Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 2009, Vol. 45, No. 2, 302–351 DOI: 10.1214/07-AIHP200 © Association des Publications de l’Institut Henri Poincaré, 2009 www.imstat.org/aihp A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit Natalie Grunewalda,1, Felix Ottob,2, Cédric Villanic,3 and Maria G. Westdickenbergd,4 aInstitute für Angewandte Mathematik, Universität Bonn. E-mail:
[email protected] bInstitute für Angewandte Mathematik, Universität Bonn. E-mail:
[email protected] cUMPA, École Normale Supérieure de Lyon, and Institut Universitaire de France. E-mail:
[email protected] dSchool of Mathematics, Georgia Institute of Technology. E-mail:
[email protected] Received 30 May 2007; accepted 7 November 2007 Abstract. We consider the coarse-graining of a lattice system with continuous spin variable. In the first part, two abstract results are established: sufficient conditions for a logarithmic Sobolev inequality with constants independent of the dimension (Theorem 3) and sufficient conditions for convergence to the hydrodynamic limit (Theorem 8). In the second part, we use the abstract results to treat a specific example, namely the Kawasaki dynamics with Ginzburg–Landau-type potential. Résumé. Nous étudions un système sur réseau à variable de spin continue. Dans la première partie, nous établissons deux résultats abstraits : des conditions suffisantes pour une inégalité de Sobolev logarithmique avec constante indépendante de la dimension (Théorème 3), et des conditions suffisantes pour la convergence vers la limite hydrodynamique (Theorème 8). Dans la seconde partie, nous utilisons ces résultats abstraits pour traiter un exemple spécifique, à savoir la dynamique de Kawasaki avec un potentiel de type Ginzburg–Landau.