Drug Abuse and Drug Abuse Research. the Third Triennial Report to Congress from the Secretary, Department of Health and Human Services

Total Page:16

File Type:pdf, Size:1020Kb

Drug Abuse and Drug Abuse Research. the Third Triennial Report to Congress from the Secretary, Department of Health and Human Services DOCUMENT RESUME ED 348 604 CG 024 422 TITLE Drug Abuse and Drug Abuse Research. The Third Triennial Report to Congress from the Secretary, Department of Health and Human Services. INSTITUTION National Inst. on Drug Abuse (DHHS/PHS), Rockville, Md. REPORT NO DHHS-Pub-NO-(ADM)91-1704 PUB DATE 91 NOTE 284p. PUB TYPE Reports General (140) EDRS PRICE MFO1 /PC12 Plus Postage. DESCRIPTORS Cocaine; *Drug Abuse; Drug Rehabilitation; Drug Use; Incidence; Mental Disorders; Public Policy; Research Problems; Smoking; Trend Analysis; Use Studies ABSTRACT This report summarizes changes that have occurred in understanding of the health implications of the use and abuse of illegal and legal drugs as a result of research since 1986. It is noted that wherever possible, research findings have been summarized in non-technical language. Some technical material is included because of its basic importance and its relevance to the needs of specialists working on related problems and of those advising lawmakers and other civil authorities on public policy. These chapters are included:(1) "Nature and Extent of Drug Abuse in the United States" which discusses prevalence and consequences of drug use; (2) 'Prevention Research" which discusses individual and environmental risk factors;(3) "Treatment Research" which summarizes treatment methods;(4) "Dual Diagnosis: Drug Abuse and Psychiatric Illness" which presents diagnostic issues and treatment strategies for dual disordered patients; (5) "AIDS (Acquired Immunodeficiency Syndrome) and Intravenous Drug Abuse";(6) "Cocaine and Other Stimulants"; (7) "Marijuana and the Cannabinoids" which discusses health consequences; (8) "Phencyclidine (PCP) and Related Substances"; (9) "Heroin, Other Opiates, and the Immune Function" which focuses on recent research accomplishments; (10) "Sedatives and Anti-Anxiety Drugs"; (11) "Nicotine Dependence"; and (12) "Basic Research on Opioid Peptides and Receptors" which summarizes opioid advances. Bibliographies are included with each chapter. Statistics, tables, and graphs illustrate the report. Author and drug indexes are included. (ABL) *********************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. *********************************************************************** UG 'OUSE AN : e L THE THIRD TRIENNIAL REPORTTd,CONGRESS Egi_n_ FROM THE SECRETARY, DEPARTMENT OF HEALTI, AND HUMAN SERVICES U S DEPARTMENT OF EDUCATION Othce of Educational Research and improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) Th.5 document has teen reproduced as receyed from the person or orpanrzatron ohgmatmg C M,nor changes nave been made 10 .rnb,Ove ,e0,0C1UCI.On quaidy Po.nts of v,ew or opinions stated in th.sdocu ment co not necessarily represent of froal OE RI poso.on or pol.cy w BEST COPY AVAILABLE2 11 DRUG ABUSE AND DRUG ABUSE RESEARCH The Third Triennial Report to Congress from the Secretary, Department of Health and Human Services U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Doug Abuse 5600 Fishers Lane Rockville, Maryland 20857 Certain tables and figures, as noted in the text, are copyrighted and are reproduced herein with permission of the copyright holders and of the authors. Further reproduction of these copyrighted materials is prohibited without specific permission of the copyright holders. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the National Institute on Drug Abuse or the authors. Citation of the source is appreciated. The U.S. Government does not endorse or favor any specific commercial product or company. Trade or company names appearing in this publication are used only because they are considered essential in the context of the studies reported herein. DHHS Publication No. (ADM)91-1704. Printed 1991. Acknowledgments AIDS and Intravenous Drug Abuse Preparation of the Third Triennial Report on Drug Dr. Wayne Wiebel and Mr. Thomas Lampinen, Abuse and Drug Abuse Research to the Congress from University of Illinois at Chicago the Secretary, Department of Health and Human Services, has been accomplished through the generous Cocaine and Other Stimulants cooperation of many members of the scientific Dr. Scott Lukas, McLean Hospital, Belmont, community.By making available their current Massachusetts research findings and recent work of other experts in the field of drug abuse, they have made it possible to Marijuana and the Cannabinoids include more up-to-date information than could Drs. Louis S. Harris and William Martin, Virginia otherwise have been presented. Commonwealth University Their contributions to the following chapters of the Phencyclidine and Related Substances report are gratefully acknowledged: Drs. James Woods and Gail Winger, University of Michigan Nature and Extent of Drug Abuse in the United States Heroin, Other Opiates, and the Immune Function Mr. Joseph Gfroerer, Division of Epidemiology and Dr. Mary Jeanne 'Creek, Rockefeller University Prevention Research, National Institute on Drug Abuse Sedatives and Anti-Anxiety Drugs Dr. Michiko Okamoto, Cornell University Medical Prevention Research College Dr. Ray Lorion, University of Maryland Nicotine Dependence Treatment Research Dr. Jack Henningfield, Addiction Research Center, Dr. George E. Bigelow, Johns Hopkins University National Institute on Drug Abuse School of Medicine Basic Research on Opioid Peptides and Receptors Dual Diagnosis: Drug Abuse and Psychiatric Drs. Huda Akil and Stanley Watson, University of Illness Michigan Dr. Thomas McLellan, University of Pennsylvania iii 5 Dr. Chris-Ellyn Johanson, Uniformed Services Additional assistance in reviewing the material University of the Health Sciences contained in this report was provided by members of the staff of the National Institute on Drug Abuse and Dr. Howard Kalant, University of Toronto by: Dr. HoArd Kaplan, Texas A & M University Dr. James Anthony, Johns Hopkins School of Dr. Marlyne Kilbey, Wayne State University Hygiene and Public Health Dr. Herbert D. Kleber, Yale University Dr. Robert L. Balster, Medical College of Dr.Edward Lichtenstein, Oregon Research Virginia Institute Dr. Floyd Bloom, Research Institute of Scripps Dr. Charles O'Brien, University of Pennsylvania Clinic Dr. Don Des Jarlais, Narcotic and Drug Dr. Patrick O'Malley, University of Michigan Research, Inc. Dr.Mario Perez-Reyes, University of North Carolina at Chapel Hill Dr. Edward F. Domino, University of Michigan School of Medicine Dr. Bruce J. Rounsaville, Yale University School of Medicine Dr. Lynda Dykstra, University of North Carolina Dr.Solomon H. Snyder, Johns Hopkins Dr.Marian W. Fischman, Johns Hopkins University School of Medicine University Ms. Nancy Tobler, Univen# of Albany Dr.Brian R. Flay, University of Illinois at Chicago Dr. William L. Woolverton, University of Chicago Dr. Roland R. Griffiths, Johns Hopkins School of Medicine The contributions of those named and of the larger scientific community are gratefully acknowledged. Dr.John E. Helzer, Washington University School of Medicine Mrs. Mary Louise Embrey and Dr. Christine R. Dr.Leo Hollister, Harris County Psychiatric Hartel at the National Institute on Drug Abuse had Center overall responsibility for preparation of the report. Mrs. Sally Breul assisted in administering and coor- Dr. John Hughes, University of Vermont dinating the preparation of the report, and Dr. Robert Petersen served as technical editor. iv Contents Page Acknowledgments iii Preface vi Executive Summary 1 Nature and Extent of Drug Abuse in the United States 13 Prevention Research 31 Treat-nent Research 47 Dual Diagnosis: Drug Abuse and Psychiatric Illness 61 AIDS and Intravenous Drug Abuse 85 Cocaine and Other Stimulants 111 Marijuana and the Cannabinoids 131 Phencyclidine (PCP) and Related Substances 145 Heroin, Other Opiates, and the Immune Function 161 Sedatives and Anti-Anxiety Drugs 189 Nicotine Dependence 213 Basic Research on Opioid Peptides and Receptors 243 Author Index 261 Drug Index 279 Preface Today, no domestic issue captures the attention of the American public to the extent that drug abuse does. From the morning paper to the evening news, we are updated daily about the health and social problems that are caused by the use of dependence producing drugs. These drugs may be illegal ones like cocaine and marijuana or legal ones like nicotine and alcohol.There is no question of the pervasiveness of their use. One in three Americans have used an illicit drug at some time during their lives. In the last 3 years, the U.S. Congress has authorized the spending of many millions of dollars to combat drug abuse problems in all their many aspects.The President, through the National Drug Control Strategy, has set an agenda for our Nation to become drug free. Drug Abuse and Drug Abuse Research, The Third Triennial Report to Congress summarizes the changes that have occurred in our understanding of the health implications of the use and abuse of illegal and legal drugs as a result of research since 1986. Research into these biological and social factors continues to prove how much we still have to learn. Though much remains to be done, the Triennial Report traces a record of research advances we can be proud of.It shows us that dependence producing drugs, even those with social or legal acceptability like nicotine, exact too
Recommended publications
  • 510(K) SUBSTANTIAL EQUIVALENCE DETERMINATION CHECKLIST
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY ONLY TEMPLATE A. 510(k) Number: k122633 B. Purpose for Submission: New device C. Measurand: d-Amphetamine, Secobarbital, Buprenorphine Glucuroide, Oxazepam, Benzoylecgonine, 3,4-methylenedioxymethamphetamine, Methamphetamine, Methadone, Moprhine, Oxycodone, Phencyclidine, Propoxyphene, Nortriptyline, 11-nor-∆9-Tetrahydrocannabinol- 9-carboxylic acid D. Type of Test: Qualitative lateral flow immunoassay E. Applicant: Branan Medical Corporation F. Proprietary and Established Names: ToxCup® Drug Screen Cup G. Regulatory Information: Product Classification Regulation Section Panel Code LDJ II 862.3870 Cannabinoid test system Toxicology (91) DIO II 862.3250 Cocaine and cocaine metabolite Toxicology (91) test system DJG II 862.3650 Opiate test system Toxicology (91) DJC II 862.3610 Methamphetamine test system Toxicology (91) DKZ II 862.3100 Amphetamine test system Toxicology (91) LCM unclassifed Enzyme immunoassay Phencyclidine Toxicology (91) JXM II 862.3170 Benzodiazepine test system Toxicology (91) DIS II 862.3150 Barbiturate test system Toxicology (91) DJR II 862.3620 Methadone test system Toxicology (91) LFG II 862.3910 Tricyclic antidepressant drugs Toxicology (91) test system JXN II 862.3700 Propoxyphene test system Toxicology (91) H. Intended Use: 1. Intended use(s): See indications for use below. 2. Indications(s) for use: The ToxCup Drug Screen Cup is an in vitro screening test for the rapid detection of multiple drugs and drug metabolites in human urine at or above
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • The Alkaloids: Chemistry and Biology
    CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. B. EMMANUEL AKINSHOLA (135), Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, eakinshola@ howard.edu NORMA E. ALEXANDER (293), NDA International, 46 Oxford Place, Staten Island, NY 10301, [email protected] SYED F. ALI (79, 135), Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] KENNETH R. ALPER (1, 249), Departments of Psychiatry and Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, [email protected] MICHAEL H. BAUMANN (79), Clinical Psychopharmacology Section, Intra- mural Research Program, NIDA, National Institutes of Health, Baltimore, MD 21224, [email protected] DANA BEAL (249), Cures-not-Wars, 9 Bleecker Street, New York, NY 10012, [email protected] ZBIGNIEW K. BINIENDA (193), Division of Neurotoxicology, National Cen- ter for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] WAYNE D. BOWEN (173), Laboratory of Medicinal Chemistry, NIDDK, NIH, Building 8 B1-23, 8 Center Drive, MSC 0820, Bethesda, MD 20892, [email protected] FRANK R. ERVIN (155), Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec H3A 2T5, Canada, md18@musica. mcgill.ca JAMES W. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, jwfi@midway. uchicago.edu xi xii CONTRIBUTORS RENATE L. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, rlf2@midway. uchicago.edu GEERTE FRENKEN (283), INTASH, P.O.
    [Show full text]
  • Characterization of Multiple Sites of Action of Ibogaine
    ——Chapter 6—— CHARACTERIZATION OF MULTIPLE SITES OF ACTION OF IBOGAINE Henry Sershen, Audrey Hashim, And Abel Lajtha Nathan Kline Institute Orangeburg, New York 10962 I. Introduction.................................................................................................................. II. Issues Related to Ibogaine in the Treatment of Drug Dependence............................. A. Dopamine as a Primary Site of Drug-Mediated Responses .................................. B. Ibogaine or Its Metabolite and Acute versus Long-Term Effect........................... C. Single or Multiple Sites of Action of Ibogaine ..................................................... III. Effect of Ibogaine on Drug-Induced Behavior............................................................ IV. Binding Site Activity ................................................................................................... A. Relevant Site of Action.......................................................................................... V. Functional Activity ...................................................................................................... VI. Stimulant Drug Actions/Behaviors.............................................................................. VII. Current Non-Ibogaine Drug Treatment Protocols ....................................................... VIII. Conclusions.................................................................................................................. References...................................................................................................................
    [Show full text]
  • Switch to Tonic Discharge by Thyrotropin-Releasing Hormone
    Neuron Article Synchronized Network Oscillations in Rat Tuberoinfundibular Dopamine Neurons: Switch to Tonic Discharge by Thyrotropin-Releasing Hormone David J. Lyons,1,* Emilia Horjales-Araujo,1 and Christian Broberger1,* 1Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden *Correspondence: [email protected] (D.J.L.), [email protected] (C.B.) DOI 10.1016/j.neuron.2009.12.024 SUMMARY most common form of pituitary tumor (Burrow et al., 1981), and by the hyperprolactinaemia and sometimes galactorrhea that The pituitary hormone, prolactin, triggers lactation in is a side effect of antipsychotic drugs with DA antagonist prop- nursing mothers. Under nonlactating conditions, erties (Clemens et al., 1974; Meltzer and Fang, 1976). Yet, to prolactin secretion is suppressed by powerful inhibi- date, the cellular and network electrophysiological properties tion from hypothalamic tuberoinfundibular dopamine of the TIDA cell population have not been described. These (TIDA) neurons. Although firing pattern has been sug- factors are potentially fundamental features of prolactin regula- gested as integral to neuroendocrine control, the tion since discharge pattern may determine the functional output of neuroendocrine control of the anterior pituitary, as is observed electrical behavior of TIDA cells remains unknown. in the magnocellular system (Wakerley and Lincoln, 1973; Hatton We demonstrate that rat TIDA neurons discharge et al., 1983). Thus, the periodic bursting pattern in hypothalamic rhythmically in a robust 0.05 Hz oscillation. The oscil- gonadotropin-releasing hormone neurons is required for stimu- lation is phase locked between neurons, and while it lation of target gonadotrophs in the pituitary (Knobil, 1980). persists during chemical synaptic transmission When bursting is artificially replaced by continuous agonist stim- blockade, it is abolished by gap junction antagonists.
    [Show full text]
  • An Advanced Drug Delivery System Targeting Brain Through BBB
    pharmaceutics Review Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB Mantosh Kumar Satapathy 1 , Ting-Lin Yen 1,2,† , Jing-Shiun Jan 1,†, Ruei-Dun Tang 1,3, Jia-Yi Wang 3,4,5 , Rajeev Taliyan 6 and Chih-Hao Yang 1,5,* 1 Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; [email protected] (M.K.S.); [email protected] (T.-L.Y.); [email protected] (J.-S.J.); [email protected] (R.-D.T.) 2 Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan 3 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; [email protected] 4 Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan 5 Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan 6 Department of Pharmacy, Neuropsychopharmacology Division, Birla Institute of Technology and Science, Pilani 333031, India; [email protected] * Correspondence: [email protected]; Tel.: +886-2-2736-1661 (ext. 3197) † These authors contributed equally to this work. Abstract: The blood–brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among Citation: Satapathy, M.K.; Yen, T.-L.; some of the limitations associated with current neurotherapeutics.
    [Show full text]
  • Accurate Measurement, and Validation of Solubility Data † ‡ ‡ § † ‡ Víctor R
    Article Cite This: Cryst. Growth Des. 2019, 19, 4101−4108 pubs.acs.org/crystal In the Context of Polymorphism: Accurate Measurement, and Validation of Solubility Data † ‡ ‡ § † ‡ Víctor R. Vazqueź Marrero, , Carmen Piñero Berríos, , Luz De Dios Rodríguez, , ‡ ∥ ‡ § Torsten Stelzer,*, , and Vilmalí Lopez-Mej́ ías*, , † Department of Biology, University of Puerto RicoRío Piedras Campus, San Juan, Puerto Rico 00931, United States ‡ Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, United States § Department of Chemistry, University of Puerto RicoRío Piedras Campus, San Juan, Puerto Rico 00931, United States ∥ Department of Pharmaceutical Sciences, University of Puerto RicoMedical Sciences Campus, San Juan, Puerto Rico 00936, United States *S Supporting Information ABSTRACT: Solubility measurements for polymorphic com- pounds are often accompanied by solvent-mediated phase transformations. In this study, solubility measurements from undersaturated solutions are employed to investigate the solubility of the two most stable polymorphs of flufenamic acid (FFA forms I and III), tolfenamic acid (TA forms I and II), and the only known form of niflumic acid (NA). The solubility was measured from 278.15 to 333.15 K in four alcohols of a homologous series (methanol, ethanol, 1- propanol, n-butanol) using the polythermal method. It was established that the solubility of these compounds increases with increasing temperature. The solubility curves of FFA forms I and III intersect at ∼315.15 K (42 °C) in all four solvents, which represents the transition temperature of the enantiotropic pair. In the case of TA, the solubility of form II could not be reliably obtained in any of the solvents because of the fast solvent- mediated phase transformation.
    [Show full text]
  • Antiparasitic Properties of Cardiovascular Agents Against Human Intravascular Parasite Schistosoma Mansoni
    pharmaceuticals Article Antiparasitic Properties of Cardiovascular Agents against Human Intravascular Parasite Schistosoma mansoni Raquel Porto 1, Ana C. Mengarda 1, Rayssa A. Cajas 1, Maria C. Salvadori 2 , Fernanda S. Teixeira 2 , Daniel D. R. Arcanjo 3 , Abolghasem Siyadatpanah 4, Maria de Lourdes Pereira 5 , Polrat Wilairatana 6,* and Josué de Moraes 1,* 1 Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; [email protected] (R.P.); [email protected] (A.C.M.); [email protected] (R.A.C.) 2 Institute of Physics, University of São Paulo, São Paulo 05508-060, SP, Brazil; [email protected] (M.C.S.); [email protected] (F.S.T.) 3 Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, PI, Brazil; [email protected] 4 Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran; [email protected] 5 CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] 6 Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand * Correspondence: [email protected] (P.W.); [email protected] (J.d.M.) Citation: Porto, R.; Mengarda, A.C.; Abstract: The intravascular parasitic worm Schistosoma mansoni is a causative agent of schistosomiasis, Cajas, R.A.; Salvadori, M.C.; Teixeira, a disease of great global public health significance. Praziquantel is the only drug available to F.S.; Arcanjo, D.D.R.; Siyadatpanah, treat schistosomiasis and there is an urgent demand for new anthelmintic agents.
    [Show full text]
  • Effects of Sustained Phencyclidine Exposure on Sensorimotor Gating of Startle in Rats Zoë A
    Effects of Sustained Phencyclidine Exposure on Sensorimotor Gating of Startle in Rats Zoë A. Martinez, M.A., Gaylord D. Ellison, Ph.D, Mark A. Geyer, Ph.D, and Neal R. Swerdlow, M.D., Ph.D Phencyclidine (PCP), a non-competitive NMDA which parallels the decrease observed in schizophrenia antagonist with actions at multiple other central nervous patients. In the present study, we examined changes in PPI system receptors, can cause both acute and lasting during and after sustained PCP administration, using psychoses in humans, and has also been used in cross- 5-day PCP exposure via subcutaneous osmotic minipumps, species models of psychosis. Acute exposure to PCP in rats or 14-day PCP exposure via repeated intraperitoneal produces behavioral changes, including a loss of prepulse injections. In both forms of drug delivery, PPI was inhibition (PPI) of the startle reflex, which parallels the loss disrupted during, but not after, sustained drug exposure. of PPI observed in schizophrenia patients. Sustained PPI does not appear to be sensitive to neuropathological exposure to PCP in rats produces neuropathological effects of sustained PCP exposure. changes in several limbic regions and prolonged behavioral [Neuropsychopharmacology 21:28–39, 1999] abnormalities that may parallel neuropsychological deficits © 1999 American College of Neuropsychopharmacology. in schizophrenia. It is unclear whether sustained PCP Published by Elsevier Science Inc. exposure will also produce a loss of prepulse inhibition KEY WORDS: Apomorphine; Phencyclidine; Prepulse schizophrenia is demonstrated by the significant corre- inhibition; Schizophrenia; Sensorimotor; Startle lation between PPI and measures of thought disorder (Perry and Braff 1994) and positive and negative symp- Schizophrenia patients demonstrate abnormalities in toms (Braff et al.
    [Show full text]
  • Formulation and Evaluation of Nitrendipine Buccal Films
    www.ijpsonline.com SShorthort CCommunicationsommunications Formulation and Evaluation of Nitrendipine Buccal Films M. NAPPINNAI*, R. CHANDANBALA AND R. BALAIJIRAJAN Department of Pharmaceutics, C. L. Baid Mehta College of Pharmacy, Jyothi Nagar, Thoraipakkam, Old Mahabalipuram Road, Chennai-600 096, India Nappinnai, et al.: Nitrendipine buccal fi lms A mucoadhesive drug delivery system for systemic delivery of nitrendipine, a calcium channel blocker through buccal route was formulated. Mucoadhesive polymers like hydroxypropylmethylcellulose K-100, hydroxypropylcellulose, sodium carboxymethylcellulose, sodium alginate, polyvinyl alcohol, polyvinyl pyrrolidone K-30 and carbopol- 934P were used for fi lm fabrication. The fi lms were evaluated for their weight, thickness, percentage moisture absorbed and lost, surface pH, folding endurance, drug content uniformity, In vitro residence time, In vitro release and ex vivo permeation. Based on the evaluation of these results, it was concluded that buccal fi lms made of hydroxylpropylcellulose and sodium carboxymethylcellulose (5±2% w/v; F-4), which showed moderate drug release (50% w/w at the end of 2 h) and satisfactory fi lm characteristics could be selected as the best among the formulations studied. Key words: Buccal fi lms, carboxymethylcellulose, hydroxylpropylcellulose, nitrendipine Mucoadhesive drug delivery systems may be bioadhesive polymers was executed. formulated to adhere to the mucosa of eyes, nose, oral (buccal), intestine, rectum and vagina1. Among these Nitrendipine (NTD) was obtained as a gift systems, the buccal mucosa offers many advantages sample from M/s. Camlin Ltd., Mumbai. like relatively large surface area of absorption, easy Hydroxypropylmethylcellulose K-100 (HPMC accessibility, simple delivery devices, avoiding hepatic K-100) and hydroxypropylcellulose (HPC) were first pass metabolism and feasibility of controlled purchased from Lab Chemicals, Chennai.
    [Show full text]
  • Excitatory Amino Acid Receptor Antagonists and Electroacupuncture Synergetically Inhibit Carrageenan-Induced Behavioral Hyperalgesia and Spinal Fos Expression in Rats
    http://www.paper.edu.cn Pain 99 (2002) 525–535 www.elsevier.com/locate/pain Excitatory amino acid receptor antagonists and electroacupuncture synergetically inhibit carrageenan-induced behavioral hyperalgesia and spinal fos expression in rats Yu-Qiu Zhanga, Guang-Chen Jib, Gen-Cheng Wub, Zhi-Qi Zhaoa,* aInstitute of Neurobiology, Fudan University, 220 Han Dan Road, Shanghai, 200433, China bState Key Laboratory of Medical Neurobiology, Medical Center of Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China Received 30 January 2002; accepted 27 June 2002 Abstract The interaction between electroacupuncture and an N-methyl-d-aspartic acid (NMDA) receptor antagonist, (DL-2-amino-5-phosphono- pentanoic acid; AP5), or an ( ^ )-a-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainite (AMPA/KA) receptor antagonist, (6,7- dinitroquinoxaline-2,3 (1H,4H); DNQX) administered intrathecally on carrageenan-induced thermal hyperalgesia and spinal c-Fos expres- sion was investigated. The latency of paw withdrawal (PWL) from a thermal stimulus was used as a measure of hyperalgesia in awake rats. Intrathecal (i.t.) injection of 1 and 10 nmol AP5, but not DNQX, markedly increased the PWL of the carrageenan-injected paw. At a dose of 100 nmol, either AP5 or DNQX significantly increased the PWL of carrageenan-injected paw, with AP5 being more potent. The PWLs of the non-injected and normal saline (NS)-injected paws were not detectably affected by the administration of NMDA or AMPA/KA receptor antagonists at the doses tested. Unilateral electroacupuncture stimulation of the ‘Zu-San-Li’ (St 36) and ‘Kun-Lun’ (UB 60) acupuncture points (60 and 2 Hz alternately, 1–2–3 mA) contralateral to the carrageenan-injected paw significantly elevated the PWLs of carrageenan- and NS-injected paws.
    [Show full text]
  • Pharmacological Profile of Dizocilpine (Mk-801) And€Its
    Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2019, 88(4), 166-179 ISSN 0372-7025 (Print) ISSN 2571-113X (Online) DOI: 10.31482/mmsl.2019.019 Since 1925 PŘEHLEDOVÝ ČLÁNEK / REVIEW ARTICLE FARMAKOLOGICKÝ PROFIL DIZOCILPINU (MK-801) A MOŽNOSTI JEHO VYUŽITÍ VE ZVÍŘECÍCH MODELECH SCHIZOFRENIE PHARMACOLOGICAL PROFILE OF DIZOCILPINE (MK-801) AND ITS POTENTIAL USE IN ANIMAL MODEL OF SCHIZOPHRENIA Jan Konečný 1,2, Radomír Jůza 3, Ondřej Soukup 1,2, Jan Korábečný 1,2,3 1 Katedra toxikologie a vojenské farmacie, Fakulta vojenského zdravotnictví, Třebešská 1575, 500 02, Hradec Králové, Česká republika 2 Centrum biomedicínského výzkumu, Fakultní nemocnice Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Česká republika 3 Národní ústav duševního zdraví, Topolová 748, 250 67 Klecany, Česká republika Přijato 19. července 2019. Akceptováno 5. září 2019. Zveřejněno 6. prosince 2019. Souhrn N-Methyl-D-aspartátový (NMDA) receptor patří do skupiny glutamátových receptorů, které se dále dělí na ionotropní a metabotropní. V CNS má vliv na synaptickou plasticitu a rozvoj neuronálních synapsí. Ionotropní NMDA receptory jsou aktivovány glutamátem, díky čemuž proudí pozitivně nabité ionty skrz membránu po svém koncentračním gradientu. Nicméně nadměrné hladiny glutamátu působí excitotoxicky díky vysokým intracelulárním hladinám Ca2+ a mohou vést k buněčné smrti neuronů pozorované např. u neurodegenerativních onemocnění. Antagonisté NMDA receptorů, mezi které patří například dizocilpin, ovlivňují prostupnost NMDA receptoru a zamezují tak vstupu iontů Ca2+ do buňky. Dizocilpin působí jako nekompetitivní antagonista NMDA receptoru, má antikonvulzivní a anestetické účinky. Jeho terapeutické použití u lidí není vhodné z důvodu výskytu četných vedlejších účinků, experimentálně je však využíván jako farmakologicky indukovaný animální model schizofrenie.
    [Show full text]