Biology, Epidemiology, and Biological and Chemical Control of Phytophthora Vignae

Total Page:16

File Type:pdf, Size:1020Kb

Biology, Epidemiology, and Biological and Chemical Control of Phytophthora Vignae AN ABSTRACT OF THE THESIS OF W. Gerard Dilantha Fernando for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on October 4, 1990. Title: Biology, Epidemiology, and Biological and Chemical Control of Phytophthora vignae. Redacted for Privacy Abstract approved:_ Dr. Robert G. Linderman Phytophthora vignae, causal agent of stem and root rot of cowpea (Vigna unguiculata), was reported for the first time in Sri Lanka. The pathogen was found in cowpea field soils from 3 of 5 geographic regions sampled. Only one site however, had plants exhibiting disease symptoms. Of the eight cowpea varieties grown in Sri Lanka, four were shown to be relatively resistant; all other legumes inoculated were completely resistant. Two morphologic and physiologic races of P. vignae were identified among the 24 isolates recovered, based on differential pathogenicity on cowpea varieties. Bacteria isolated from field soils, and other known bacterial biocontrol agents, inhibited P. vignae in culture, but only three Sri Lankan isolates considerably suppressed the disease in greenhouse tests. Volatile substances produced by most bacteria inhibited mycelial growth and sporangial production by P. vignae. The increased pH of the exposed medium suggested the involvement of ammonia. Volatile inhibitors were produced by these bacteria in soil, but only with added substrate; Strain DF-3101 also reduced oospore germination in soil. Cowpea plants inoculated with the VA mycorrhizal (VAM) fungus Glomus intraradices in P. vignae-infested soil were larger than non-mycorrhizal plants, but only at low levels of the pathogen. VAM colonization was reduced at high levels of the pathogen, and root infection by the pathogen was reduced by VAM. The fungicides metalaxyl, fosetyl-Al, Banrot, and Manzate-200DF reduced in vitro mycelial growth, but at different concentrations. Sporangia formation and germination, and oogonia formation by P. vignae, was reduced significantly by metalaxyl and fosetyl-Al. In greenhouse tests, metalaxyl, even at low concentrations, reduced disease; Fosetyl-Al was effective at high concentrations; Manzate-200DF was effective as a soil drench but not as a foliar spray; Banrot effectively reduced disease at 50 mg a.i./L. Exposure of a bacterial biocontrol agent to these fungicides in vitro did not affect its capacity to subsequently produce volatile inhibitors, but exposure to 10 ug/ml of metalaxyl and 50 ug/m1 of Manzate-200DF reduced its capacity to subsequently inhibit mycelial growth of P. vignae. Biology, Epidemiology, and Biological and Chemical Control of Phytophthora vignae by W. Gerard Dilantha Fernando A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Completed October 4, 1990 Commencement June 1991 APPROVED: Redacted for Privacy Professor of Botany and Plant Pathology in charge of major Redacted for Privacy Head of Department of Botany and Plant P hology Redacted for Privacy Dean of Graduate hool \.1 Date thesis is presented October 4, 1990 Typed by W. Gerard Dilantha Fernando Dedicated with Love to Pushpini and Iru ACKNOWLEDGEMENTS Financial supportfor this thesis was provided by a scholarship through USAID, from the Department of Agriculture, Sri Lanka and from Dr. Robert Linderman by allowing me to use his lab and greenhouse facilities. I thank the good Lord for having been with me in every decision and step I took in my life. His guidance, love and forgiveness has made my life worthwhile in every way. I feel it was God's choice that brought me to work with Bob Linderman, my mentor and major professor. Words cannot describe how grateful I am for his guidance throughout my project, and mostly for allowing me to think independently and always valuing my suggestions or comments. At times he wasmy teacher and leader and at times he was my friend, who would listen to all my problems. I extend my appreciation for all this and my admiration for his knowledge of Rhizosphere Biology. I am grateful to the members of my doctoral committee, Drs. Joyce Loper, Peter Bottomley, Russ Ingham, and Kermit Cromack for their help and advice throughout the dissertation. I have especially enjoyed talking to Joyce about my work, and learning a lot from these discussions. To Dr. Tim Paulitz for his helpful suggestions in biocontrol research, to Dave Ianson, Mac McDaniel, and Tom Thompson for computer help, to Dr. Jack Pinkerton for providing his expertise on the 'MAC', to Rohini Ekanayake and Rod Poppleton for their greenhouse help, and to Phil Hamm for sharing his knowledge on Phytophthora. To all those in the Horticultural Crops Research Unit who always obliged with a helping hand when I needed their help technically or otherwise. They never made me feel I was far from home! I am indebted to all of them. During our four year stay in Corvallis, we made a lot of friends who have helped to make our transition to American life much easier. We are indebted to many, in fact too many to list. I especially thank my dear parents Matilda and Gerald Fernando who have always been behind me in every decision I made and offered their daily prayers for my studies and happiness in life. Though I may not say it enough, I thank them for their love, support and understanding. To my 'second' parents Sriya and Piyasoma Attanagoda and 'bro' Prabat for their love and help in our times of need. Finally I give my deepest thanks from the bottom of my heart to my wife Pushpini, for her love, support, friendship, and also for providing my favorite `distraction' Iru. As small as he is, Iru contributed to my graduate life in his own way of love and care when I needed them most. Both Pushpini and Iru went through all of it for me, and I doubt whether I could have ever made it this far without them! CONTRIBUTION OF AUTHORS R.G.Linderman assisted with the experimental design, interpretation of results and critically reviewing the thesis, and appears as a co-author on these manuscripts. The manuscript titled "Phvtophthora root and stem rot of cowpea in Sri Lanka" (chapter 1) was an investigation conducted in Sri Lanka, which reported the presence of P. vignae in Sri Lanka for the first time. B. Sivakadadcham assisted with the identification of the fungus and setting up experiments. TABLE OF CONTENTS Page INTRODUCTION 1 CHAPTER 1 Phytophthora Root and Stem Rot of Cowpea 6 in Sri Lanka Summary 6 Introduction 7 Materials and Methods 8 Results 10 Discussion 12 References 15 CHAPTER2 -Distribution and Pathogenicity of 16 Phytophthora vignae in Soils of Sri Lanka Summary 16 Introduction 17 Materials and Methods 18 Results 27 Discussion 29 References 41 CHAPTER3 -Biological Control of Phytophthora vignae 45 by Soil Bacteria Summary 45 Introduction 47 Materials and Methods 50 Results 61 Discussion 65 References 99 CHAPTER 4 - Chemical Control of Phytophthora vicinae 104 Stem and Root Rot of Cowpeas Summary 104 Introduction 106 Materials and Methods 108 Results 116 Discussion 120 References 134 CHAPTER 5 Effects of the Mycorrhizal Fungus Glomus 138 intraradices on Phytophthora vignae Root and Stem Rot of Cowpea Summary 138 Introduction 139 Materials and Methods 142 Results 145 Discussion 147 References 152 SUMMARY AND CONCLUSIONS 156 BIBLIOGRAPHY 159 LIST OF FIGURES FIGURE PAGE CHAPTER 1 1-1 Phytophthora root and stem rot disease of 14 cowpea and the incitant P. vignae.(A) Stem lesion (arrow) on symptomatic cowpea (B) oospore (C) sporangium of the pathogen, produced after 10 days on cowpea agar. CHAPTER 3 3-la Inhibition of Phytophthora vignae isolates 72 P001 and P006 by Sri Lankan strain AGB-3 on PDA. 3-lb Inhibition of P. vignae by production of 73 antibiotics by Psudomonas fluorescens (PF-5) on PDA. 3-1c Production of siderophores and inhibition of 74 P. vignae by P. fluorescens (PF-5) on KB. 3 -id Inhibition of P. vignae on different media 75 by P. fluorescens (PF-5). 3-2a Inhibition of P. vignae through volatile 76 compounds by strain DF-1481 on TSA. 3-2b Inhibition of P. vignae through volatile 77 compounds by Salmonella sp. (JL-4085) on KB. 3-2c Inhibition of P. vignae through volatile 78 compounds by DF-7104 strain on NA. 3-3a Inhibition of P. vignae by Enterobacter 79 aerogenes (B-8) by production of volatile compounds on TSA and NA with removal of the bacterium, before inoculation with the pathogen. 3-3b Inhibition of P. vignae by PGPR Psudomonas sp. 80 (JL-4084) by production of volatile compounds on TSA and KB with removal of bacterium before inoculation with the pathogen. 3-4a Inhibition of P. vignae mycelial growth by 81 production of volatile compounds by Bacillus subtilis (AB-6) in soil amended with TSB. 3-4b Inhibition of P. vignae mycelial growth by 82 production of volatile compounds by P. fluorescens (PF-5) in soil amended with Tryptic Soy Broth. 3-4c Inhibition of P. vignae mycelial growth by 83 production of volatile compounds by E. aerogenes (B-8) in soil amended with cowpea seed extract. 3-4d Inhibition of P. vignae mycelial growth by 84 production of volatile compounds by Salmonella sp. (JL-4085) in soil amended with cowpea seed extract. 3-5 Rhizoplane colonization in cowpea by DF-1124. 85 Log CFU per gram of root on Blackeye and Mississippi purple varieties. 3-6 pH changes on PDA medium exposed to 86 volatile compounds produced by DF-3101 grown on TSA, NA, and KB media. LIST OF TABLES TABLE PAGE CHAPTER 2 2-1 Isolation of Phytophthora vignae from 37 soil collection sites within five districts of Sri Lanka. 2-2 Percent mortality of cowpea 'California 38 Black-eye' plants grown in test soils collected from sites within five districts of Sri Lanka, and the calculated Disease Potential Index.
Recommended publications
  • Alnus Glutinosa
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875229; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Investigations into the declining health of alder (Alnus glutinosa) along the river Lagan in Belfast, including the first report of Phytophthora lacustris causing disease of Alnus in Northern Ireland Richard O Hanlon (1, 2)* Julia Wilson (2), Deborah Cox (1) (1) Agri-Food and Biosciences Institute, Belfast, BT9 5PX, Northern Ireland, UK. (2) Queen’s University Belfast, Northern Ireland, UK * [email protected] Additional key words: Plant health, Forest pathology, riparian, root and collar rot. Abstract Common alder (Alnus glutinosa) is an important tree species, especially in riparian and wet habitats. Alder is very common across Ireland and Northern Ireland, and provides a wide range of ecosystem services. Surveys along the river Lagan in Belfast, Northern Ireland led to the detection of several diseased Alnus trees. As it is known that Alnus suffers from a Phytophthora induced decline, this research set out to identify the presence and scale of the risk to Alnus health from Phytophthora and other closely related oomycetes. Sampling and a combination of morphological and molecular testing of symptomatic plant material and river baits identified the presence of several Phytophthora species, including Phytophthora lacustris. A survey of the tree vegetation along an 8.5 km stretch of the river revealed that of the 166 Alnus trees counted, 28 were severely defoliated/diseased and 9 were dead.
    [Show full text]
  • Presidio Phytophthora Management Recommendations
    2016 Presidio Phytophthora Management Recommendations Laura Sims Presidio Phytophthora Management Recommendations (modified) Author: Laura Sims Other Contributing Authors: Christa Conforti, Tom Gordon, Nina Larssen, and Meghan Steinharter Photograph Credits: Laura Sims, Janet Klein, Richard Cobb, Everett Hansen, Thomas Jung, Thomas Cech, and Amelie Rak Editors and Additional Contributors: Christa Conforti, Alison Forrestel, Alisa Shor, Lew Stringer, Sharon Farrell, Teri Thomas, John Doyle, and Kara Mirmelstein Acknowledgements: Thanks first to Matteo Garbelotto and the University of California, Berkeley Forest Pathology and Mycology Lab for providing a ‘forest pathology home’. Many thanks to the members of the Phytophthora huddle group for useful suggestions and feedback. Many thanks to the members of the Working Group for Phytophthoras in Native Habitats for insight into the issues of Phytophthora. Many thanks to Jennifer Parke, Ted Swiecki, Kathy Kosta, Cheryl Blomquist, Susan Frankel, and M. Garbelotto for guidance. I would like to acknowledge the BMP documents on Phytophthora that proceeded this one: the Nursery Industry Best Management Practices for Phytophthora ramorum to prevent the introduction or establishment in California nursery operations, and The Safe Procurement and Production Manual. 1 Title Page: Authors and Acknowledgements Table of Contents Page Title Page 1 Table of Contents 2 Executive Summary 5 Introduction to the Phytophthora Issue 7 Phytophthora Issues Around the World 7 Phytophthora Issues in California 11 Phytophthora
    [Show full text]
  • Journal of Agricultural Research Department of Agriculture
    JOURNAL OF AGRICULTURAL RESEARCH DEPARTMENT OF AGRICULTURE VOL. V WASHINGTON, D. C, OCTOBER II, 1915 No. 2 PERENNIAL MYCELIUM IN SPECIES OF PERONOSPO- RACEAE RELATED TO PHYTOPHTHORA INFES- TANS By I. E. MELHUS, Pathologist, Cotton and Truck Disease Investigations, Bureau of Plant Industry INTRODUCTION Phytophthora infestans having been found to be perennial in the. Irish potato (Solanum tvherosum), the question naturally arose as to whether other species of Peronosporaceae survive the winter in the northern part of the United States in the mycelial stage. As shown in another paper (13),1 the mycelium in the mother tuber grows up the stem to the surface of the soil and causes an infection of the foliage which may result in an epidemic of late-blight. Very little is known about the perennial nature of the mycelium of Peronosporaceae. Only two species have been reported in America: Plasmopara pygmaea on Hepática acutiloba by Stewart (15) and Phytoph- thora cactorum on Panax quinquefolium by Rosenbaum (14). Six have been shown to be perennial in Europe: Peronospora schachtii on Beta vtUgaris and Peronospora dipsaci on Dipsacus follonum by Kühn (7, 8) ; Peronospora alsinearum on Stellaria media, Peronospora grisea on Veronica heder aefolia, Peronospora effusa on S pinada olerácea, and A triplex hor- tensis by Magnus (9); and Peronospora viiicola on Vitis vinifera by Istvanffi (5). Many of the hosts of this family are annuals, but some are biennials, or, like the Irish potato, are perennials. Where the host lives over the winter, it is interesting to know whether the mycelium of the fungus may also live over, especially where the infection has become systemic and the mycelium is present in the crown of the host plant.
    [Show full text]
  • Appl. Environ. Microbiol. 60:2616–2621
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 1998, p. 948–954 Vol. 64, No. 3 0099-2240/98/$04.0010 Copyright © 1998, American Society for Microbiology PCR Amplification of Ribosomal DNA for Species Identification in the Plant Pathogen Genus Phytophthora JEAN B. RISTAINO,* MICHAEL MADRITCH, CAROL L. TROUT, AND GREGORY PARRA Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 Received 7 August 1997/Accepted 15 December 1997 We have developed a PCR procedure to amplify DNA for quick identification of the economically important species from each of the six taxonomic groups in the plant pathogen genus Phytophthora. This procedure involves amplification of the 5.8S ribosomal DNA gene and internal transcribed spacers (ITS) with the ITS primers ITS 5 and ITS 4. Restriction digests of the amplified DNA products were conducted with the restriction enzymes RsaI, MspI, and HaeIII. Restriction fragment patterns were similar after digestions with RsaI for the following species: P. capsici and P. citricola; P. infestans, P. cactorum, and P. mirabilis; P. fragariae, P. cinnamomi, and P. megasperma from peach; P. palmivora, P. citrophthora, P. erythroseptica, and P. cryptogea; and P. mega- sperma from raspberry and P. sojae. Restriction digests with MspI separated P. capsici from P. citricola and separated P. cactorum from P. infestans and P. mirabilis. Restriction digests with HaeIII separated P. citro- phthora from P. cryptogea, P. cinnamomi from P. fragariae and P. megasperma on peach, P. palmivora from P. citrophthora, and P. megasperma on raspberry from P. sojae. P. infestans and P. mirabilis digests were identical and P. cryptogea and P.
    [Show full text]
  • Phytophthora: a Guide to Molecular Analyses
    Phytophthora: A guide to molecular analyses Kelly Ivors, Assoc. Professor Horticulture & Crop Science Cal Poly, San Luis Obispo Circa late 2002… Cal Poly Strawberry Center, 2016 Phytophthora… an old enemy Dozens of species detected in coastal California on: • avocado • asparagus • cauliflower (rare) • citrus • grape • pepper • raspberry • sage • Blightspinach and (rare)Dieback • strawberry • tomato • numerous ornamentals • and forest plants Root rot Phytophthora in ornamentals Hundreds of ornamental plants are susceptible. Incite root rot, crown rot, and foliar blights. Caused by a few dozen Phytophthora species in U.S. cinnamomi, cryptogea, citricola,citrophthora, cactorum, cambivora, drecshleri, foliorum, gonapodyides, heveae, hibernalis, nicotianae, palmivora, ramorum, syringae, tropicalis… plus many more. Phytophthora… an old enemy Phytophthora cinnamomi rootstock trial 1979 Phytophthora… an old enemy Phytophthora infestans Trial 1972 Phytophthora… an old enemy Phytophthora nicotianae Host resistance trial 1960s Phytophthora… an old enemy Phytophthora ornamental workshop 1970 Phytophthora… a new enemy Phytophthora ramorum Circa 1990s Phytophthora… a new enemy Phytophthora siskiyouensis 2007 (Foster City, CA) Blight and Dieback Root rot Phytophthora… a new enemy The more you look, the more you find… Extensive surveys have been conducted in historically underexplored ecosystems to determine the spread of invasive species in forest decline worldwide New records in 2007 collected by PDIC Host Common Name Fungus Record Itea virginica Sweetspire
    [Show full text]
  • The Phytophthora Cactorum Genome Provides Insights Into The
    www.nature.com/scientificreports Corrected: Author Correction OPEN The Phytophthora cactorum genome provides insights into the adaptation to host defense Received: 30 October 2017 Accepted: 12 April 2018 compounds and fungicides Published online: 25 April 2018 Min Yang1,2, Shengchang Duan1,3, Xinyue Mei1,2, Huichuan Huang 1,2, Wei Chen1,4, Yixiang Liu1,2, Cunwu Guo1,2, Ting Yang1,2, Wei Wei1,2, Xili Liu5, Xiahong He1,2, Yang Dong1,4 & Shusheng Zhu1,2 Phytophthora cactorum is a homothallic oomycete pathogen, which has a wide host range and high capability to adapt to host defense compounds and fungicides. Here we report the 121.5 Mb genome assembly of the P. cactorum using the third-generation single-molecule real-time (SMRT) sequencing technology. It is the second largest genome sequenced so far in the Phytophthora genera, which contains 27,981 protein-coding genes. Comparison with other Phytophthora genomes showed that P. cactorum had a closer relationship with P. parasitica, P. infestans and P. capsici. P. cactorum has similar gene families in the secondary metabolism and pathogenicity-related efector proteins compared with other oomycete species, but specifc gene families associated with detoxifcation enzymes and carbohydrate-active enzymes (CAZymes) underwent expansion in P. cactorum. P. cactorum had a higher utilization and detoxifcation ability against ginsenosides–a group of defense compounds from Panax notoginseng–compared with the narrow host pathogen P. sojae. The elevated expression levels of detoxifcation enzymes and hydrolase activity-associated genes after exposure to ginsenosides further supported that the high detoxifcation and utilization ability of P. cactorum play a crucial role in the rapid adaptability of the pathogen to host plant defense compounds and fungicides.
    [Show full text]
  • Crown Canker of Dogwood: Phytophthora Cactorum Introduction Area
    Plant Disease Diagnostic Clinic Plant Pathology and Plant‐Microbe Biology Section 334 Plant Science Building Ithaca, NY 14853‐5904 Crown Canker of Dogwood: Phytophthora cactorum Introduction area. If the disease is present, the inner bark, cambium, and sapwood show discoloration. Crown Canker, also known as Collar Rot of dogwood is caused by the pathogen Phytophthora Over a period of months to years, this killed area of cactorum. The disease causes injury to flowering bark becomes sunken, dries, and falls away leaving dogwood (Cornus florida) and may kill the affected the wood exposed. The canker is then visible and its tree or weaken the tree and make it more susceptible seasonal progress is not hard to see. As the tree to attack by other organisms. becomes weakened, it is more susceptible to attack by the dogwood borer and is more severely affected by Symptoms and Signs short, droughty periods during the summer. The first symptom that may be noticed is usually a Disease Cycle reduced number and size of leaves produced The affected dogwood may generally have an unhealthy Infection usually occurs through injuries caused look. The leaf color is lighter than normal during the during transplanting, or from lawn care (mowing summer and in late summer the leaves turn injuries), cultivation, etc. prematurely yellow or red and drop early. Affected trees in the later stages of the disease may produce an abnormally large number of flowers and fruits. Management Strategies During dry times in summer, diseased dogwoods are much more likely than healthy trees to have large Since infection usually occurs through injuries, the numbers of leaves curl or shrivel or to show wilting of first priority is to avoid wounding the crown region all foliage.
    [Show full text]
  • Genetic and Phenotypic Variation of Phytophthora Crassamura Isolates from California Nurseries and Restoration Sites
    Fungal Biology xxx (xxxx) xxx Contents lists available at ScienceDirect Fungal Biology journal homepage: www.elsevier.com/locate/funbio Genetic and phenotypic variation of Phytophthora crassamura isolates from California nurseries and restoration sites * Laura L. Sims a, d, , Cameron Chee a, Tyler Bourret b, Shannon Hunter c, 1, Matteo Garbelotto a a Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA b Department of Plant Pathology, University of California, Davis, CA, 95616, USA c Department of Biology, School of Science, University of Waikato, Forest Protection, Scion, Rotorua 3010, New Zealand d Forestry Program, School of Agricultural Sciences and Forestry, Louisiana Tech University, LA, 71272, USA article info abstract Article history: Phenotypic and sequence data were used to characterize 28 isolates resembling Phytophthora Received 4 August 2018 megasperma from 14 host species in 2 plant production facilities and 10 restoration sites across the San Received in revised form Francisco Bay Area (California; USA). Size of the oogonia and DNA sequences (nuclear internal transcribed 22 October 2018 spacer (ITS) and mitochondrial cytochrome c oxidase subunit 1 (COX 1)) were compared, and sensitivity Accepted 27 November 2018 to mefenoxam and pathogenicity were measured. Based on ITS 61 % of isolates matched ex-type Available online xxx sequences of Phytophthora crassamura from Italy, and the remainder matched or were close to the P. Corresponding Editor: Nik Money megasperma ex-type. However, all California P. crassamura genotypes belonged to four unique COX 1 haplotype lineages isolated from both nurseries and restoration sites. Although lineages were sensitive to Keywords: mefenoxam, a significant difference in sensitivity was identified, and all continued growth in-vitro.
    [Show full text]
  • Phytophthora Sojae Infecting Soybean: Pathotype Diversity, New Sources
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2017 Phytophthora Sojae Infecting Soybean: Pathotype Diversity, New Sources of Resistance and Interaction with the Soybean Cyst Nematode Rawnaq Nazneen Chowdhury South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Agricultural Science Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Chowdhury, Rawnaq Nazneen, "Phytophthora Sojae Infecting Soybean: Pathotype Diversity, New Sources of Resistance and Interaction with the Soybean Cyst Nematode" (2017). Theses and Dissertations. 1186. http://openprairie.sdstate.edu/etd/1186 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. PHYTOPHTHORA SOJAE INFECTING SOYBEAN: PATHOTYPE DIVERSITY, NEW SOURCES OF RESISTANCE AND INTERACTION WITH THE SOYBEAN CYST NEMATODE BY RAWNAQ NAZNEEN CHOWDHURY A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Major in Plant Science South Dakota State University 2017 iii I would like to dedicate this thesis to my family; my mother Bilquis Alam Chowdhury, my father Raisul Alam Chowdhury, my sister Reema Najma Chowdhury and my brother Late Arif Alam Chowdhury. They have always encouraged me to pursue my passions. I am forever grateful for their never-ending love and support. iv ACKNOWLEDGMENTS With faith and gratitude to the almighty, I would like to express my earnest thanks to give me an opportunity to make my life meaningful in the world.
    [Show full text]
  • Canker-Disease-Slideshow.Pdf
    Marion Murray Utah State University IPM Program Pathogen (fungus or bacteria) grows in bark and cambium Localized necrosis Variable in disease severity Pruning stub Freeze injury Dead twig Narrow branch crotch Fresh pruning cut Fungal spores or bacteria spread by rain Concentric rings may form; or pathogen or branch dies Fruiting structures or bacterial ooze forms on existing canker Biggs & Grove, Leucostoma Canker of Stone Fruits Disease Cycle; APS Annual cankers Perennial Target cankers Perennial Diffuse cankers Fusarium canker on birch Pathogen is active for only one season, then dies Stressed or injured trees can get multiple cankers Little impact on tree growth Penn State Department of Plant Pathology & Environmental Microbiology Archives, Penn State University, Bugwood.org Nectria target canker Balanced interaction of fungus and host Pathogen grows when tree is dormant https://twitter.com/HereBeSpiders11 Cryphonectria parasitica, cause of chestnut blight Often opportunistic fungi that can survive as saprophyte Can become aggressive pathogens Host unable to respond or produce a callus wall Expands during the growing season George Hudler, Cornell University, Bugwood.org Sanitation – remove existing cankers Proper pruning practices Improve tree vigor trees stressed by drought or nutrient deficiencies more susceptible When pruning out cankers, remove the entire diseased area 4 - 12 inches below canker margin Failure to callus/heal = early warning of continued infection 50% Remove diseased limbs 4 - 12 inches below margin of canker Disinfect
    [Show full text]
  • MORPHOLOGICAL CHARACTERIZATION, VIRULENCE, and FUNGICIDE SENSITIVITY EVALUATION of PHYTOPHTHORA PALMIVORA by GABRIEL ANDRES TORR
    MORPHOLOGICAL CHARACTERIZATION, VIRULENCE, AND FUNGICIDE SENSITIVITY EVALUATION OF PHYTOPHTHORA PALMIVORA By GABRIEL ANDRES TORRES-LONDONO A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Plant Pathology - Doctor of Philosophy 2016 ABSTRACT MORPHOLOGICAL CHARACTERIZATION, AND VIRULENCE AND FUNGICIDE SENSITIVITY EVALUATION OF PHYTOPHTHORA PALMIVORA By Gabriel Andres Torres-Londono Phytophthora palmivora is restricting tropical plant pathogen for tropical and subtropical crops. Management of the pathogen has relied mostly on cultural practices and plant breeding; however, absence of these strategies in crops such as oil palm have resulted in catastrophic epidemics. During the present study a total of 150 isolates of P. palmivora obtained from 17 countries and 16 different hosts were studied. Differences in morphology, cultural growth, virulence and in-vitro and in-vivo response to nine fungicides, including the broadly used active ingredient mefenoxam, were elucidated. Differences in sporangia, chlamydospore and oospore measured parameters were observed among isolates; however, they ranged within those described for the species. Differences in sporangia length, sporangia breadth, and chlamydospore diameter seems to be influenced by the host family. This influence was not observed for the oospore characteristics. Virulence of isolates from Citrus spp. were also distinguishable from the rest of families when they were tested on apples; the lesion diameter of this isolates (31.9 mm) was about 10 millimeters shorter than the average of the rest of the families (41.7 mm). No significant differences were observed within the other families. Isolates from the Americas caused larger lesions than those from Asia and Oceania. Only one isolate of P.
    [Show full text]
  • Landscape Entomology/Disease Symposia
    Volume 14 No. 4 October 1999 Landscape Entomology/Disease Symposia This year we are serving up two symposia in the time frame of one. Due to scheduling difficulties we were not able to offer the Entomology symposium in June. Since that time, the lerp psyllid has devastated eucalyptus plantings all over Southern California. There has been a concentrated effort by various UC scientists to address the lerp psyllid problem and we hope to showcase these and other entomological problems November 23. The lerp psyllid problem is a perfect model for biological control and indeed U.C. scientists are proceeding ahead with plans for release of biological control agents. A lot of time and work goes into the process of finding natural enemies or predators to pest insects, importing and rearing them and then releasing them here in California. This year, we will spotlight the process with a keynote lecture by Dr. Don Dahlsten from U.C. Berkeley. The following day (November 24) we will have our regularly scheduled Landscape Disease Symposium. Each year, we try to have a theme as well as a thorough treatment of a single disease group. Our overall theme is alternative methods of control. Non-chemical control is not the intent of the theme. We are interested in new and different ways of controlling plant diseases—alternatives to what we are used to. If you come away from this meeting with one new weapon in your fight against plant disease I feel we will have been successful. This year, Steve Koike will give an in-depth presentation on wilt diseases of ornamental trees; Mike Stanghellini will update us on soil-borne pathogens; Jerry Turney will cover diseases of azaleas and camelias, and Heather Scheck will give an update on local diseases of ornamental plants.
    [Show full text]