Advanced Simulations and Optimization of Intense Laser Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Simulations and Optimization of Intense Laser Interactions Advanced Simulations and Optimization of Intense Laser Interactions DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Joseph Richard Harrison Smith, B.A., M.S. Graduate Program in Physics The Ohio State University 2020 Dissertation Committee: Professor Chris Orban, Advisor Professor Enam A. Chowdhury Professor Douglass W. Schumacher Professor Richard J. Furnstahl c Copyright by Joseph Richard Harrison Smith 2020 Abstract 1This work uses computer simulations to investigate intense laser-plasma interactions. First, we use two-dimensional particle-in-cell (PIC) simulations and simple analytic models to in- vestigate the laser-plasma interaction known as ponderomotive steepening. When normally incident laser light reflects at the critical surface of a plasma, the resulting standing elec- tromagnetic wave modifies the electron density profile via the ponderomotive force, which creates peaks in the electron density separated by approximately half of the laser wave- length. What is less well studied is how this charge imbalance accelerates ions towards the electron density peaks, modifying the ion density profile of the plasma. Idealized PIC sim- ulations with an extended underdense plasma shelf are used to isolate the dynamics of ion density peak growth for a 42 fs pulse from an 800 nm laser with an intensity of 1018 W cm−2. These simulations exhibit sustained longitudinal electric fields of 200 GV m−1, which pro- duce counter-steaming populations of ions reaching a few keV in energy. We compare these simulations to theoretical models, and we explore how ion energy depends on factors such as the plasma density and the laser wavelength, pulse duration, and intensity. We also provide relations for the strength of longitudinal electric fields and an approximate timescale for the density peaks to develop. These conclusions may be useful for investigating the phe- nomenon of ponderomotive steepening as advances in laser technology allow shorter and more intense pulses to be produced at various wavelengths. We also discuss the parallels with other work studying the interference from two counter-propagating laser pulses. Next we investigate the development of ultra-intense laser-based sources of high energy ions, which is an important goal, with a variety of potential applications. One of the barriers to achieving this goal is the need to maximize the conversion efficiency from laser energy to ion energy. We apply a new approach to this problem, in which we use an evolutionary algorithm to optimize conversion efficiency by exploring variations of the target density profile with thousands of one-dimensional PIC simulations. We then compare this 1Some of this abstract is reprinted from Joseph R Smith, Chris Orban, Gregory K Ngirmang, John T Morrison, Kevin M George, Enam A Chowdhury, and WM Roquemore. Particle-in-cell simulations of density peak formation and ion heating from short pulse laser-driven ponderomotive steepening. Physics of Plasmas, 2019 [1] under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). ii \optimal" target identified by the one-dimensional PIC simulations to more conventional choices, such as with an exponential scale length pre-plasma, with fully three-dimensional PIC simulations. The optimal target outperforms the conventional targets in terms of maximum ion energy by 20% and shows a significant enhancement of conversion efficiency to high energy ions. This target geometry enhances laser coupling to the electrons, while still allowing the laser to strongly reflect from an effectively thin target. These results underscore the potential of this statistics-driven approach for optimizing laser-plasma simulations and experiments. Finally, we present computational fluid dynamic simulations that model the formation of thin liquid targets. These simulations allow us to explore new types of targets that may be beneficial for high repetition rate laser plasma interactions. iii In memory of my grandmother Theresa `Terry' Harrison and my grandfather Forrest E. `Smitty' Smith iv Acknowledgments I would like to thank my advisor Chris Orban for his guidance throughout the marathon that is a PhD. Chris has always been supportive and provided me with the academic freedom to explore a wide range of research projects. His advice is always welcome and I am very grateful that I have had the chance to work with him. Throughout my graduate studies at Ohio State, I have been fortunate to have had an abundance of positive role models and mentors to help me grow as a scientist. I'd like to thank Scott Feister for introducing me to computational plasma physics and it's always great to work with him on a project-even when the outcome is not what we hoped for. I'd like to thank Gregory Ngirmang for challenging the simulation paradigm in our group, and the field, and for inspiring me to explore paths less taken with my research. Enam Chowdhury is a formidable force in science, and I'd like to thank him for sharing his knowledge and intuition, and for being a strong advocate for those he works with. The past and present scientists working with the Extreme Light Group at AFRL rep- resent a special supportive community that I am honored to have collaborated with. John Morrison is an excellent scientist and I would like to thank him for pushing me to find my own way in research (and of course to graduate in a timely manner). Kevin George exemplifies the qualities of an excellent collaborator, bringing a fresh perspective to every project and pushing us to make excellent work. Mel Roquemore's unrivaled passion for sci- ence and warm attitude towards others encouraged me to be a better scientist. I would also like to thank Kyle Frische for keeping the lab running and warmly welcoming the invasion of theorists from OSU. Joseph Snyder is a talented scientist and provided me with welcome advice for succeeding in graduate school and afterwards. One cannot escape the positive influence of Doug Schumacher and the HEDP group at OSU. Doug encourages people to succeed and his high expectations inspire excellent work. The entire HEDP group is extraordinarily welcoming and helped to broaden my knowledge. Alexander Klepinger, Anthony Zingale, Derek Nasir, Preston Pozderac, and Nick Czapla are always up for a lively discussion on physics or a variety of other topics. It's a pleasure to work with them and the others in the HEDP group. Of course, my work is only possible due to those like Becky Daskalova, Anthony, Derek, Nick, German, and others in the lab who v keep those of us playing with computers in check. I would also like to thank Ginny Cochran for all of her effort organizing journal clubs while she was at OSU. The previous members of the group are still making great impressions at their current jobs, and are always welcoming to current students at conferences. I would like to thank my undergraduate research mentors John Ramsay, Jennifer Bowen, and Susan Lehman for introducing me to research and helping me become a competent researcher. I would also like to thank John Grove, Jim Hill, Karlene Maskaly, and the other scientists and students who made my summer in New Mexico enjoyable (along with chances to meet with Alexander Klepinger while he was in Albuquerque, and with other HEDP alumni in the state). I would like to thank Dick Furnstahl for his computational physics and Bayesian methods courses, which were excellent preparations for actual research. I'd also like to thank Andrew Heckler, Tom Gramila, and Ralf Bundschuh for helping me grow as an educator. I would like to thank Chris Porter, Bart Snapp, Jim Fowler, Jon Brown, and others for the surprising quality of work we were able to accomplish with the BuckeyeVR project, despite limited resources. The arduous endeavor of a PhD wouldn't have been possible without the continual support of my friends and family. My friends have made the last five years a much more enjoyable experience. I'm not sure how I would have made it through the first years of graduate school without the revolving set of officemates Ethel, Jose, Andr´es,Daniella, Franz, Emilio, Bruce, and Philip. I'd also like to thank Mike, Estefany, Humberto, Paulo, and Catherine, and the others for welcoming me into the extended Bridge family. I cherish experiences with my friends like semi-spontaneous trips to Canada, to see the total eclipse, and moving a friend across the country. I'd like to thank Jose, Ethel, Bruce, and others for joining me in the culinary exploration of Columbus. I'd like to thank Alexander, Matt, Andr´es,and Emily for expanding my repertoire of board games and being wonderful friends! I'd also like to thank my officemates Zach and Derek for interesting conversations. Andr´es, thank you for being a great housemate, especially in these times. Alexander, thank you for bringing people together and always having something interesting to talk about. Ethel and Bruce thanks for extending your friendship and being awesome. Jose, thanks for making work interesting and being a great friend. I could keep going, but I shouldn't, so I'd like to thank all of the others at OSU and elsewhere who have had a strong impact on my life. Lastly I would like to thank my family for their support and encouragement. My mother and father have also been so supportive of me and my goals, I can't thank you enough for everything they do! I'd also like to thank my brother Jacob, the political scientist, for blazing the path before me, and for my incredibly intelligent sister Heidi who will do great things. vi Vita May 2015 .
Recommended publications
  • From Theory to the First Working Laser Laser History—Part I
    I feature_ laser history From theory to the first working laser Laser history—Part I Author_Ingmar Ingenegeren, Germany _The principle of both maser (microwave am- 19 US patents) using a ruby laser. Both were nom- plification by stimulated emission of radiation) inated for the Nobel Prize. Gábor received the 1971 and laser (light amplification by stimulated emis- Nobel Prize in Physics for the invention and devel- sion of radiation) were first described in 1917 by opment of the holographic method. To a friend he Albert Einstein (Fig.1) in “Zur Quantentheorie der wrote that he was ashamed to get this prize for Strahlung”, as the so called ‘stimulated emission’, such a simple invention. He was the owner of more based on Niels Bohr’s quantum theory, postulated than a hundred patents. in 1913, which explains the actions of electrons in- side atoms. Einstein (born in Germany, 14 March In 1954 at the Columbia University in New York, 1879–18 April 1955) received the Nobel Prize for Charles Townes (born in the USA, 28 July 1915–to- physics in 1921, and Bohr (born in Denmark, 7 Oc- day, Fig. 2) and Arthur Schawlow (born in the USA, tober 1885–18 November 1962) in 1922. 5 Mai 1921–28 April 1999, Fig. 3) invented the maser, using ammonia gas and microwaves which In 1947 Dennis Gábor (born in Hungarian, 5 led to the granting of a patent on March 24, 1959. June 1900–8 February 1972) developed the theory The maser was used to amplify radio signals and as of holography, which requires laser light for its re- an ultra sensitive detector for space research.
    [Show full text]
  • Highlights APS March Meeting Heads North to Montréal
    December 2003 Volume 12, No. 11 NEWS http://www.physics2005.org A Publication of The American Physical Society http://www.aps.org/apsnews APS March Meeting Heads North to Montréal California Physics Departments Face More The 2004 March Meeting will Physics; International Physics; Edu- be organizing a host of special For those who want to Budget Cuts in an be held in lively and cosmopolitan cation and Physics; and Graduate events, including receptions, explore, there will be tours of Uncertain Future Montréal, Canada’s second largest Student Affairs, as well as topical alumni reunions, a students’ Montréal, highlighting the city’s city. The meeting runs from March groups on Instrument and Mea- lunch with the experts, and an history, cultural heritage, cosmo- The California recall election 22nd through the 26th at the surement Science; Magnetism and opportunity to meet the editors politan nature, and European was a laughing matter to many, Palais des Congrès de Montréal. Its Applications; Shock Compres- of the APS and AIP journals. flavor. a veritable circus of replace- Approximately 5,500 papers sion of Condensed Matter; and ment candidates of dubious will be presented in more than 90 Statistical and Nonlinear Physics. celebrity and questionable invited sessions and 550 contrib- An exhibit show will round out APS Honors Two Undergrads qualifications for the job. But for uted sessions in a wide variety of the program during which attend- physics departments across the categories, including condensed ees can visit vendors who will be With Apker Award state, the ongoing budget woes matter, materials, polymer physics, displaying the latest products, that spurred angry voters to chemical physics, biological phys- instruments and equipment, and Peter Onyisi of the University action in the first place remain ics, fluid dynamics, laser science, software, as well as scientific pub- of Chicago received the award deadly serious.
    [Show full text]
  • Frontiers in Plasma Physics Research: a Fifty-Year Perspective from 1958 to 2008-Ronald C
    • At the Forefront of Plasma Physics Publishing for 50 Years - with the launch of Physics of Fluids in 1958, AlP has been publishing ar In« the finest research in plasma physics. By the early 1980s it had St t 5 become apparent that with the total number of plasma physics­ related articles published in the journal- afigure then approaching 5,000 - asecond editor would be needed to oversee contributions in this field. And indeed in 1982 Fred L. Ribe and Andreas Acrivos were tapped to replace the retiring Fran~ois Frenkiel, Physics of Fluids' founding editor. Dr. Ribe assumed the role of editor for the plasma physics component of the journal and Dr. Acrivos took on the fluid Editor Ronald C. Davidson dynamics papers. This was the beginning of an evolution that would see Physics of Fluids Resident Associate Editor split into Physics of Fluids A and B in 1989, and culminate in the launch of Physics of Stewart J. Zweben Plasmas in 1994. Assistant Editor Sandra L. Schmidt Today, Physics of Plasmas continues to deliver forefront research of the very Assistant to the Editor highest quality, with a breadth of coverage no other international journal can match. Pick Laura F. Wright up any issue and you'll discover authoritative coverage in areas including solar flares, thin Board of Associate Editors, 2008 film growth, magnetically and inertially confined plasmas, and so many more. Roderick W. Boswell, Australian National University Now, to commemorate the publication of some of the most authoritative and Jack W. Connor, Culham Laboratory Michael P. Desjarlais, Sandia National groundbreaking papers in plasma physics over the past 50 years, AlP has put together Laboratory this booklet listing many of these noteworthy articles.
    [Show full text]
  • The Myth of the Sole Inventor
    Michigan Law Review Volume 110 Issue 5 2012 The Myth of the Sole Inventor Mark A. Lemley Stanford Law School Follow this and additional works at: https://repository.law.umich.edu/mlr Part of the Intellectual Property Law Commons Recommended Citation Mark A. Lemley, The Myth of the Sole Inventor, 110 MICH. L. REV. 709 (2012). Available at: https://repository.law.umich.edu/mlr/vol110/iss5/1 This Article is brought to you for free and open access by the Michigan Law Review at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Law Review by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. THE MYTH OF THE SOLE INVENTORt Mark A. Lemley* The theory of patent law is based on the idea that a lone genius can solve problems that stump the experts, and that the lone genius will do so only if properly incented. But the canonical story of the lone genius inventor is largely a myth. Surveys of hundreds of significant new technologies show that almost all of them are invented simultaneously or nearly simultaneous- ly by two or more teams working independently of each other. Invention appears in significant part to be a social, not an individual, phenomenon. The result is a real problem for classic theories of patent law. Our domi- nant theory of patent law doesn't seem to explain the way we actually implement that law. Maybe the problem is not with our current patent law, but with our current patent theory.
    [Show full text]
  • First Light: from the Ruby Laser to Nonlinear Optics 1960 – 1962
    First light: from the ruby laser to nonlinear optics 1960 – 1962 J. A. Giordmaine Formerly Columbia University, AT&T Bell Laboratories, NEC Laboratories America, Princeton University 1 The first laser May 16, 1960 Theodore Maiman 2 Background The ammonia beam maser concept 1951 Charles Townes 3 The maser 1954 J. P. Gordon, H. J. Zeiger and C. H. Townes Charles Townes and James Gordon 4 Maser proposal 1954 Nikolai Basov Alexandr Prokhorov 5 3-level solid state masers 1956 N. Bloembergen, H. E. D. Scovil, C. Kikuchi Nicolaas Bloembergen 6 Optical maser proposal 1958 Charles Townes Arthur Schawlow 7 Cr +3 levels in pink ruby 8 New solid state lasers 1960 Sorokin, Stevenson; Schawlow; Wieder Peter Sorokin and Mirek Stevenson 9 The helium neon laser 1960 Ali Javan, William Bennett, Jr. and Donald Herriott 10 Neon and helium energy levels 11 Hole burning and the Lamb dip W. Bennett, Jr. 1961 12 Visible helium neon laser 1962 A. D. White and J. D. Rigden Granularity of scattered laser light 1962 J. D. Rigden and E. I. Gordon Laser speckle 13 Nonlinear optics: Optical second harmonic generation 1961 Peter Franken Gabriel Weinreich 14 Nonlinear optics: Two-Photon Transitions 1961 Wolfgang Geoffrey Kaiser Garrett 15 Phase matching in nonlinear optics 1961 J. Giordmaine / P. Maker, R. Terhune et al 16 Optical Second Harmonic Generation in Anisotropic Crystals 1961 17 Phase Matching in optical second harmonic generation 1961 Incident fundamental beam k1 and diffuse scattering k1’ generate phase matched second harmonic light on the cone k2 with k1 + k1’ = k2 18 The Q -switch laser 1961 R.
    [Show full text]
  • Events in Science, Mathematics, and Technology | Version 3.0
    EVENTS IN SCIENCE, MATHEMATICS, AND TECHNOLOGY | VERSION 3.0 William Nielsen Brandt | [email protected] Classical Mechanics -260 Archimedes mathematically works out the principle of the lever and discovers the principle of buoyancy 60 Hero of Alexandria writes Metrica, Mechanics, and Pneumatics 1490 Leonardo da Vinci describ es capillary action 1581 Galileo Galilei notices the timekeeping prop erty of the p endulum 1589 Galileo Galilei uses balls rolling on inclined planes to show that di erentweights fall with the same acceleration 1638 Galileo Galilei publishes Dialogues Concerning Two New Sciences 1658 Christian Huygens exp erimentally discovers that balls placed anywhere inside an inverted cycloid reach the lowest p oint of the cycloid in the same time and thereby exp erimentally shows that the cycloid is the iso chrone 1668 John Wallis suggests the law of conservation of momentum 1687 Isaac Newton publishes his Principia Mathematica 1690 James Bernoulli shows that the cycloid is the solution to the iso chrone problem 1691 Johann Bernoulli shows that a chain freely susp ended from two p oints will form a catenary 1691 James Bernoulli shows that the catenary curve has the lowest center of gravity that anychain hung from two xed p oints can have 1696 Johann Bernoulli shows that the cycloid is the solution to the brachisto chrone problem 1714 Bro ok Taylor derives the fundamental frequency of a stretched vibrating string in terms of its tension and mass p er unit length by solving an ordinary di erential equation 1733 Daniel Bernoulli
    [Show full text]
  • AUSTRALIA Serguei VLADIMIROV University of Sydney School Of
    AUSTRALIA Serguei VLADIMIROV University of Sydney School of Physics School of Physics, University of Sydney 2006 SYDNEY E-mail: [email protected] AUSTRIA Martin HEYN Technische Universitaet Graz Institut fuer Theoretische Physik Petersgasse 16 A-8010 GRAZ E-mail: [email protected] Codrina IONITA-SCHRITTWIESER Leopold-Franzens University Innsbruck Institute for Ion Physics Technikerstr. 25 A-6020 INNSBRUCK (Tyrol) E-mail: [email protected] Ivan IVANOV Technical University Graz Institute of Theoretical Physics Petersgasse 16 A-8010 GRAZ E-mail: [email protected] Nikola JELIC Theoretical Physics A-6020 INNSBRUCK E-mail: [email protected] Gerald KAMELANDER Atominstitut der Österreichischen Universität Stadionallée 2 A1020 VIENNA E-mail: [email protected] Alexander KENDL University of Innsbruck Institute for Theoretical Physics Technikerstrasse 25 6020 INNSBRUCK E-mail: [email protected] Winfried KERNBICHLER Technische Universitaet Graz Institut fuer Theoretische Physik Petersgasse 16 8010 GRAZ E-mail: [email protected] Siegbert KUHN University of Innsbruck Department of Theoretical Physics Technikerstrasse 25 A-6020 INNSBRUCK E-mail: [email protected] Roman SCHRITTWIESER Leopold-Franzens University Innsbruck Institute for Ion Physics Technikerstr. 25 A-6020 INNSBRUCK (Tyrol) E-mail: [email protected] Viktor YAVORSKIJ University of Innsbruck Institute for Theoretical Physics Technikerstrasse 25 A-6020 INNSBRUCK E-mail: [email protected] BELGIUM Douglas BARTLETT European Commission DG Research 1150 BRUSSELS E-mail: [email protected] Susana CLEMENT LORENZO European Commission DG Research, Directorate Energy 200 Rue de la Loi 1049 BRUXELLES E-mail: [email protected] Charles JOACHAIN Université Libre de Bruxelles Physique Théorique Campus Plaine CP 227, Bd.
    [Show full text]
  • Mémoire D'habilitation À Diriger Des Recherches
    MÉMOIRE D'HABILITATION À DIRIGER DES RECHERCHES Université Pierre et Marie Curie, Paris 6 Spécialité PHYSIQUE présenté par Antoine Bret Université Castilla-La-Mancha, Espagne INSTABILITES FAISCEAU PLASMA EN REGIME RELATIVISTE Soutenance le 25 mars 2009, devant le jury composé de Rapporteurs Reinhard Schlickeiser Ruhr-University, Bochum, Allemagne Robert Bingham Rutherford Appleton Laboratory, Oxford, UK Jean-Marcel Rax Ecole Polytechnique, Palaiseau, France Examinateurs François Amiranoff Paris VI - Ecole Polytechnique, Palaiseau, France Guy Bonnaud CEA, Saclay, France Patrick Mora Ecole Polytechnique, Palaiseau, France Michel Tagger CNRS, Orléans, France Beam-plasma instabilities in the relativistic regime Antoine Bret ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energ¶eticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real, Spain. 1 - 2 To Isabel, Claude and Roberto 3 - 4 Contents I. Introduction 7 II. General Formalism 9 III. Cold Fluid Model: Mode Hierarchy, Collisions and Arbitrary Magnetization 11 IV. Relativistic kinetic theory - waterbag distributions 14 V. Kinetic theory with Maxwell-JÄuttnerdistribution functions 16 VI. Fluid model and Mathematica Notebook 18 VII. Some scenarios including protons beams 24 VIII. Various works on the ¯lamentation instability 26 IX. Conclusions and perspectives 30 References 33 Curriculum and Publications Main Publications 5 - 6 I. INTRODUCTION This document briefly exposes my scienti¯c works since my PhD. The ¯rst topic I got in touch with in my career had to do with Stopping Power of swift clusters in a plasma. Stopping Power calculations are among the timeless subjects in plasma physics, due to the richness and universality of the problem.
    [Show full text]
  • Inoeulafl 3Uncm¥R
    U'JTERACTlbM me. cl- <*torrr-?ilLS£ LA<,0? RAD'Arf CKI ixjifH ecu la R n*66ua A k, JU n '.cal . IMfU riCiVjS. BXQP«¥g^ A £~inj:ca?an^g^-ciF-euzsvy^Atusn a t »p t t c a inoeuLAfl 3uncm¥r. A thesis submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in the University of London by David H. Sliney Institute of Ophthalmology University of London 1991 1 ProQuest Number: U047171 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U047171 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT Traditional laser photocoagulation of the retina requires CW exposures of the order of 0.1 s. An extensive literature exists on thermal damage mechanisms and biological sequellae of coagulation. By contrast, the biophysical mechanisms of pulsed laser interactions are poorly uiiderstood. The use of photodisruption and photoablation by sub­ microsecond laser pulses to cut tissue has recently gained considerable clinical attention. In addition, selective photocoagulation of localized target tissue would also require short-duration pulses.
    [Show full text]
  • History Newsletter CENTER for HISTORY of PHYSICS&NIELS BOHR LIBRARY & ARCHIVES Vol
    History Newsletter CENTER FOR HISTORY OF PHYSICS&NIELS BOHR LIBRARY & ARCHIVES Vol. 42, No. 1 • Summer 2010 Bright Ideas: From Concept to Hardware in the First Lasers Adapted by Dwight E. Neuenschwander, technology and circumstances to catch absorbing a photon whose energy with permission, from Bright Idea: The up with Einstein’s vision. matches the energy difference be- First Lasers, an online exhibit of the tween the two levels. Third, Ludwig Center for History of Physics and Niels Einstein’s 1917 paper depended on Boltzmann’s statistical mechanics gave Bohr Library & Archives at the American four facts that were already well known us an expression for the probability Institute of Physics, hereafter called to physicists, but which Einstein put that an atom resides in a state of a “the Exhibit.”[1] http://www.aip.org/ certain energy when it’s part of history/exhibits/laser/. matter in thermal equilibrium at a given temperature. Fourth, Max Almost everyone living in a Planck’s statistical physics gave us an technological society today owns or expression for the energy distribution uses a laser. Compact disc players, in a gas of photons. Einstein’s 1917 supermarket checkout scanners, laser paper put these four pieces together. printers, and laser pointers are among the applications we encounter daily. Meanwhile, scientists and engineers Some specialized laser applications pushed radio techniques to ever include cauterizing scalpels in surgery, shorter wavelengths. In the 1930s industrial cutters and drills, surveying, some hoped they were on the artificial guide stars for astronomical verge of creating a “death ray” (H.G. observatories, and seismology.
    [Show full text]
  • 1- Publications
    J. Fuchs - publications PUBLICATIONS - JULIEN FUCHS, as of August 28, 2017 H-index: 42 q PUBLICATIONS IN PEER-REVIEWED JOURNALS: My publications are listed with the following color code: w/o color for publications associed to the research mainly driven by my group (“SPRINT”1), blue for the publications performed jointly, but led by other groups, green for publications I did before having my own group (during my first years at CNRS when I was working in the group of C. Labaune), and in grey for the publications I did during my PhD. Student and postdoctoral advisees are underlined. Submitted publications D. P. Higginson, B. Khiar, G. Revet, J. Béard, M. Blecher, M. Borghesi, K. Burdonov, S. N. Chen, E. Filippov, D. Khaghani, K. Naughton, H. Pépin, S. Pikuz, O. Portugall, C. Riconda, R. Riquier, R. Rodriguez, S. N. Ryazantsev, I. Yu. Skobelev, A. Soloviev, M. Starodubtsev, T. Vinci, O. Willi, A. Ciardi, and J. Fuchs « Enhancement of quasi-stationary shocks and heating via temporal-staging in a magnetized, laser-plasma jet » in review at Phys. Rev. Lett. M. Nakatsutsumi, Y. Sentoku, S. N. Chen, S. Buffechoux, A. Kon, A. Korzhimanov, L. Gremillet, B. Atherton, P. Audebert, M. Geissel, L. Hurd, M. Kimmel, P. Rambo, M. Schollmeier, J. Schwarz, M. Starodubtsev, R. Kodama, and J. Fuchs « On magnetic inhibition of laser-driven, sheath-accelerated high-energy protons » in review at Nat. Comm. P. Antici, E. Boella, S.N. Chen, M. Barberio, J. Böker, F. Cardelli, M. Glesser, L. Romagnani, M. Sciscio, M. Starodubtsev, O. Willi, J.C. Kieffer, H. Pépin, L.
    [Show full text]
  • Lettre D'information De La Fédération De Recherche Lasers Et Plasmas (FR2707)
    N° 6 10 juillet 2009 Lettre d'information de la Fédération de Recherche Lasers et Plasmas (FR2707) __________________________________________________________________________ Sommaire L’équipe en charge de l’Institut Lasers et Plasmas vient d’être formée, de même que se sont précisés récemment les contours des groupes de travail de la Fédération de Recherche Lasers et Plasmas, et nous ouvrons cette nouvelle édition par la description des responsabilités correspondantes. Le Forum bi-annuel tient une place importante dans les activités de la Fédération, et on trouvera ici un bref compte-rendu de l’édition 2009 qui s’est tenue à Giens en juin. De même quelques mentions sont faites de réunions des groupes de travail de la Fédération ou de diverses conférences passées ou à venir. Enfin on signale les appels à projets d’expériences du LULI (sur le point de se clore) et d’Alisé (date limite : fin septembre 2009). __________________________________________________________________________ Les responsabilités au sein de l'Institut Lasers et Plasmas La nouvelle organisation du Groupement d'Intérêt Scientifique « Institut Lasers et Plasmas » (ILP), définie dans une convention signée le 16 janvier 2009, a été mise en place ce 9 juillet lors d’une réunion conjointe de son Comité des Tutelles et du Comité des directeurs de laboratoires. On rappelle tout d’abord que l'ILP a une mission générale de coordination des activités lasers et plasmas au niveau national, et s’appuie en particulier sur : 1. la Fédération de Recherche Lasers et Plasmas (FLP), dont
    [Show full text]