insec albumin, egg albumin, whey, gelatin or Zein and the at least ticides), organochlorine insecticides, organophosphorus one polymeric material includes at least one of polyvinyl insecticides, oxadiazine insecticides, oxadiazolone insecti alcohol, polyvinyl pyrrolidone, a latex or a terpene polymer. cides, phthalimide insecticides, pyrazole insecticides, pyre US 2010/0298247 A1 Nov. 25, 2010 throid insecticides, pyrimidinamine insecticides, pyrrole jasmolin II, odfenphos,juvenile hormone I, juvenile hormone insecticides, tetramic acid insecticides, tetronic acid insecti II, juvenile hormone III, kelevan, kinoprene, lambda-cyhalo cides, thiazole insecticides, thiazolidine insecticides, thio thrin, lead arsenate, lepimectin, leptophos, lindane, lirimfos, urea insecticides, urea insecticides, as well as, other unclas lufenuron, lythidathion, malathion, malonoben, mazidox, sified insecticides. mecarbam, mecarphon, menazon, mephosfolan, mercurous 0014 Some of the particular insecticides that can be chloride, meSulfenfos, metaflumizone, methacrifos, metha employed in the compositions described in this document midophos, methidathion, methiocarb, methocrotophos, include, but are not limited to, the following: 1,2-dichloro methomyl, methoprene, methoxychlor, methoxyfenozide, propane, 1.3 dichloropropene, abamectin, acephate, acetami methyl bromide, methylchloroform, methylene chloride, prid, acethion, acetoprole, acrinathrin, acrylonitrile, alany metofluthrin, metolcarb, metoxadiaZone, mevinphos, mexac carb, aldicarb, aldoxycarb, aldrin, allethrin, allosamidin, arbate, milbemectin, milbemycin oxime, mipafox, mirex, allyxycarb, alpha-cypermethrin, alpha-endosulfan, monocrotophos, morphothion, moxidectin, naftalofos, naled, amidithion, aminocarb, amiton, amitraz, anabasine, athi naphthalene, nicotine, nifluridide, nitenpyram, nithiazine, dathion, azadirachtin, azamethiphos, azinphos-ethyl, azin
Recommended publications
  • Chemicals Implicated in Colony Collapse Disorder
    Chemicals Implicated While research is underway to determine the cause of Colony Collapse Disorder (CCD), pesticides have emerged as one of the prime suspects. Recent bans in Europe attest to the growing concerns surrounding pesticide use and honeybee decline. Neonicotinoids Neonicotinoids are a relatively new class of insecticides that share a common mode of action that affect the central nervous system of insects, resulting in paralysis and death. They include imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam. According to the EPA, uncertainties have been identified since their initial registration regarding the potential environmental fate and effects of neonicotinoid pesticides, particularly as they relate to pollinators. Studies conducted in the late 1990s suggest that neonicotinic residues can accumulate in pollen and nectar of treated plants and represent a potential risk to pollinators. There is major concern that neonicotinoid pesticides may play a role in recent pollinator declines. Neonicotinoids can also be persistent in the environment, and when used as seed treatments, translocate to residues in pollen and nectar of treated plants. The potential for these residues to affect bees and other pollinators remain uncertain. Despite these uncertainties, neonicotinoids are beginning to dominate the market place, putting pollinators at risk. The case of the neonicotinoids exemplifies two critical problems with current registration procedures and risk assessment methods for pesticides: the reliance on industry-funded science that contradicts peer-reviewed studies and the insufficiency of current risk assessment procedures to account for sublethal effects of pesticides. • Imidacloprid Used in agriculture as foliar and seed treatments, for indoor and outdoor insect control, home gardening and pet products, imidacloprid is the most popular neonicotinoid, first registered in 1994 under the trade names Merit®, Admire®, Advantage TM.
    [Show full text]
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • The Impact of the Nation's Most Widely Used Insecticides on Birds
    The Impact of the Nation’s Most Widely Used Insecticides on Birds Neonicotinoid Insecticides and Birds The Impact of the Nation’s Most Widely Used Insecticides on Birds American Bird Conservancy, March 2013 Grasshopper Sparrow by Luke Seitz Cover photos: Horned Lark and chicks by Middleton Evans; Corn field, stock.xchng, sxc.hu; Calico Pennant dragonfly by David Cappaert, Michigan State University, Bugwood.org 1 Neonicotinoid Insecticides and Birds American Bird Conservancy would like to thank the Turner Foundation, Wallace Genetic Foundation, Jeff and Connie Woodman, Cornell Douglas Foundation and A.W. Berry Foundation for their ongoing support for American Bird Conservancy’s Pesticides Program. Written by Dr. Pierre Mineau and Cynthia Palmer Designed by Stephanie von Blackwood About the Authors Dr. Pierre Mineau began his long and distinguished scientific career studying the effects of persistent organochlorine compounds, like DDT and PCBs, on fish-eating birds. He then became responsible for the Canadian assessment of new and existing pesticides to determine their adverse impacts on wildlife. In 1994 he transitioned from regulatory reviews to full-time research on the environmental impacts of pesticides, achieving the rank of Senior Research Scientist at Environment Canada. Working with international collaborators and graduate students, he works on assessing globally the environmental footprint of pesticides. He also studies how birds are exposed to pesticides and how bird populations respond to pesticide use and agricultural practices. His work includes defining the ecological values of birds in cropland as well as estimating the incidental take of birds from various other human activities. He has written more than 100 peer-reviewed publications and has authored some 200 presentations.
    [Show full text]
  • Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects
    EN58CH06-Casida ARI 5 December 2012 8:11 Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects John E. Casida1,∗ and Kathleen A. Durkin2 1Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, 2Molecular Graphics and Computational Facility, College of Chemistry, University of California, Berkeley, California 94720; email: [email protected], [email protected] Annu. Rev. Entomol. 2013. 58:99–117 Keywords The Annual Review of Entomology is online at acetylcholinesterase, calcium channels, GABAA receptor, nicotinic ento.annualreviews.org receptor, secondary targets, sodium channel This article’s doi: 10.1146/annurev-ento-120811-153645 Abstract Copyright c 2013 by Annual Reviews. Neuroactive insecticides are the principal means of protecting crops, people, All rights reserved livestock, and pets from pest insect attack and disease transmission. Cur- ∗ Corresponding author rently, the four major nerve targets are acetylcholinesterase for organophos- phates and methylcarbamates, the nicotinic acetylcholine receptor for neonicotinoids, the γ-aminobutyric acid receptor/chloride channel for by Public Health Information Access Project on 04/29/14. For personal use only. Annu. Rev. Entomol. 2013.58:99-117. Downloaded from www.annualreviews.org polychlorocyclohexanes and fiproles, and the voltage-gated sodium channel for pyrethroids and dichlorodiphenyltrichloroethane. Species selectivity and acquired resistance are attributable in part to structural differences in binding subsites, receptor subunit interfaces, or transmembrane regions. Additional targets are sites in the sodium channel (indoxacarb and metaflumizone), the glutamate-gated chloride channel (avermectins), the octopamine receptor (amitraz metabolite), and the calcium-activated calcium channel (diamides). Secondary toxic effects in mammals from off-target serine hydrolase inhibi- tion include organophosphate-induced delayed neuropathy and disruption of the cannabinoid system.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • 4-Cyano-3-Benzoylamino-N
    (19) TZZ _T (11) EP 2 427 427 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 255/60 (2006.01) 25.12.2013 Bulletin 2013/52 (86) International application number: (21) Application number: 10713937.0 PCT/EP2010/054862 (22) Date of filing: 14.04.2010 (87) International publication number: WO 2010/127926 (11.11.2010 Gazette 2010/45) (54) 4-CYANO-3-BENZOYLAMINO-N-PHENYL-BENZAMIDES FOR USE IN PEST CONTROL 4-CYANO-3-BENZOYLAMINO-N-PHENYL-BENZAMIDE ZUR VERWENDUNG IN DER SCHÄDLINGSBEKÄMPFUNG 4-CYANO-3-BENZOYLAMINO-N-PHÉNYL-BENZAMIDES DESTINÉS À ÊTRE UTILISÉS DANS LA LUTTE ANTIPARASITAIRE (84) Designated Contracting States: • HUETER, Ottmar Franz AT BE BG CH CY CZ DE DK EE ES FI FR GB GR CH-4332 Stein (CH) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • MAIENFISCH, Peter PT RO SE SI SK SM TR CH-4332 Stein (CH) (30) Priority: 06.05.2009 GB 0907822 (74) Representative: Herrmann, Jörg et al 18.12.2009 GB 0922234 Syngenta Crop Protection Münchwilen AG (43) Date of publication of application: Intellectual Property Department 14.03.2012 Bulletin 2012/11 Schaffhauserstrasse CH-4332 Stein (CH) (73) Proprietor: Syngenta Participations AG 4058 Basel (CH) (56) References cited: EP-A1- 1 714 958 WO-A1-2008/000438 (72) Inventors: WO-A1-2008/074427 • JUNG, Pierre Joseph Marcel CH-4332 Stein (CH) Remarks: • GODFREY, Christopher Richard Ayles Thefile contains technical information submitted after CH-4332 Stein (CH) the application was filed and not included in this specification Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,900,554 B2 Tamarkin Et Al
    US0089.00554B2 (12) United States Patent (10) Patent No.: US 8,900,554 B2 Tamarkin et al. (45) Date of Patent: *Dec. 2, 2014 (54) FOAMABLE COMPOSITION AND USES 3,062,715. A 1 1/1962 Reese et al. THEREOF 3,067,784 A 12/1962 Gorman 3,092.255. A 6, 1963 Hohman 3,092,555 A 6, 1963 Horn (75) Inventors: Dov Tamarkin, Maccbim (IL); Doron 3,141,821 A 7, 1964 Compeau Friedman, Karmei Yosef (IL); Meir 3,142,420 A 7/1964 Gawthrop Eini, Ness Ziona (IL) 3: A S3; sistenbackaa. (73) Assignee: Foamix Pharmaceuticals Ltd., Rehovot 3:33 A 1943: Sir (IL) 3.236,457 A 2/1966 Kennedy et al. 3,244,589 A 4, 1966 Sunnen (*) Notice: Subject to any disclaimer, the term of this 3,252,859 A 5, 1966 Silver patent is extended or adjusted under 35 3.333 A 3. Siskiewicz U.S.C. 154(b) by 0 days. 3,263,8694- W - A 8, 1966 Corsetteea spent is Subject to a terminal disis- 3,301,4443,298.919 A 1/19671, 1967 WittkeBishop et al. 3,303,970 A 2f1967 Breslau et al. 3,330,730 A 7, 1967 Hernandez (21) Appl. No.: 13/400,330 3,333,333 A 8, 1967 Noack 3,334,147 A 8, 1967 Brunelle et al. (22) Filed: Feb. 20, 2012 3,346,451 A 10, 1967 Collins et al. (Continued) (65) Prior Publication Data US 2012/0148503 A1 Jun. 14, 2012 FOREIGN PATENT DOCUMENTS AU 19878O257 9, 1986 AU 7825.15 12/2005 Related U.S.
    [Show full text]
  • Acute Toxicity of Selected Insecticides and Their Safety to Honey Bee (Apis Mellifera L.) Workers Under Laboratory Conditions
    Open Access Austin Environmental Sciences Special Article - Pesticides Acute Toxicity of Selected Insecticides and Their Safety to Honey Bee (Apis mellifera L.) Workers Under Laboratory Conditions Abbassy MA1*, Nasr HM1, Abo-yousef HM2 and Dawood RR1 Abstract 1 Department of Plant Protection, Damanhur University, Objectives: The honey bee, Apis mellifera L., is widely used for the Egypt production of honey, wax, pollen, propolis, royal jelly and venom and crop 2Central Laboratory of Pesticides, Ministry of Agriculture pollination. Since honey bees can be exposed to insecticides in sprayed flowering and Land Reclamation, Egypt crops, therefore, this study aimed to assess the acute toxicity and safety index *Corresponding author: Moustafa A Abbassy, of five commonly used insecticides to honey bee workers in laboratory. Department of Plant Protection, Damanhur University, Methods: Bees were exposed to the insecticides: Imidacloprid, Pesticide Chemistry and Toxicology, Egypt Thiamethoxam, Esfenvalerate, Indoxacarb and Chlorantraniliprole by two Received: May 03, 2020; Accepted: May 25, 2020; methods of exposure: topical application and feeding techniques. LD50 and LC50 Published: June 01, 2020 values for each insecticide to honey bees were determined after 24 and 48 h from treatment. Results: The LD50 values in µg per bee were 0.0018 (indoxacarb), 0.019 (esfenvalerate), 0.024 (thiamethoxam), 0.029 (imidacloprid) and 107.12 -1 (chlorantraniliprole). The LC50 values (mg L ), for each insecticide, were as follows: indoxacarb, 0.091; esfenvalerate, 0.014; thiamethoxam, 0.009; imidacloprid, 0.003 and chlorantraniliprole, 0.026, after 24 h from exposure. In general, the neonicotinoid insecticides were the most toxic to bees by feeding technique, and indoxacarb, esfenvalerate were the most toxic by contact method while chlorantraniliprole had slightly or non- toxic effect by the two methods.
    [Show full text]
  • WO 2012/080415 Al 21 June 2012 (21.06.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/080415 Al 21 June 2012 (21.06.2012) P O P C T (51) International Patent Classification: (74) Agent: THWAITE, Jonathan; Syngenta Crop Protection, A 43/36 (2006.01) A01N 47/06 (2006.01) Munchwilen AG, Schaffhauserstrasse, CH-4332 Stein A 43/40 (2006.01) A01N 51/00 (2006.01) (CH). A 43/90 (2006.01) A01P 9/00 (2006.01) (81) Designated States (unless otherwise indicated, for every A01N 57/ (2006.01) A01P 7/04 (2006.01) kind of national protection available): AE, AG, AL, AM, A0 43/56 (2006.01) A01P 7/02 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A0 53/00 (2006.01) A01P 7/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A0 43/707 (2006.01) A01P 5/00 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, PCT/EP20 11/072946 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 15 December 201 1 (15. 12.201 1) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Household Insects – Homeowners ` CAUTION: All Insecticides Are Toxic to Some Degree; Therefore, Care Should Be Exercised in Their Use
    Household Insects – Homeowners ` CAUTION: All insecticides are toxic to some degree; therefore, care should be exercised in their use. The manufacturer’s directions on the label in the use of the material must be followed explicitly. Insect Threats Insecticides and Treatment* Remarks Ants Feed on foods and Baits (active ingredient and Remove food and clean up the area. Place (several may damage product): bait where ants occur or congregate. May species) clothing; may also sodium tetraborate decahydrate use several different baits at the same time sting, causing severe (Amdro Kills Ants Liquid Bait, Terro to discover one that ants will consume. reaction to some Liquid Ant Baits); Care should be taken not to contaminate people. hydramethylnon (Amdro Kills Ants foodstuffs. Also treat nests in yard. Follow Bait Stations and Stakes); label. orthoboric acid (Terro Perimeter Ant Bait); fipronil (Combat Max Ant Killing Bait Stations and Gel); abamectin (Raid Max Double Control Ant Baits, Raid Ant Baits III); dinotefuran (Hot Shot Ultra Clear Roach & Ant Gel Bait, Hot Shot Ultra Liquid Ant Bait); spinosad (Ortho Home Defense Liquid Ant Bait); thiamethoxam (Raid Precision Placement Ant Bait Gel) Crack and crevices: Follow label. prallethrin, esfenvalerate, pyrethrins, pyrethrum, permethrin, tetra- methrin, phenothrin, beta-cyfluthrin, cyfluthrin Indoor space: prallethrin, esfenvalerate, pyrethrins, pyrethrum, permethrin, tetramethrin, phenothrin, cyfluthrin, bifenthrin Outdoor barrier: prallethrin, esfenvalerate, permethrin, beta-cyfluthrin, cyfluthrin, bifenthrin, malathion, carbaryl Outdoor broadcast: hydramethylnon, pyriproxyfen, beta-cyfluthrin, esfenvalerate, bifenthrin, cyfluthrin, malathion, carbaryl *Labels on insecticides should state “material may be used in the household” and should be registered by the EPA for that purpose. Household Insects – Homeowners ` CAUTION: All insecticides are toxic to some degree; therefore, care should be exercised in their use.
    [Show full text]
  • WO 2013/150015 Al 10 October 2013 (10.10.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/150015 Al 10 October 2013 (10.10.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07D 209/54 (2006.01) A01N 43/38 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07D 471/10 (2006.01) A01N 43/90 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/EP2013/056915 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 2 April 2013 (02.04.2013) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 12162982.8 3 April 2012 (03.04.2012) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: SYNGENTA PARTICIPATIONS AG TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
    [Show full text]