A Comparison and Combination of Plastid Atpb and Rbcl Gene Sequences for Inferring Phylogenetic Relationships Within Orchidaceae Kenneth M

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison and Combination of Plastid Atpb and Rbcl Gene Sequences for Inferring Phylogenetic Relationships Within Orchidaceae Kenneth M Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 36 2006 A Comparison and Combination of Plastid atpB and rbcL Gene Sequences for Inferring Phylogenetic Relationships within Orchidaceae Kenneth M. Cameron New York Botanical Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Cameron, Kenneth M. (2006) "A Comparison and Combination of Plastid atpB and rbcL Gene Sequences for Inferring Phylogenetic Relationships within Orchidaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 36. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/36 MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 447-464 © 2006, Rancho Santa Ana Botanic Garden A COMPARISON AND COMBINATION OF PLASTID atpB AND rbcL GENE SEQUENCES FOR INFERRING PHYLOGENETIC RELATIONSHIPS WITHIN ORCHIDACEAE KENNETH M. CAMERON The Lewis B. and Dorothy Cullman Program for Molecular Systematics Studies, The New York Botanical Garden, Bronx, New York 10458-5126, USA ([email protected]) ABSTRACT Parsimony analyses of DNA sequences from the plastid genes atpB and rbcL were completed for 173 species of Orchidaceae (representing 150 different genera) and nine genera from outgroup families in Asparagales. The atpB tree topology is similar to the rbcL tree, although the atpB data contain less homoplasy and provide greater jackknife support than rbcL alone. In combination, the two-gene tree recovers five monophyletic clades corresponding to subfamilies within Orchidaceae, and fully resolves them with moderate to high jackknife support as follows: Epidendroideae are sister to Orchidoideae, followed by Cypripedioideae, then Vanilloideae, and with Apostasioideae sister to the entire family. Although this two-gene hypothesis of orchid phylogeny is an improvement over all single-gene studies published to date, there is still no consensus as to how all the tribes of Epidendroideae are related to one another. Nevertheless, these new topologies help to clarify some of the anomalous results recovered when rbcL was previously analyzed alone, and demonstrate the value of continued plastid gene se­ quencing within Orchidaceae. Key words: atpB, DNA, evolution, molecular, Orchidaceae, phylogeny, plastid, rbcL, systematics. INTRODUCTION matK by Freudenstein et al. 2004), but only the mitochon­ drial nadl b-e intron published by Freudenstein et a!. (2000) Orchidaceae are distributed throughout the world, and are and Freudenstein and Chase (200 1) have considered enough by far the largest family of monocotyledons, with more than taxa (ca. 100) to adequately depict higher level orchid re­ 750 genera and 30,000 species currently recognized. This im­ lationships. Unfortunately, the level of sequence variation mense diversity of taxa coupled with the complexity of orchid exhibited in the mitochondrial nadlb-c intron was also in­ flowers presents a great challenge to plant systematists con­ sufficient for addressing relationships much below the rank cerned with phylogeny reconstruction and classification (At­ of subfamily or tribe. wood 1986). For this reason, molecular sequence data have Since no clear consensus has been reached regarding re­ been a boon to orchidologists, since it allows for large lationships among the subfamilies, tribes, or subtribes of Or­ amounts of data to be generated for many taxa, and with chidaceae, a return to the plastid genome as a source of new relatively minimal cost, time expenditure, and difficulty. phylogenetic information is warranted and justified given the The first published molecular phylogeny for Orchidaceae well-known advantages of working with chloroplast DNA. employed plastid rbcL sequences from 33 orchids plus 62 These have been discussed previously by Palmer et al. other lilioid monocots (Chase et al. 1994). Although limited (1988), Clegg and Zurawski ( 1992), Olmstead and Palmer in taxon sampling, that study showed that the neottioid or­ (1994 ), among others, and include unilateral inheritance, nu­ chids are polyphyletic, and thus implied that the orchids merous copies per cell, ease of amplification and sequencing, might be divided best into five subfamilial lineages: the absence in animals and fungi, etc. Although there are a num­ apostasioid and cypripedioid orchids (each sometimes treat­ ber of plastid loci that could have been chosen, atpB was ed as distinct families), orchidoids (including the diurid and sequenced to complement the previously published rbcL spiranthoid orchids), and epidendroids (including the neot­ data of Cameron et a!. ( 1999) since its utility for family level tioid and vandoid orchids). Only Vanilla Plum. ex Mill. and systematics studies has been documented for a number of Pogonia Andrews were sampled to represent the vanilloid other plant groups (Hoot et al. 1995; Savolainen et al. 2000). orchids, but this lineage showed itself to most likely repre­ This gene is located downstream from rbcL in the large sin­ sent a distinct subfamilial clade (Vanilloideae) as well. gle copy region, and encodes one of the subunits of ATP The rbcL matrix used by Chase et al. (1994) was expand­ synthase, an enzyme that couples proton translocation across ed substantially by Cameron et a!. (1999) to include 158 membranes during the synthesis of ATP. Furthermore, a cod­ ingroup and 13 outgroup taxa. Since that study contains the ing region was desired for sequencing so that issues of align­ greatest genus and species level sampling to date, it has re­ ment (i.e., character homology assessment) would be mini­ mained a standard to which most subsequent molecular phy­ mized for this diverse assemblage of taxa. logenetic studies of orchids have been compared (e.g., van MATERIALS AND METHODS den Berg et al. 2005). A handful of additional phylogenetic studies focused on the entire Orchidaceae have been pub­ Taxon Sampling and Gene Sequencing lished using genes other than rbcL (e.g., ndhF by Neyland Nearly complete DNA sequences for atpB (ca. 1500 base­ and Urbatsch 1995, 1996; 18S by Cameron and Chase 2000; pairs [bp]) were obtained from 173 species of Orchidaceae 448 Cameron ALISO (representing I 50 different genera) and nine genera from As­ mony criterion in PAUP* vers. 4.0b10 (Swofford 2002) with teliaceae, Blandfordiaceae, Boryaceae, Hypoxidaceae, and gaps treated as missing data, characters weighted equally, Lanariaceae to serve as outgroup taxa. In order to fill in and with DELTRAN optimization of characters onto result­ taxonomic gaps and to compare these data with the pub­ ing trees. The sequenced genera from Asteliaceae, Bland­ lished rbcL phylogeny of Orchidaceae (Cameron et al. fordiaceae, Boryaceae, Hypoxidaceae, and Lanariaceae were 1999), an additional 30 new sequences of rbcL were also specified as a monophyletic outgroup based on topologies completed; the remaining rbcL sequences were downloaded uncovered in broader phylogenetic studies of monocots from GenBank as indicated in Table 1. This resulted in com­ (Chase et al. 1995, 2000). Equally parsimonious trees were pletely congruent matrices for all 182 taxa at the generic found by executing a heuristic search of 1000 random ad­ level. An effort was made to sequence atpB from the same dition replicates using tree bisection and reconnection (TBR) species as previously done for rbcL (in many cases the same branch swapping, but saving only five trees per replicate in DNA aliquot was used), but this was not always possible order to discover possible "islands" of maximum parsimony (see Table 1). The entire data matrix is available from the (MP) (Maddison 1991 ). All trees obtained in the first round author upon request or can be downloaded from The New of searching were then used as starting trees for a second York Botanical Garden website at http://www.nybg.org/bscil heuristic search using the same parameters, but this time res/cullb/dna.html (May 2005). saving all shortest trees (MULTREES option in effect) until All of the newly generated sequences were produced by a MAXTREE limit of 10,000 trees was reached. Support automated methods, briefly described as follows. Most of the values for the relationships discovered by analysis of each total DNA was extracted using the FastPrep®l (Qbiogene, matrix were calculated by performing jackknife (jck) anal­ Inc., Carlsbad, California, USA) and glassmilk method from yses of 5000 heuristic search replicates using the TBR 2 approximately 0.5 cm dried leaf tissue, as described by branching swapping algorithm and the following settings: Struwe et al. (1998). In some cases, DNA aliquots were ob­ 37% deletion, emulate "jac" resampling, one random addi­ tained from the Royal Botanic Gardens, Kew DNA bank tion per replicate, holding one tree, and saving two trees per (see Table I). Target loci were amplified in 50 f.lL volumes replicate. Finally, a partition homogeneity test ( = incongru­ using standard polymerase chain reaction (PCR) protocols ence length difference [ILD] test) was conducted in PAUP* that typically included the addition of bovine serum albumin to test for incongruence between the atpB and rbcL matrices. (BSA) and betaine, which may or may not have been nec­ essary. The annealing temperature used to amplify both RESULTS genes was 55°C. For atpB, primers originally published by Hoot et al. (1995), herein designated "nyl72": TATGA­ Analysis of atpB GAATCAATCCTACTACTTCT and "nyl73": TCAGTA­ CACAAAGATTTAAGGTCAT, were used for amplification. The strict consensus of
Recommended publications
  • Native Orchid Society of South Australia
    NATIVE ORCHID SOCIETY of SOUTH AUSTRALIA NATIVE ORCHID SOCIETY OF SOUTH AUSTRALIA JOURNAL Volume 6, No. 10, November, 1982 Registered by Australia Post Publication No. SBH 1344. Price 40c PATRON: Mr T.R.N. Lothian PRESIDENT: Mr J.T. Simmons SECRETARY: Mr E.R. Hargreaves 4 Gothic Avenue 1 Halmon Avenue STONYFELL S.A. 5066 EVERARD PARK SA 5035 Telephone 32 5070 Telephone 293 2471 297 3724 VICE-PRESIDENT: Mr G.J. Nieuwenhoven COMMITTFE: Mr R. Shooter Mr P. Barnes TREASURER: Mr R.T. Robjohns Mrs A. Howe Mr R. Markwick EDITOR: Mr G.J. Nieuwenhoven NEXT MEETING WHEN: Tuesday, 23rd November, 1982 at 8.00 p.m. WHERE St. Matthews Hail, Bridge Street, Kensington. SUBJECT: This is our final meeting for 1982 and will take the form of a Social Evening. We will be showing a few slides to start the evening. Each member is requested to bring a plate. Tea, coffee, etc. will be provided. Plant Display and Commentary as usual, and Christmas raffle. NEW MEMBERS Mr. L. Field Mr. R.N. Pederson Mr. D. Unsworth Mrs. P.A. Biddiss Would all members please return any outstanding library books at the next meeting. FIELD TRIP -- CHANGE OF DATE AND VENUE The Field Trip to Peters Creek scheduled for 27th November, 1982, and announced in the last Journal has been cancelled. The extended dry season has not been conducive to flowering of the rarer moisture- loving Microtis spp., which were to be the objective of the trip. 92 FIELD TRIP - CHANGE OF DATE AND VENUE (Continued) Instead, an alternative trip has been arranged for Saturday afternoon, 4th December, 1982, meeting in Mount Compass at 2.00 p.m.
    [Show full text]
  • Orquídeas Christian Demetrio Associação Orquidófila Piracicabana ORQUIPIRA - 1998 Classificação
    Orquídeas Christian Demetrio Associação Orquidófila Piracicabana ORQUIPIRA - 1998 Classificação: • Domínio: Eukariota • Reino: Plantae • Divisão: Magnoliophyta (Angiospermas) • Classe: Liliopsida (Monocotiledoneas) • Ordem: Asparagales • Família: Orchidaceae Família: Orchidaceae • Subfamílias: Apostasioidea Vanilloidea Cypripedioidea Orchidoidea Epidendroidea Distribuição: Gênero tipo – Lineu 1753 Orchis Espécie tipo: Orchis militaris Família Orchidaceae • 850 gêneros • 25.000 espécies • Mais de 100.000 híbridos registrados (RHS) Orchidaceae - Brasil Gêneros: 221 Espécies: 2491 Subespécies: 10 Variedades: 17 Orchidaceae in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB179>. Acesso em: 04 Abr. 2017 Caracterização da Família • Características gerais das monocotiledôneas • Estrutura floral: simetria bilateral Pétalas e sépalas semelhantes Labelo Coluna Polínia Ressupinação • Raízes com velame (epífitas) • Sementes diminutas X micorriza (Mycorrhyzum) Folhas: paralelinérvicas Sobralia spp Raízes fasciculadas Velame Estrutura Floral Sépala dorsal ou superior Pétalas Lóbulos laterais Sépalas laterais ou inferiores Lóbulo medial Estrutura Floral 1 – Sépala Dorsal; 2 – Pétalas; 3 – Sépalas Laterais; 4 – Lóbulo Frontal; 5 – Labelo; 6 – Ovário; 7 – Coluna; 8 – Estigma; 9 – Antena Coluna Políneas Antera Estigma Ressupinação Angraecum scottianum não ressupina Laelia purpurata ressupina Classificação pelo tipo de crescimento Simpodial Classificação pelo
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
    TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice.
    [Show full text]
  • Generic and Subtribal Relationships in Neotropical Cymbidieae (Orchidaceae) Based on Matk/Ycf1 Plastid Data
    LANKESTERIANA 13(3): 375—392. 2014. I N V I T E D P A P E R* GENERIC AND SUBTRIBAL RELATIONSHIPS IN NEOTROPICAL CYMBIDIEAE (ORCHIDACEAE) BASED ON MATK/YCF1 PLASTID DATA W. MARK WHITTEN1,2, KURT M. NEUBIG1 & N. H. WILLIAMS1 1Florida Museum of Natural History, University of Florida Gainesville, FL 32611-7800 USA 2Corresponding author: [email protected] ABSTRACT. Relationships among all subtribes of Neotropical Cymbidieae (Orchidaceae) were estimated using combined matK/ycf1 plastid sequence data for 289 taxa. The matrix was analyzed using RAxML. Bootstrap (BS) analyses yield 100% BS support for all subtribes except Stanhopeinae (87%). Generic relationships within subtribes are highly resolved and are generally congruent with those presented in previous studies and as summarized in Genera Orchidacearum. Relationships among subtribes are largely unresolved. The Szlachetko generic classification of Maxillariinae is not supported. A new combination is made for Maxillaria cacaoensis J.T.Atwood in Camaridium. KEY WORDS: Orchidaceae, Cymbidieae, Maxillariinae, matK, ycf1, phylogenetics, Camaridium, Maxillaria cacaoensis, Vargasiella Cymbidieae include many of the showiest align nrITS sequences across the entire tribe was Neotropical epiphytic orchids and an unparalleled unrealistic due to high levels of sequence divergence, diversity in floral rewards and pollination systems. and instead to concentrate our efforts on assembling Many researchers have posed questions such as a larger plastid data set based on two regions (matK “How many times and when has male euglossine and ycf1) that are among the most variable plastid bee pollination evolved?”(Ramírez et al. 2011), or exon regions and can be aligned with minimal “How many times have oil-reward flowers evolved?” ambiguity across broad taxonomic spans.
    [Show full text]
  • Phylogenetic Relationships of Discyphus Scopulariae
    Phytotaxa 173 (2): 127–139 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.173.2.3 Phylogenetic relationships of Discyphus scopulariae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences: evidence supporting recognition of a new subtribe, Discyphinae GERARDO A. SALAZAR1, CÁSSIO VAN DEN BERG2 & ALEX POPOVKIN3 1Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, Distrito Federal, México; E-mail: [email protected] 2Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s.n., 44036-900, Feira de Santana, Bahia, Brazil 3Fazenda Rio do Negro, Entre Rios, Bahia, Brazil Abstract The monospecific genus Discyphus, previously considered a member of Spiranthinae (Orchidoideae: Cranichideae), displays both vegetative and floral morphological peculiarities that are out of place in that subtribe. These include a single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate, petals that are long-decurrent on the column, labellum margins free from sides of the column and a column provided with two separate, cup-shaped stigmatic areas. Because of its morphological uniqueness, the phylogenetic relationships of Discyphus have been considered obscure. In this study, we analyse nucleotide sequences of plastid and nuclear DNA under maximum parsimony
    [Show full text]
  • Actes Du 15E Colloque Sur Les Orchidées De La Société Française D’Orchidophilie
    Cah. Soc. Fr. Orch., n° 7 (2010) – Actes 15e colloque de la Société Française d’Orchidophilie, Montpellier Actes du 15e colloque sur les Orchidées de la Société Française d’Orchidophilie du 30 mai au 1er juin 2009 Montpellier, Le Corum Comité d’organisation : Daniel Prat, Francis Dabonneville, Philippe Feldmann, Michel Nicole, Aline Raynal-Roques, Marc-Andre Selosse, Bertrand Schatz Coordinateurs des Actes Daniel Prat & Bertrand Schatz Affiche du Colloque : Conception : Francis Dabonneville Photographies de Francis Dabonneville & Bertrand Schatz Cahiers de la Société Française d’Orchidophilie, N° 7, Actes du 15e Colloque sur les orchidées de la Société Française d’Orchidophilie. ISSN 0750-0386 © SFO, Paris, 2010 Certificat d’inscription à la commission paritaire N° 55828 ISBN 978-2-905734-17-4 Actes du 15e colloque sur les Orchidées de la Société Française d’Orchidophilie, D. Prat et B. Schatz, Coordinateurs, SFO, Paris, 2010, 236 p. Société Française d’Orchidophilie 17 Quai de la Seine, 75019 Paris Cah. Soc. Fr. Orch., n° 7 (2010) – Actes 15e colloque de la Société Française d’Orchidophilie, Montpellier Préface Ce 15e colloque marque le 40e anniversaire de notre société, celle-ci ayant vu le jour en 1969. Notre dernier colloque se tenait il y a 10 ans à Paris en 1999, 10 ans c’est long, 10 ans c’est très loin. Il fallait que la SFO renoue avec cette traditionnelle organisation de colloques, manifestation qui a contribué à lui accorder la place prépondérante qu’elle occupe au sein des orchidophiles français et de la communauté scientifique. C’est chose faite aujourd’hui. Nombreux sont les thèmes qui font l’objet de communications par des intervenants dont les compétences dans le domaine de l’orchidologie ne sont plus à prouver.
    [Show full text]
  • Aerangis Articulata by Brenda Oviatt and Bill Nerison an Exquisite Star from Madagascar
    COLLECTor’s item by Brenda Oviatt and Bill Nerison Aerangis articulata An Exquisite Star from Madagascar IN ALL HONESTY, WHEN WE FOUND out that our photo of Aerangis articulata was chosen for the cover of Isobyl la Croix’s (2014) new book Aerangis, we were more than just a little excited! We decided that this is a perfect opportunity to tell people more about Aergs. articulata and give an introduction to her new book. We will try and help clarify the confusion surrounding the identification of this species, describe what to look for if you intend to buy one and discuss culture to help you grow and bloom it well. We love angraecoids, and the feature that most share and what sets them apart is their spurs or nectaries. In some orchid species, attracting the pollinator is all about fooling someone (quite often an insect). Some will mimic a female insect while others will mimic another type of flower to attract that flower’s pollinator. Oftentimes the u n s u s p e c t i n g insect gets nothing in return; not the promised mate or the nectar of the Brenda Oviatt and mimicked flower. Bill Nerison With angraecoids, the pollinator is often rewarded with a sweet treat: nectar that sits in the bottom of the spur. The pollinator of Aergs. articulata is a hawk moth (DuPuy, et al 1999) whose proboscis can reach that nectar. These moths are attracted by the sweet nighttime fragrance TT (scented much like a gardenia) and by the A VI O white flower (more visible than a colored A D flower in the dark).
    [Show full text]
  • Atlanta Orchid Society Newsletter
    The Atlanta Affiliated with the American Orchid Orchid Society, the Orchid Digest Corporation and the Mid-America Orchid Congress. Society 2001 Recipient of the American Orchid Society’s Distinguished Affiliated Bulletin Societies Service Award Newsletter Editor: Danny Lentz Volume 47: Number 7 www.atlantaorchidsociety.org July 2006 JULY EVENTS The Meeting: 8:00 Monday, July 10 at Atlanta Botanical Garden Marv Ragan will speak on Encyclias Marv Ragan of MAJ Orchids in Jacksonville will give a presentation on Encyclias. He will be bringing plants to sell. Roy Harrow’s Auction Roy Harrow’s auction will be held on July 29. This is a great opportunity to sell or swap some of your extra plants. See page 4 for details. Neomoorea irrorata Inside This Issue Atlanta Orchid Society 2006 Officers…………………………………………..….…………… Page 2 Member Spotlight – Mikie Emerson………………………………………...……....………….. Page 2 Events Out and About………………Dates for your Calendar…………...……….…….……… Page 3 Minutes of the June Meeting ….…….…...……….………….…………..……………...….…. Page 3 Roy Harrow’s Auction……………………….………..………..……………………………... Page 4 The June Exhibition Table ……………………………….………..………..…………...……. Page 5 Recent Blooms at the Atlanta Botanical Garden……………………………………………….. Page 8 Collector’s Item : Aeranthes ramosa Rolfe……………….………….…………..………...…… Page 9 Recent Awards from the Atlanta Judging Center……….………………………………………. Page 10 All contents © Atlanta Orchid Society unless otherwise noted. Page 2 www.atlantaorchidsociety.org July 2006 THE ATLANTA ORCHID Member Spotlight I am pretty much "plain vanilla." I SOCIETY have been growing orchids since Officers 1995. After killing quite a few, I President - Richard Hallberg decided I needed help so I joined both 152 Sloan St. AtlOS and South Metro Orchid Roswell, GA 30075 Society and the AOS. I grew in a back 770-587-5827 bedroom for a while then I built a [email protected] small attached greenhouse mainly built Vice-President/Programs - Mark Reinke from recycled material.
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]
  • Nzbotsoc No 107 March 2012
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 107 March 2012 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8013 Subscriptions The 2012 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2012 student subscription, available to full-time students, is $12 (reduced to $9 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $7.00 each. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the June 2012 issue is 25 May 2012. Please post contributions to: Lara Shepherd Museum of New Zealand Te Papa Tongarewa P.O. Box 467 Wellington Send email contributions to [email protected]. Files are preferably in MS Word, as an open text document (Open Office document with suffix “.odt”) or saved as RTF or ASCII. Macintosh files can also be accepted. Graphics can be sent as TIF JPG, or BMP files; please do not embed images into documents.
    [Show full text]