Palynological Evidence for Tertiary Plant Dispersals in the SE Asian Region in Relation to Plate Tectonics and Climate

Total Page:16

File Type:pdf, Size:1020Kb

Palynological Evidence for Tertiary Plant Dispersals in the SE Asian Region in Relation to Plate Tectonics and Climate Tertiary plant dispersals in SE Asia 211 Palynological evidence for Tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate Robert J Morley PALYNOVA, 1 Mow Fen Road, Littleport, nr Ely, Cambs CB6 1PY, UK Key words: SE Asia, Tertiary, palynology, plants, dispersal, plate tectonics, climate Abstract cial, high sea level periods coinciding with times of rain forest expansion, and glacial, low sea levels coincided with Geological evidence for plant dispersals in SE Asia is re- periods of more strongly seasonal climates, accompanied by viewed by reference to both published, and previously un- the expansion of forests adapted to seasonal climates (such published, evidence from the time of first appearance of as pine forests) and savannah angiosperms until the Quaternary It is concluded that A major montane connection existed in South and East angiosperms did not originate in the SE Asian region, but Asia through both the Tertiary and late Cretaceous, from the dispersed into the area from West Gondwanaland Many equator to 60oN, allowing Laurasian mountain plants to dis- African plant species dispersed into India as the Indian plate perse to and from the equator throughout this period The drifted past Madagascar in the Cenomanian/Turonian, and survival of representatives of many primitive northern, many of their descendants subsequently dispersed into SE angiosperm families in lower montane forests within the SE Asia following the collision of the Indian plate with Asia in Asian region is thought to be due to the continuous pres- the middle Eocene Prior to this time, the SE Asian flora ence of this unbroken mountain belt, rather than an origin appears to have developed in some degree of isolation in SE Asia In contrast, the New Guinea mountains were There is no palynological evidence for dispersals from the formed only in the middle Miocene, from which time many Australian plate in the Cretaceous, and minimal evidence Gondwanan taxa dispersed into this area from the south for such dispersals in the Paleocene/Eocene Those well adapted to dispersal, such as Podocarpus The Sundanian Eocene flora stretched as far east as the imbricatus and Phyllocladus subsequently dispersed widely South arm of Sulawesi, and subsequent to the opening of into SE Asia, whereas those poorly adapted to dispersal, the Makassar Straits in the late Eocene, a part of this flora such as Nothofagus, never reached beyond New Guinea became stranded to the east of Wallaces Line, and probably formed a major source for other areas to the east of Wallaces Line of taxa of Sundanian and Asiatic affinity, as islands rose above sea level during the Miocene, negating Introduction the need for wholesale Miocene dispersal eastward A small number of plant taxa have dispersed westward across Plant geographers have long recognised that the Wallaces Line since the beginning of the Miocene, at 17, 14, SE Asian flora has become enriched through the 95, 35 and about 1 Ma All of the taxa involved were well dispersal of taxa from other continental regions adapted to dispersal, and emphasise that Wallaces Line has been a substantial barrier to plant dispersal from the There is clear biogeographical evidence for the Oligocene onward dispersal of mountain plants into the region Since the Eocene, plant dispersals to and from the Sunda along three trackways, from the Himalayan re- region have largely been controlled by climate The gion, East Asia, and Australasia (Steenis, Oligocene and earliest Miocene were moisture deficient over much of the region, with ever-wet rain forest climates 1934a,b, 1936) and also for lowland plants, es- first becoming widespread at about 20 Ma in the early pecially those requiring a strong dry season, Miocene, subsequent to which they have repeatedly ex- both from Asia and Australasia Proposals have panded and contracted The greatest latitudinal expansion also been made for massive dispersals from the of tropical rain forests occurred at the beginning of the mid- Sunda region to the east of Wallaces Line, fol- dle Miocene, at which time they extended northward as far as Japan Fluctuations between wetter and drier climates lowing the mid-Miocene collision between the became more pronounced in the Quaternary, with intergla- Australian and Sunda plates, although the scale Biogeography and Geological Evolution of SE Asia, pp 211-234 Edited by Robert Hall and Jeremy D Holloway © 1998 Backhuys Publishers, Leiden, The Netherlands 212 R J Morley of such migrations is debatable Plant distribu- PALAEOLATITUDE tions have also been used to suggest that there 60S 40 20 0 20 40 60N was a pre-mid Miocene contact between Aus- CENOMANIAN tralia and SE Asia, with the suggestion that this LT contact was pre-Tertiary (Steenis, 1962) Claims that the angiosperms actually evolved in the SE ALBIAN M Asian region also continue to be made, despite EY an absence of fossil evidence (Takhtajan, 1987) Biogeographical hypotheses such as these APTIAN can only find confirmation when they are based BARREMIAN on a foundation of historical geology This dis- cussion attempts to review geological evidence Fig1 Poleward migration of angiosperms during the mid for plant dispersals by examining the fossil pol- Cretaceous; latitude versus age for Barremian to len and spore record for the Tertiary (and Late Cenomanian monosulcate (¡) and tricolp(or)ate (l) pollen Cretaceous) of the SE Asian region, paying par- records (from Hickey and Doyle, 1977) ticular attention to the times of appearance in the region of pollen types exhibiting clear affini- ties with other continental regions The review is based on both published and unpublished data from both outcrops and boreholes, and records discovered so far for Australia post-date uses the plate tectonic reconstruction of Hall those from western Gondwana by 10 Ma, and (1995) for SE Asia and Daly et al (1987) for the also post-date the timing of separation of such Indian plate microcontinents from Gondwanaland The old- Geological evidence for the dispersal of low- est record for Australian monosulcate pollen is land plants and those of the uplands, are dis- from the latest Barremian or earliest Aptian cussed separately, although it must be appreci- (Burger, 1991), considerably later than its first ated that through most of the Tertiary, it is not appearance in the western hemisphere Strong always easy to determine from which of these evidence to suggest that angiosperms originated sources each pollen type is derived at tropical palaeolatitudes is provided from glo- In bringing to attention names of fossil pollen, bal plots of earliest appearances against latitude a simple convention has been followed In cases (Fig 1) which indicate parallel, slow adaptation where a fossil pollen type has been adequately to cooler, or more seasonal, climates at higher described according to the botanical code, the latitudes in both hemispheres during the course fossil name is used, generally followed, if appro- of the mid-Cretaceous The parallel diversifica- priate, by an indication of the botanical affinity tion of both pollen and macrofossils in the mid- of the parent plant, if this is known In cases Cretaceous (Hickey and Doyle, 1977) suggests where a pollen type remains inadequately de- that this pattern reflects the radiation of the early scribed according to the code, but the parent angiosperm flora, and not simply the develop- plant is known, the name of the parent plant ment of those angiosperm groups with recognis- alone is used In cases where such a pollen type able pollen might be derived from two or more plant taxa, Fossil evidence of the representation of the the taxon name is also followed by the word earliest angiosperms in the SE Asian region is type still very meagre In the past, this was due to the lack of studies from the region Recent palynological analyses of thick fluvial Lower Initial stages of angiosperm radiation Cretaceous sediments from Thailand, ranging in age from Neocomian to Aptian, have, however, The current fossil record provides no evidence failed to yield a single angiosperm pollen grain to suggest that angiosperms actually originated (Racey et al, 1994), and probable Barremian in SE Asia, as proposed by Takhtajan (1969) It is sediments from the Malay peninsula have pro- more likely that they migrated into the region duced but a single tentative record of the Truswell et al (1987) dismissed the suggestion chloranthaceous Clavatipollenites (Shamsuddin of Takhtajan (1987) that they originated on an and Morley, 1994), among an assemblage domi- isolated Gondwanan microcontinent, which nated by pollen of Classopollis spp and fern subsequently became embedded in SE Asia, on spores Current evidence, therefore, suggests the grounds that the earliest angiosperm pollen that angiosperms were much less well repre- Tertiary plant dispersals in SE Asia 213 ✚ Fig2 Mid-Cretaceous migration routes along the southern shore of Tethys Elateropollenites africaensis (o) is recorded from the Turonian of Irian Jaya (Bates, unpublished) and Papua New Guinea (Lowe, pers comm, 1987), and has a late Albian to Turonian centre of abundance in Africa and South America (outlined area); Afropollis jardinus exhibits an identical distribution pattern in the Cenomanian of Pakistan (l) to that seen in West Africa (IEDS, unpublished); Constantinisporis, Victorisporis and Andreisporis (n) are very well represented in the Turonian to Campanian of sub(palaeo)equatorial Africa, but appear in the Senonian of Madagascar (Chen 1982) and India (Venkatachala,
Recommended publications
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE ENVIRONMENTAL STUDIES Copyright © 2021 The Authors, some rights reserved; The mid-Miocene Zhangpu biota reveals exclusive licensee American Association an outstandingly rich rainforest biome in East Asia for the Advancement Bo Wang1*, Gongle Shi1*, Chunpeng Xu1,2, Robert A. Spicer3,4, Vincent Perrichot5, of Science. No claim to 6 6 7† 1,5 8 original U.S. Government Alexander R. Schmidt , Kathrin Feldberg , Jochen Heinrichs , Cédric Chény , Hong Pang , Works. Distributed 9 10 1 11 12 Xingyue Liu , Taiping Gao , Zixi Wang , Adam Ślipiński , Mónica M. Solórzano-Kraemer , under a Creative 13 13 14 1,15 1,16 Sam W. Heads , M. Jared Thomas , Eva-Maria Sadowski , Jacek Szwedo , Dany Azar , Commons Attribution André Nel17, Ye Liu18, Jun Chen19, Qi Zhang20, Qingqing Zhang1, Cihang Luo1,2, Tingting Yu1,2, NonCommercial Daran Zheng1,21, Haichun Zhang1, Michael S. Engel22,23,24 License 4.0 (CC BY-NC). During the Mid-Miocene Climatic Optimum [MMCO, ~14 to 17 million years (Ma) ago], global temperatures were similar to predicted temperatures for the coming century. Limited megathermal paleoclimatic and fossil data are known from this period, despite its potential as an analog for future climate conditions. Here, we report a rich middle Miocene rainforest biome, the Zhangpu biota (~14.7 Ma ago), based on material preserved in amber and associated sedimentary rocks from southeastern China. The record shows that the mid-Miocene rainforest reached at least 24.2°N and was more widespread than previously estimated. Our results not only highlight the role of tropical rainforests acting as evolutionary museums for biodiversity at the generic level but also suggest that the MMCO probably strongly shaped the East Asian biota via the northern expansion of the megathermal rainforest biome.
    [Show full text]
  • Ctenolophonaceae
    Ctenolophonaceae A.M.N. van Hooren& H.P. Nooteboom Leiden) The systematic place of the tropical lowland rain-forest tree CtenolophonOLIVER has a chequered history. Originally it was referred to affinity with Olacaceae (OLIVER, 1873; MASTERS, 1875; ENGLER, 1889; BAILLON, 1892) or Icacinaceae (BECCARI, 1877). HALLIER ƒ . (1912, 1918) held another view and arranged the genus in the Celastrales, deriving this group from Linaceae. HUTCHINSON (1959, 1973) referred the genus to the Malvales. In a meticulous expose ofthe anatomy, flowerand fruit structure, PIERRE (1893) concludedthat the affinity of Ctenolophon is with the Linaceae and he was followed by ENGLER (1907), EXELL (1927), and HUB.WINKLER (1931). At present Ctenolophon is almost unanimously recognized as belonging to the Linaceous af- Linaceae finity, together with Ixonanthaceae. Within HUB.WINKLER (1931) had raised the genus to the rank ofa monogenericsubfamily. Later EXELL & MENDONQA (1951) recognized it as repre- senting a family of its own, a view now almost unanimously accepted, as fully discussed by VAN HOOREN & NOOTEBOOM (1984). families In the treatment of the family Linaceae (page 607, see there) the Linaceae, Ixonan- thaceae, and Ctenolophonaceae are opposed by concise diagnoses. On account of studies of special features some other affinities have been put forward. HEIMSCH found remarkable in with (1942) a resemblance xylem structure Humiriaceae. CRONQUIST (1981) referred to Ctenolophon as an aberrant member of Hugoniaceae, a view with which we cannot VAN WELZEN BAAS of agree. & (1984) compared the leaf anatomy of Ctenolophon with that Hu- miria and and found that it is different from both Humiriaceae and some Malpighiaceae very Malpighiaceae, but also fromother Linaceae, and they supported the status of a family of its own, adding that close affinities are still unknown.
    [Show full text]
  • THE DISTRIBUTION of the DIPTEROCARPACEAE in THAILAND by Tern Sm Itinand (Read at Xitb Pacific Science Congress, Tokyo, 1St September 1966)
    THE DISTRIBUTION OF THE DIPTEROCARPACEAE IN THAILAND by Tern Sm itinand (Read at XItb Pacific Science Congress, Tokyo, 1st September 1966) ABSTRACT The family Dipterocarpaceae is represented in Thailand by 9 genera and 6 3 species, and can be classified into 2 groups, evergreen and deciduous or xerophytic. The majority belong to the evergreen, which is scattered all over the country either in gallery forest (Dij;tero­ carpus alatus, VaLica cinerea and Hopea odorata), along the hill streams (Dipterocarpus oblongifolius and V atica odorata), in the low-lying land (Dij;terocarpus baudii, D. dyeri, D. gmcilis, D. clwrtaceus, D. ken·ii, Slwrea and f-loj;ea spp.), or on bill slopes (Dij;terocarpus cnslatus, D. gt·andiflorus, D. Tetusus, D. turbinatus, D . IIWC1"0carpus, Hopea odomta, I-Iopea f enea and S!wrea talura). Only 5 xerophytic species are represented (Dipterocmpus obtusifolius, D. tuberculatus, D. intn·catus, Shorea obtusa and Pe11taC11·1e suavi.s), occupying either the high plateau or ridges, and forming a climatic forest type, the Dry Deciduous Diptero­ carp forest. The highest elevation reached by the Dipterocarps is 1300 m.a.s.l. (D1j;terocarpus tuberculatus, D. obtusifolius, Shot·ea obtusa and Pentacme suavis). Parashortea stellata and Shorea Togersiana follow the Tenesserim tract, while Cotylelobium lanceolatum, Balanocarpus heimii, Shorea curtisii, S. assamica var. globifera, S. guiso, S. faguetiana, S. hemsleyana, S. sumatrana, S. mae1·optera, S. glauca S. j;arv lfolia, I-Iopea pedicellata, I-I. lat1jolia, Vatica staj;fiana, and V. lowii are confined to the Peninsular region not beyond the latitude 1 o·N. Species found only in the Northeastern region are I-Iopea 1·eticulata and I-I.
    [Show full text]
  • Karyomorphology and Its Evolution in Dipterocarpaceae (Malvales)
    © 2020 The Japan Mendel Society Cytologia 85(2): 141–149 Karyomorphology and Its Evolution in Dipterocarpaceae (Malvales) Kazuo Oginuma1*, Shawn Y. K. Lum2 and Hiroshi Tobe3 1 The Community Center for the Advancement of Education and Research at the University of Kochi, 5–15 Eikokuji-cho, Kochi 780–8515, Japan 2 Asian School of the Environment, Nanyang Technological University, Singapore 639798 3 Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan Received January 16, 2020; accepted February 9, 2020 Summary Previous chromosome information is restricted to Dipterocarpoideae, one of the two subfamilies of Dipterocarpaceae, and no chromosome information is available for another subfamily Monotoideae. Here we present the first karyomorphology of Marquesia macroura (2n=22) (Monotoideae), as well as of four species (2n=22) of four genera in tribe Dipterocarpeae and five species (2n=14) of tribe Shoreae in Dipterocarpoideae. Comparisons within Dipterocarpaceae and with Sarcolaenaceae (2n=22) sister to Dipetrocarpaceae in the light of phylogenetic relationships show that the basic chromosome number x=11 is plesiomorphic and x=7 apomor- phic in Dipterocapaceae. Based on available information, tribe Shoreae (x=7) has a uniform karyotype where all chromosomes have a centromere at median position, while the rest of the family (x=11) have a diverse karyotype in terms of the frequency of chromosomes with a centromere at median, submedian and subterminal position. We discussed the meaning of lability of karyotype in chromosome evolution. Keywords Basic chromosome number, Chromosome evolution, Dipterocarpaceae, Karyomorphology. Dipterocarpaceae (Malvales) are a family of 16 gen- x=10, and five genera Dryobalanops, Hopea, Neobala- era and 680 species distributed in tropical regions of nocarpus, Parashorea and Shorea of tribe Shoreae all the Old World, especially in the rain forests of Malesia have x=7.
    [Show full text]
  • Wingnut (Juglandaceae)
    83 Wingnut (Juglandaceae) as a new generic host for Pityophthorus juglandis (Coleoptera: Curculionidae) and the thousand cankers disease pathogen, Geosmithia morbida (Ascomycota: Hypocreales) Stacy M. Hishinuma, Paul L. Dallara, Mohammad A. Yaghmour, Marcelo M. Zerillo, Corwin M. Parker, Tatiana V. Roubtsova, Tivonne L. Nguyen, Ned A. Tisserat, Richard M. Bostock, Mary L. Flint, Steven J. Seybold1 Abstract—The walnut twig beetle (WTB), Pityophthorus juglandis Blackman (Coleoptera: Curculionidae), vectors a fungus, Geosmithia morbida Kolařík, Freeland, Utley, and Tisserat (Ascomycota: Hypocreales), which colonises and kills the phloem of walnut and butternut trees, Juglans Linnaeus (Juglandaceae). Over the past two decades, this condition, known as thousand cankers disease (TCD), has led to the widespread mortality of Juglans species in the United States of America. Recently the beetle and pathogen were discovered on several Juglans species in northern Italy. Little is known about the extra-generic extent of host acceptability and suitability for the WTB. We report the occurrence of both the WTB and G. morbida in three species of wingnut, Pterocarya fraxinifolia Spach, Pterocarya rhoifolia Siebold and Zuccarini, and Pterocarya stenoptera de Candolle (Juglandaceae) growing in the United States Department of Agriculture-Agricultural Research Service, National Clonal Germplasm Repository collection in northern California (NCGR) and in the Los Angeles County Arboretum and Botanic Garden in southern California, United States of America. In two instances (once in P. stenoptera and once in P. fraxinifolia) teneral (i.e., brood) adult WTB emerged and were collected more than four months after infested branch sections had been collected in the field. Koch’s postulates were satisfied with an isolate of G.
    [Show full text]
  • Historical Biogeography and Diversification of the Cosmopolitan Ectomycorrhizal Mushroom Family Inocybaceae
    Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae P. Brandon Matheny1*, M. Catherine Aime2, Neale L. Bougher3, Bart Buyck4, Dennis E. Desjardin5, Egon Horak6, Bradley R. Kropp7, D. Jean Lodge8, Kasem Soytong9, James M. Trappe10 and David S. Hibbett11 ABSTRACT Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa- Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae.
    [Show full text]
  • Analysis of Phylogenetic Relationships in the Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2)
    Analysis of Phylogenetic Relationships in The Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2) Zhongzhong Guo Tarim University Qiang Jin Tarim University Zhenkun Zhao Tarim University Wenjun Yu Tarim University Gen Li Tarim University Yunjiang Cheng Tarim University Cuiyun Wu Tarim University rui Zhang ( [email protected] ) Tarim University https://orcid.org/0000-0002-4360-5179 Research Article Keywords: Base sequence, Evolution, Juglandaceae, Ribosomal spacer, Secondary structure Posted Date: May 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-501634/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract This study aims to investigate the phylogenetic relationships within the Juglandaceae family based on the Internal Transcribed Spacer's primary sequence and secondary structures (ITS2). Comparative analysis of 51 Juglandaceae species was performed across most of the dened seven genera. The results showed that the ITS2 secondary structure's folding pattern was highly conserved and congruent with the eukaryote model. Firstly, Neighbor-joining (N.J.) analysis recognized two subfamilies: Platycaryoideae and Engelhardioideae. The Platycaryoideae included the Platycaryeae (Platycarya+ (Carya+ Annamocarya)) and Juglandeae (Juglans-(Cyclocarya + Pterocarya)). The Engelhardioideae composed the (Engelhardia+Oreomunnea+Alfaroa)). The Rhoiptelea genus was generally regarded as an outgroup when inferring the phylogeny of Juglandaceae. However, it is clustered into the Juglandaceae family and showed a close relationship with the Platycaryoideae subfamily. Secondly, the folded 3-helices and 4-helices secondary structure of ITS2 were founded in the Juglandaceae family. Therefore, these ITS2 structures could be used as formal evidence to analyze Juglandaceae's phylogeny relationship.
    [Show full text]
  • Origins and Assembly of Malesian Rainforests
    ES50CH06_Kooyman ARjats.cls October 21, 2019 11:31 Annual Review of Ecology, Evolution, and Systematics Origins and Assembly of Malesian Rainforests Robert M. Kooyman,1,2 Robert J. Morley,3,4 Darren M. Crayn,5 Elizabeth M. Joyce,5 Maurizio Rossetto,2 J.W. Ferry Slik,6 Joeri S. Strijk,7,8,9 Ta o S u , 9,10 Jia-Yee S. Yap,2,11 and Peter Wilf12 1Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; email: [email protected] 2National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia 3Palynova UK, Littleport, Cambridgeshire CB6 1PY, United Kingdom 4Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom 5Australian Tropical Herbarium and Centre for Tropical Environmental Sustainability Science, James Cook University, Smithfield, Queensland 4878, Australia 6Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam 7State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530005, China 8Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, 06000 Luang Prabang, Lao PDR 9Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China 10Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar Access provided by 118.208.177.216 on 11/06/19. For personal use only. 11Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland 4072, Australia 12Department of Geosciences, Pennsylvania State University, University Park, Annu.
    [Show full text]
  • Juglandaceae (Walnuts)
    A start for archaeological Nutters: some edible nuts for archaeologists. By Dorian Q Fuller 24.10.2007 Institute of Archaeology, University College London A “nut” is an edible hard seed, which occurs as a single seed contained in a tough or fibrous pericarp or endocarp. But there are numerous kinds of “nuts” to do not behave according to this anatomical definition (see “nut-alikes” below). Only some major categories of nuts will be treated here, by taxonomic family, selected due to there ethnographic importance or archaeological visibility. Species lists below are not comprehensive but representative of the continental distribution of useful taxa. Nuts are seasonally abundant (autumn/post-monsoon) and readily storable. Some good starting points: E. A. Menninger (1977) Edible Nuts of the World. Horticultural Books, Stuart, Fl.; F. Reosengarten, Jr. (1984) The Book of Edible Nuts. Walker New York) Trapaceae (water chestnuts) Note on terminological confusion with “Chinese waterchestnuts” which are actually sedge rhizome tubers (Eleocharis dulcis) Trapa natans European water chestnut Trapa bispinosa East Asia, Neolithic China (Hemudu) Trapa bicornis Southeast Asia and South Asia Trapa japonica Japan, jomon sites Anacardiaceae Includes Piastchios, also mangos (South & Southeast Asia), cashews (South America), and numerous poisonous tropical nuts. Pistacia vera true pistachio of commerce Pistacia atlantica Euphorbiaceae This family includes castor oil plant (Ricinus communis), rubber (Hevea), cassava (Manihot esculenta), the emblic myrobalan fruit (of India & SE Asia), Phyllanthus emblica, and at least important nut groups: Aleurites spp. Candlenuts, food and candlenut oil (SE Asia, Pacific) Archaeological record: Late Pleistocene Timor, Early Holocene reports from New Guinea, New Ireland, Bismarcks; Spirit Cave, Thailand (Early Holocene) (Yen 1979; Latinis 2000) Rincinodendron rautanenii the mongongo nut, a Dobe !Kung staple (S.
    [Show full text]
  • A Review of Paleobotanical Studies of the Early Eocene Okanagan (Okanogan) Highlands Floras of British Columbia, Canada and Washington, USA
    Canadian Journal of Earth Sciences A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) Highlands floras of British Columbia, Canada and Washington, USA. Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2015-0177.R1 Manuscript Type: Review Date Submitted by the Author: 02-Feb-2016 Complete List of Authors: Greenwood, David R.; Brandon University, Dept. of Biology Pigg, KathleenDraft B.; School of Life Sciences, Basinger, James F.; Dept of Geological Sciences DeVore, Melanie L.; Dept of Biological and Environmental Science, Keyword: Eocene, paleobotany, Okanagan Highlands, history, palynology https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 70 Canadian Journal of Earth Sciences 1 A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) 2 Highlands floras of British Columbia, Canada and Washington, USA. 3 4 David R. Greenwood, Kathleen B. Pigg, James F. Basinger, and Melanie L. DeVore 5 6 7 8 9 10 11 Draft 12 David R. Greenwood , Department of Biology, Brandon University, J.R. Brodie Science 13 Centre, 270-18th Street, Brandon, MB R7A 6A9, Canada; 14 Kathleen B. Pigg , School of Life Sciences, Arizona State University, PO Box 874501, 15 Tempe, AZ 85287-4501, USA [email protected]; 16 James F. Basinger , Department of Geological Sciences, University of Saskatchewan, 17 Saskatoon, SK S7N 5E2, Canada; 18 Melanie L. DeVore , Department of Biological & Environmental Sciences, Georgia 19 College & State University, 135 Herty Hall, Milledgeville, GA 31061 USA 20 21 22 23 Corresponding author: David R. Greenwood (email: [email protected]) 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 70 24 A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) 25 Highlands floras of British Columbia, Canada and Washington, USA.
    [Show full text]
  • Plant Species Vulnerability to Climate Change in Peninsular Thailand
    Utah State University DigitalCommons@USU CWEL Publications 2011 Plant Species vulnerability to climate change in peninsular Thailand. Y. Trisuart S. Fajendra Roger K. Kjelgren Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/cwel_pubs Recommended Citation Trisuart, Y.; Fajendra, S.; and Kjelgren, Roger K., "Plant Species vulnerability to climate change in peninsular Thailand." (2011). CWEL Publications. Paper 83. https://digitalcommons.usu.edu/cwel_pubs/83 This Article is brought to you for free and open access by DigitalCommons@USU. It has been accepted for inclusion in CWEL Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Applied Geography 31 (2011) 1106e1114 Contents lists available at ScienceDirect Applied Geography journal homepage: www.elsevier.com/locate/apgeog Plant species vulnerability to climate change in Peninsular Thailand Yongyut Trisurat a,*, Rajendra P. Shrestha b, Roger Kjelgren c a Kasetsart University, Faculty of Forestry, 50 Ngamwongwan Road, Bangkok 10900, Thailand b School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani 12120, Thailand c Department of Plants, Soils, and Climate, Utah State University, UT 84322, USA abstract Keywords: The objective of this research study was to evaluate the consequences of climate change on shifts in Climate change distributions of plant species and the vulnerability of the species in Peninsular Thailand. A sub-scene of Maxent the predicted climate in the year 2100, under the B2a scenario of the Hadley Centre Coupled Model, Peninsular Thailand version 3 (HadCM3), was extracted and calibrated with topographic variables. A machine learning Plant species Species distribution algorithm based on the maximum entropy theory (Maxent) was employed to generate ecological niche Species vulnerability models of 66 forest plant species from 22 families.
    [Show full text]
  • A Study on Morphology and Anatomy of Two Myanmar Timber Species of the Genus Dipterocarpus, D
    Leaflet No. 10/2009 Ministry of Forestry Forest Department Forest Research Institute A Study on Morphology and Anatomy of Two Myanmar Timber Species of the Genus Dipterocarpus, D. tuberculatus Roxb. and D. turbinatus Gaertn. f. Yi Yi Han, Research Officer Kyaw Win Maung, Assistant Research Officer Kyi Kyi Khaing, Research Assistant-3 Forest Research Institute Soe Myint, Retired Rector Pakokku University December, 2009 i jrefrmhtif(Dipterocarpus tuberculatus Roxb.) eSifh unif(D. turbinatus Gaertn. f. ) wdkY\jyify&kyfoGifeSifY cE´maA'udk avYvmjcif; &D&D[ef? okawoet&m&Sd ausmf0if;armif? vufaxmufokawoet&m&Sd MunfMunfcdkif? okawoevufaxmuf -3 pdk;jrifh? ygarmu©csKyf (Nidrf;) pmwrf;tusOf; jrefrmedkifiHtv,fydkif;wGifobm0tavsmuf aygufa&mufaom tif (Dipterocarpus tuberculatus Roxb.) eSifh unifyif (D. turbinatus Gaertn. f.) wdkYudk 2008 eSifh2009 ckeSpfwdkYwGif tyiferlempHp(sample) rsm;pkaqmif;cJhygonf/ 4if;wdkY\rsdK;yGm;t*Fgydkif;eSifh yifydkif;wdkY\jyify&kyfoGif vu©Pmrsmudkvnf;aumif;? yifpnfeSifht&GufwdkY\ cE¨maA'vu©Pmrsm;udkvnf;aumif;? avhvmjyD; aqG;aEG;wifjyxm;ygonf/ þvu©Pm&yfrsm;onf opfyifrsm;udk rsdK;rnfazmfjcif;wGif toHk;0ifygonf/ A study on morphology and anatomy of two Myanmar Timber species of the genus Dipterocarpus, D. tuberculatus Roxb. and D. turbinatus Gaertn. f. Yi Yi Han, Research Officer Kyaw Win Maung, Assistant Research Officer Kyi Kyi Khine, Research Assistant-3 U Soe Myint, Retired Rector Abstract Dipterocarpus tuberculatus Roxb.(In) and D. turbinatus Gaertn. f. (Ka-nyin) members of the family Dipterocarpaceae, grown wild in Central Myanmar were collected in 2008 and 2009. Their morphological characteristics of reproductive and vegetative organs and anatomical characteristics of wood of stem and leaves were studied, described and discussed. These characteristics were useful in identification of the tree species.
    [Show full text]