LIA TODAY July Aug15 Lowres

Total Page:16

File Type:pdf, Size:1020Kb

LIA TODAY July Aug15 Lowres THE OFFICIAL NEWSLETTER OF THE LASER INSTITUTE OF AMERICA Volume: 2123 No: 14 JUL/AUGJAN/FEB 20132015 LIATODAY THE LASER’S FOUNDING FATHER REMEMBERING CHARLES H. ILSC 2013: EXPERIENCE THE TOWNES WORLD’S LEADING LASER PG 6 SAFETY CONFERENCE PG 6 LASER CUTTING OF CFRP USING A 30 KW FIBER LASER PG 10 EXPONENTIAL GROWTH OF MEDICAL LASER APPLICATIONS IN THE U.S. PG 8 DIGITAL LASER DYEING THE EFFECT OF CO2 LASER IRRADIATION ON SURFACE & DYEING PROPERTIES OF WOOL MEET THE NEW PRESIDENT AND FOR TEXTILE DESIGN BOARD OF DIRECTORS Focus:FOCUS: PG 12 PG 12 Medical LASERSApplications IN Photo of Charles Townes with a ruby maser amplifier MANUFACTURING courtesy of Bell Labs Laser Institute of America,America isthe the international 13501 society Ingenuity dedicated Drive, Suite 128 tointernational fostering lasers, society laser dedicated applications to and Orlando,laser safety FL 32826 worldwide.fostering lasers, laser applications Phone: +1.407.380.1553 and laser safety worldwide. www.lia.org LIATODAY FOCUS: LASERS IN MANUFACTURING JULY/AUGUST 2015 www.lia.org 1.800.34.LASER 3 LIA TODAY is published bimonthly to educate and inform laser professionals in laser safety and new trends related to laser technology. LIA members IN THIS ISSUE: receive a free subscription to LIA TODAY and the Journal of Laser Applications® in addition to discounts on all LIA products and services. FEATURES LIATODAY The editors of LIA TODAY welcome input from THE OFFICIAL NEWSLETTER OF THE The Laser’s Founding Father readers. Please submit news-related releases, Remembering Charles H. Townes 6 LASER INSTITUTE OF AMERICA articles of general interest and letters to the editor. Laser Cutting of CFRP Using a 30 kW Mail us at LIA TODAY, 13501 Ingenuity Drive, Suite Fiber Laser 10 128, Orlando, FL 32826, fax +1.407.380.5588, or send material by email to [email protected]. Digital Laser Dyeing The Effect of CO2 Laser Irradiation on Surface & Dyeing Properties of Wool for Textile Design 12 ICALEO 2015 16 2015 LIA OFFICERS CALENDAR OF EVENTS President – Robert Thomas Laser Safety Officer Training DEPARTMENTS USAF Research Laboratory Dec. 1-3, 2015 Orlando, FL President-Elect – Lin Li Calendar of Events 4 The University of Manchester Laser Safety Officer with Hazard Analysis* President’s Message 5 Past President – Yongfeng Lu Sept. 21-25, 2015 Chicago, IL Executive Director’s Message 5 University of Nebraska – Lincoln Oct. 19-23, 2015 Atlanta, GA Corporate Member Profile 18 Secretary – Paul Denney Nov. 2-6, 2015 Scottsdale, AZ International Year of Light 19 Lincoln Electric *Certified Laser Safety Officer exam offered after the course. Member Innovations 20 Treasurer – Stephen Capp Members in Motion 20 Laserage Technology Corporation Industrial Laser Safety Officer Training ASC Z136 Update 22 Nov. 18-19, 2015 Novi, MI BLS Update 23 EDITORIAL STAFF Medical Laser Safety Officer Training* OSHA Update 24 Editor-in-Chief – Peter Baker Sept. 19-20, 2015 Chicago, IL JLA Editor’s Pick 25 Managing Editor – Michelle Williams Oct. 17-18, 2015 Atlanta, GA LIA Announces 26 Copy Editor – Barbara Sams Nov. 7-8, 2015 Scottsdale, AZ New Corporate Members 26 Communications Director – Geoff Giordano *Certified Medical Laser Safety Officer exam offered after the course. International Congress on Applications of Lasers & ADVERTISERS BUSINESS STAFF Electro-Optics (ICALEO®) Andrews Glass Company 17 Publisher – Jim Naugle Oct. 18-22, 2015 Atlanta, GA ANSI Z136.1 22 Advertising Sales – Andrew Morrison ® ANSI Z136.2 21 Laser Additive Manufacturing (LAM ) Workshop 8 If you are interested in advertising space Mar. 2-3, 2016 Orlando, FL ANSI Z136.9 in this newsletter or a subscription, call Board of Laser Safety 23 +1.407.380.1553/1.800.34.LASER or email Lasers for Manufacturing Summit ICALEO 2015 17 [email protected]. Apr. 25, 2016 Atlanta, GA IPG Photonics Corporation 28 Kentek Corporation 3 Lasers for Manufacturing Event® (LME®) LAM 2016 9 ABOUTLIA Apr. 26-27, 2016 Atlanta, GA Laservision USA 15 Laser Institute of America (LIA) is the professional society for laser applications and safety. Our mission is to foster lasers, laser LIA’s EVALUATOR 24 applications and laser safety worldwide. Visit www.lia.org for all course and event listings. LIA’s In-house Training 25 We believe in the importance of sharing new ideas about lasers. In fact, laser pioneers such as Dr. Arthur Schawlow and Dr. LIA’s Laser Safety Officer Theodore H. Maiman were among LIA’s original founders who set Online Training 14 the stage for our enduring mission to promote laser applications and their safe use through education, training and symposia. LME 2016 2 LIA was formed in 1968 by people who represented the heart of the profession – a group of academic scientists, developers and PhotoMachining, Inc. 19 engineers who were truly passionate about taking an emerging new laser technology and turning it into a viable industry. FOLLOW US! PHOTONICS MEDIA 21 Whether you are new to the world of lasers or an experienced laser TRUMPF, INC. 27 professional, LIA is for you. We offer a wide array of products, services, education and events to enhance your laser knowledge and expertise. As an individual or corporate member, you will qualify for significant discounts on LIA materials, training courses and the industry’s most popular LIA conferences and workshops. Visit www.lia.org/subscriptions to sign up for our We invite you to become part of the LIA experience – cultivating innovation, ingenuity and inspiration. social media outlets. 4 LIATODAY FOCUS: LASERS IN MANUFACTURING JULY/AUGUST 2015 President’s Executive Message Director’s Message At the end of July, we celebrated the 100th birthday of I am writing this just as we Charles H. Townes, honored with a Nobel Prize just return from Laser World of over 50 years ago for contributions to fundamental Photonics in Munich, an work in quantum electronics, leading to the excellent event as expected development of the maser and laser. Dr. Townes was from our friends at Messe often quoted as saying about these inventions “It was Munich International. strange, in a way, because there were no ideas involved in the laser that weren’t already known by somebody The show continues to expand, 25 years before lasers were discovered. The ideas particularly in the area of were all there; just, nobody put it together.” As we lasers in manufacturing. The celebrate Townes’ 100th birthday, we reflect on this forum on International Laser observation and ask ourselves: “what other ideas are Applications covered the field, out there for us to put together in an equally profound way (and not have the and there were interesting demonstrations at many process require 25 years!)?” of the stands. All indications are that our industry is healthy and growing. This observation is reflected in the description of Townes by Freeman Dyson, who described Townes as a “fox” in the context of The Hedgehog And The Now it is time for our European friends to take some Fox essay in which the hedgehog views the world from the perspective of a vacation and enjoy the unusually warm weather. I wish single defining idea or “one big thing,” while the fox draws on a variety of all of our members and readers a safe and pleasant experiences and perspectives. No doubt, the many ideas that resulted in the summer. laser, were brought together through experience in a variety of physics and engineering projects during undergraduate, graduate and research careers. As See you at ICALEO Oct. 18-22, 2015, in Atlanta, a community, it is critical that we foster the free exchange of these ideas and Georgia. highlight significant advances. The foxes among us will connect the dots in order to advance the field of laser applications technology. The Laser Institute of America has long been an organization of professionals focused on the innovative application of laser technologies. As such, it is important that we exercise the “inner fox” in all of us. Our LIA Journal— Journal of Laser Applications® (JLA), and forums such as the International Peter Baker, Executive Director Congress on Applications of Lasers and Electro-Optics (ICALEO®), the Lasers Laser Institute of America for Manufacturing Event® (LME®) and Laser Additive Manufacturing (LAM®) Workshop have provided us access to those ideas that “are just there” and awaiting your insight for the next big breakthrough. I hope that you will join us, and become the next “Laser Fox” that the world celebrates. Happy Birthday, Dr. Townes! Robert Thomas, President Laser Institute of America www.lia.org 1.800.34.LASER 5 FEATURED ARTICLE The Laser’s Founding Father Remembering Charles H. Townes BY GEOFF GIORDANO In his 1999 book How the Laser Happened, the late Charles Hard Townes explained that, “Once invented, lasers found a myriad of uses” and noted that they had advanced to the point that “the smallest lasers are so tiny one cannot see them without a microscope.” A far cry from the heady days of the 1950s. Imagine Townes conceiving and building a maser (microwave amplification by stimulated emission of radiation) at Columbia University before the heated race to pursue a patent for an optical maser — the laser. Imagine the fevered discussion in the scientific community as Townes and Arthur Schawlow at Bell Labs beat Gordon Gould and Technical Research Group to that first laser patent — two months before Theodore Maiman built his ruby laser for Hughes Research Laboratories in Malibu, CA, in 1960. Townes — who famously conceived the idea for the laser while sitting on a park bench in Washington, DC in 1951 — worked until his 99th year, maintaining an office at the physics department of the University of California, Berkeley. The campus honored him with a birthday celebration July 28, 2014; he passed away in January 2015.
Recommended publications
  • From Theory to the First Working Laser Laser History—Part I
    I feature_ laser history From theory to the first working laser Laser history—Part I Author_Ingmar Ingenegeren, Germany _The principle of both maser (microwave am- 19 US patents) using a ruby laser. Both were nom- plification by stimulated emission of radiation) inated for the Nobel Prize. Gábor received the 1971 and laser (light amplification by stimulated emis- Nobel Prize in Physics for the invention and devel- sion of radiation) were first described in 1917 by opment of the holographic method. To a friend he Albert Einstein (Fig.1) in “Zur Quantentheorie der wrote that he was ashamed to get this prize for Strahlung”, as the so called ‘stimulated emission’, such a simple invention. He was the owner of more based on Niels Bohr’s quantum theory, postulated than a hundred patents. in 1913, which explains the actions of electrons in- side atoms. Einstein (born in Germany, 14 March In 1954 at the Columbia University in New York, 1879–18 April 1955) received the Nobel Prize for Charles Townes (born in the USA, 28 July 1915–to- physics in 1921, and Bohr (born in Denmark, 7 Oc- day, Fig. 2) and Arthur Schawlow (born in the USA, tober 1885–18 November 1962) in 1922. 5 Mai 1921–28 April 1999, Fig. 3) invented the maser, using ammonia gas and microwaves which In 1947 Dennis Gábor (born in Hungarian, 5 led to the granting of a patent on March 24, 1959. June 1900–8 February 1972) developed the theory The maser was used to amplify radio signals and as of holography, which requires laser light for its re- an ultra sensitive detector for space research.
    [Show full text]
  • Highlights APS March Meeting Heads North to Montréal
    December 2003 Volume 12, No. 11 NEWS http://www.physics2005.org A Publication of The American Physical Society http://www.aps.org/apsnews APS March Meeting Heads North to Montréal California Physics Departments Face More The 2004 March Meeting will Physics; International Physics; Edu- be organizing a host of special For those who want to Budget Cuts in an be held in lively and cosmopolitan cation and Physics; and Graduate events, including receptions, explore, there will be tours of Uncertain Future Montréal, Canada’s second largest Student Affairs, as well as topical alumni reunions, a students’ Montréal, highlighting the city’s city. The meeting runs from March groups on Instrument and Mea- lunch with the experts, and an history, cultural heritage, cosmo- The California recall election 22nd through the 26th at the surement Science; Magnetism and opportunity to meet the editors politan nature, and European was a laughing matter to many, Palais des Congrès de Montréal. Its Applications; Shock Compres- of the APS and AIP journals. flavor. a veritable circus of replace- Approximately 5,500 papers sion of Condensed Matter; and ment candidates of dubious will be presented in more than 90 Statistical and Nonlinear Physics. celebrity and questionable invited sessions and 550 contrib- An exhibit show will round out APS Honors Two Undergrads qualifications for the job. But for uted sessions in a wide variety of the program during which attend- physics departments across the categories, including condensed ees can visit vendors who will be With Apker Award state, the ongoing budget woes matter, materials, polymer physics, displaying the latest products, that spurred angry voters to chemical physics, biological phys- instruments and equipment, and Peter Onyisi of the University action in the first place remain ics, fluid dynamics, laser science, software, as well as scientific pub- of Chicago received the award deadly serious.
    [Show full text]
  • The Myth of the Sole Inventor
    Michigan Law Review Volume 110 Issue 5 2012 The Myth of the Sole Inventor Mark A. Lemley Stanford Law School Follow this and additional works at: https://repository.law.umich.edu/mlr Part of the Intellectual Property Law Commons Recommended Citation Mark A. Lemley, The Myth of the Sole Inventor, 110 MICH. L. REV. 709 (2012). Available at: https://repository.law.umich.edu/mlr/vol110/iss5/1 This Article is brought to you for free and open access by the Michigan Law Review at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Law Review by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. THE MYTH OF THE SOLE INVENTORt Mark A. Lemley* The theory of patent law is based on the idea that a lone genius can solve problems that stump the experts, and that the lone genius will do so only if properly incented. But the canonical story of the lone genius inventor is largely a myth. Surveys of hundreds of significant new technologies show that almost all of them are invented simultaneously or nearly simultaneous- ly by two or more teams working independently of each other. Invention appears in significant part to be a social, not an individual, phenomenon. The result is a real problem for classic theories of patent law. Our domi- nant theory of patent law doesn't seem to explain the way we actually implement that law. Maybe the problem is not with our current patent law, but with our current patent theory.
    [Show full text]
  • First Light: from the Ruby Laser to Nonlinear Optics 1960 – 1962
    First light: from the ruby laser to nonlinear optics 1960 – 1962 J. A. Giordmaine Formerly Columbia University, AT&T Bell Laboratories, NEC Laboratories America, Princeton University 1 The first laser May 16, 1960 Theodore Maiman 2 Background The ammonia beam maser concept 1951 Charles Townes 3 The maser 1954 J. P. Gordon, H. J. Zeiger and C. H. Townes Charles Townes and James Gordon 4 Maser proposal 1954 Nikolai Basov Alexandr Prokhorov 5 3-level solid state masers 1956 N. Bloembergen, H. E. D. Scovil, C. Kikuchi Nicolaas Bloembergen 6 Optical maser proposal 1958 Charles Townes Arthur Schawlow 7 Cr +3 levels in pink ruby 8 New solid state lasers 1960 Sorokin, Stevenson; Schawlow; Wieder Peter Sorokin and Mirek Stevenson 9 The helium neon laser 1960 Ali Javan, William Bennett, Jr. and Donald Herriott 10 Neon and helium energy levels 11 Hole burning and the Lamb dip W. Bennett, Jr. 1961 12 Visible helium neon laser 1962 A. D. White and J. D. Rigden Granularity of scattered laser light 1962 J. D. Rigden and E. I. Gordon Laser speckle 13 Nonlinear optics: Optical second harmonic generation 1961 Peter Franken Gabriel Weinreich 14 Nonlinear optics: Two-Photon Transitions 1961 Wolfgang Geoffrey Kaiser Garrett 15 Phase matching in nonlinear optics 1961 J. Giordmaine / P. Maker, R. Terhune et al 16 Optical Second Harmonic Generation in Anisotropic Crystals 1961 17 Phase Matching in optical second harmonic generation 1961 Incident fundamental beam k1 and diffuse scattering k1’ generate phase matched second harmonic light on the cone k2 with k1 + k1’ = k2 18 The Q -switch laser 1961 R.
    [Show full text]
  • Events in Science, Mathematics, and Technology | Version 3.0
    EVENTS IN SCIENCE, MATHEMATICS, AND TECHNOLOGY | VERSION 3.0 William Nielsen Brandt | [email protected] Classical Mechanics -260 Archimedes mathematically works out the principle of the lever and discovers the principle of buoyancy 60 Hero of Alexandria writes Metrica, Mechanics, and Pneumatics 1490 Leonardo da Vinci describ es capillary action 1581 Galileo Galilei notices the timekeeping prop erty of the p endulum 1589 Galileo Galilei uses balls rolling on inclined planes to show that di erentweights fall with the same acceleration 1638 Galileo Galilei publishes Dialogues Concerning Two New Sciences 1658 Christian Huygens exp erimentally discovers that balls placed anywhere inside an inverted cycloid reach the lowest p oint of the cycloid in the same time and thereby exp erimentally shows that the cycloid is the iso chrone 1668 John Wallis suggests the law of conservation of momentum 1687 Isaac Newton publishes his Principia Mathematica 1690 James Bernoulli shows that the cycloid is the solution to the iso chrone problem 1691 Johann Bernoulli shows that a chain freely susp ended from two p oints will form a catenary 1691 James Bernoulli shows that the catenary curve has the lowest center of gravity that anychain hung from two xed p oints can have 1696 Johann Bernoulli shows that the cycloid is the solution to the brachisto chrone problem 1714 Bro ok Taylor derives the fundamental frequency of a stretched vibrating string in terms of its tension and mass p er unit length by solving an ordinary di erential equation 1733 Daniel Bernoulli
    [Show full text]
  • Inoeulafl 3Uncm¥R
    U'JTERACTlbM me. cl- <*torrr-?ilLS£ LA<,0? RAD'Arf CKI ixjifH ecu la R n*66ua A k, JU n '.cal . IMfU riCiVjS. BXQP«¥g^ A £~inj:ca?an^g^-ciF-euzsvy^Atusn a t »p t t c a inoeuLAfl 3uncm¥r. A thesis submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in the University of London by David H. Sliney Institute of Ophthalmology University of London 1991 1 ProQuest Number: U047171 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U047171 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT Traditional laser photocoagulation of the retina requires CW exposures of the order of 0.1 s. An extensive literature exists on thermal damage mechanisms and biological sequellae of coagulation. By contrast, the biophysical mechanisms of pulsed laser interactions are poorly uiiderstood. The use of photodisruption and photoablation by sub­ microsecond laser pulses to cut tissue has recently gained considerable clinical attention. In addition, selective photocoagulation of localized target tissue would also require short-duration pulses.
    [Show full text]
  • History Newsletter CENTER for HISTORY of PHYSICS&NIELS BOHR LIBRARY & ARCHIVES Vol
    History Newsletter CENTER FOR HISTORY OF PHYSICS&NIELS BOHR LIBRARY & ARCHIVES Vol. 42, No. 1 • Summer 2010 Bright Ideas: From Concept to Hardware in the First Lasers Adapted by Dwight E. Neuenschwander, technology and circumstances to catch absorbing a photon whose energy with permission, from Bright Idea: The up with Einstein’s vision. matches the energy difference be- First Lasers, an online exhibit of the tween the two levels. Third, Ludwig Center for History of Physics and Niels Einstein’s 1917 paper depended on Boltzmann’s statistical mechanics gave Bohr Library & Archives at the American four facts that were already well known us an expression for the probability Institute of Physics, hereafter called to physicists, but which Einstein put that an atom resides in a state of a “the Exhibit.”[1] http://www.aip.org/ certain energy when it’s part of history/exhibits/laser/. matter in thermal equilibrium at a given temperature. Fourth, Max Almost everyone living in a Planck’s statistical physics gave us an technological society today owns or expression for the energy distribution uses a laser. Compact disc players, in a gas of photons. Einstein’s 1917 supermarket checkout scanners, laser paper put these four pieces together. printers, and laser pointers are among the applications we encounter daily. Meanwhile, scientists and engineers Some specialized laser applications pushed radio techniques to ever include cauterizing scalpels in surgery, shorter wavelengths. In the 1930s industrial cutters and drills, surveying, some hoped they were on the artificial guide stars for astronomical verge of creating a “death ray” (H.G. observatories, and seismology.
    [Show full text]
  • 55Th Anniversary of the ...Onal Year of Light Blog Copia
    29/5/2015 55th anniversary of the laser’s invention | International Year of Light Blog International Year of Light Blog 55th anniversary of the laser’s invention MAY 27, 2015MAY 27, 2015 LIGHT2015 1 COMMENT Fifty five years ago the laser, one of the most important and versatile scientific instruments of all time, was invented. It was on 16 May 1960, that the North American physicist and engineer, Theodore Maiman (http://en.wikipedia.org/wiki/Theodore_Harold_Maiman), obtained the first laser emission. (https://light2015blogdotorg.files.wordpress.com/2015/05/maiman.jpg) Theodore Maiman (1927-2007), winner of the Wolf Foundation Prize in Physics, 1983 Credit: AIP Emilio Segre Visual Archives. This date is therefore of great importance not only for those of us who carry out research in the field of optics and other scientific fields, but also for the general public who use laser devices in their daily lives. CD, DVD and Blu-ray players, laser printers, barcode readers, and fibre-optic communication systems that connect to the worldwide web and Internet are just a few of the many examples of laser applications in our daily life. Lasers also have a range of important biomedical applications; for example they are used to correct myopia, treat certain tumours and even whiten teeth, not to mention the beauty clinics that continually bombard us with advertisements for laser depilation, which has become so popular nowadays. However, the laser is of great importance not only due to its numerous scientific and commercial applications or the fact that it is the essential tool in various state-of-the-art technologies but also because it was a key factor in the boom experienced by optics in the second half of the last century.
    [Show full text]
  • 50Th Anniversary Book
    dat oun ion z F Fe rt llo e w H s h e i p ■ ■ C n o o m i t m a v it o m n n e ■ I n t ■ ty Communi “In grad school, there are a lot of constraints that hold you back from going after some of the big problems and trying things that no one else will try. The Hertz Fellowship gives you Celebrating 50 Years freedom to innovate. Each day, I see it augmenting my graduate experience. of the Having the freedom to take non-linear paths is important because innovative ideas come from detours. The Hertz Hertz Graduate Fellowship Fellowship offers that freedom.” —Shannon Yee THE FANNIE AND JOHN HERTZ FOUNDATION GRADUATE FELLOWSHIP 50th Anniversary 1963–2013 CONTENTS INTRODUCTION 5 LOOKING FORWARD TO THE NEXT 50 YEARS th COMMITMENT 6 50 Anniversary Vision Contributing Security, Prosperity, and Leadership for Our Nation Founding History To provide unique financial and fellowship support to the nation’s most COMMUNITY 30 Collaborating to Inspire Across Generations and Disciplines remarkable PhD students in the physical, 2 biological, and engineering sciences. INNOVATION 48 3 Creating Solutions with World Changing Outcomes To award fellowships that are free of most IMPACT 60 Transforming Ideas into Benefits for Humanity traditional restrictions. The Hertz Foundation Fellows 1963–2013 To nurture Hertz Fellows as they become the innovators and leaders serving in ways that benefit us all. DEDICATION “If I have seen further, To the extraordinary men and women of The Hertz Foundation it is by standing on the Fellows Community in honor of the founders, Fannie and John Hertz.
    [Show full text]
  • Chips Newsletter ©ESPROS Photonics Corp
    You are important. The CHIPS. others are very important. Newsletter Christian Marti May 2020 CEO's Note Dear Reader, around the ruby crystal to pump the crystal. And it worked. Last Saturday, May 16, 1960, exactly 60 years ago, the laser was invented by Theodore Maiman. The As a consequence to me, salesman are very impor- first laser was a ruby laser which emitted light at tant people to build bridges between manufacturers 694.3nm. My first laser I and users. Without this tried and played was also a salesman from General Ruby laser. The laser opened Electric visiting Maiman in up a full new range of appli- his laboratory, maybe the cations. Range finder, mate- ruby laser would never rial processing, cancer treat- have be invented. Or at ment, communication, sens- least later and maybe ing, etc. As Maiman had the after other materials used idea and knew, how a laser for lasers. should be constructed, he Photonics is the technol- simply struggled to find a ogy of the 21st century. light source pumping the Nevertheless, without the laser crystal. There was a breakthrough work by big concern in the electro-op- Albert Einstein, and other tical science field that ruby scientists in 20th century, can be used as the active none of this would have medium. Scientists tried to Diagram of a ruby laser from LLNL document "Laser Programs, been possible. find other materials than the first 25 years". Source: US government. ruby. Luckily, so the story, a Beat De Coi salesman from General Electric showed Maiman xenon flash tubes.
    [Show full text]
  • How the Laser Came to Light
    How the Laser Came to Light In the early days, lasers faced an uphill struggle. Now they enjoy a vast range of applications. This laser at France’s Centre d’Essais des Landes measures the composition and turbulence of the atmosphere. CULTURE & SOCIETY_Development of the Laser Fifty years have passed since a laser first shone. Now these intense light sources can be found everywhere, from the auto industry to CD players. In a joint project, researchers at the Max Planck Institute for Economics are helping to trace the laser’s economic development – and in the process, they are challenging some common assumptions about how new technologies come to be established. TEXT RALF GRÖTKER he Martians are coming! And tion, also includes researchers from ship research. “Today, however, we rec- they are armed with invinci- the Max Planck Institute for Econom- ognize the existence of what are called ble ray guns! As far back as ics and Friedrich Schiller University, innovation systems – actors who are de- 1898, American author Her- both in Jena. pendent on one another and interact bert G. Wells wove such a with one another, but are spatially sep- T tale of horror in his book The War of the MEANINGFUL TECHNOLOGY arated and spread across the fields of Worlds – more than half a century before POLICY enterprise, politics and research.” the marvel of Light Amplification by This concept also plays a role in Stimulated Emission of Radiation – that Using the development of the laser as economic policy. “It reflects the wide- is, the laser – had even been invented.
    [Show full text]
  • Charles H. Townes (1915–2015) Laser Co-Inventor, Astrophysicist and US Presidential Adviser
    COMMENT OBITUARY Charles H. Townes (1915–2015) Laser co-inventor, astrophysicist and US presidential adviser. harles Hard Townes trans- instrumentation for astronomy formed modern society by based on techniques drawn from the helping to invent the laser. field of quantum electronics. CHe also made crucial contributions A breakthrough during this to astrophysics and infrared astron- period was his discovery of water omy, and served as a US presidential and ammonia molecules in inter- science adviser. stellar clouds — accumulations of Townes, who died on 27 January gas, plasma and dust in the interstel- in Oakland, California, was born in lar medium. Astrophysicists knew Greenville, South Carolina, in 1915. that such clouds existed, but were He attended Furman University in surprised to learn that complex Greenville, and in 1935 received molecules, including those asso- undergraduate degrees in both phys- ciated with life, could exist in the ics and modern languages. interstellar medium. He pursued graduate studies at Townes also developed techniques COLLECTION/GETTY LIFE PICTURE ALFRED EISENSTAEDT/THE Duke University in Durham, North for infrared astronomy. Infrared Carolina, after being turned down light penetrates much farther than from the California Institute of Tech- visible light into cosmic dust clouds, nology (Caltech) in Pasadena. On which are intimately connected receiving a master’s degree in 1936, with the formation of stars. With he again applied to Caltech, and this his students, he probed the centre of time was accepted. He completed his our Galaxy, and obtained evidence PhD in 1939 under physicist William for the presence of a supermassive Smythe on the process of isolating certain a description of how to construct a version of black hole and measured its mass.
    [Show full text]